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Instantaneous Nonlinearity and Feedback

Musical analog circuit and instrument models often must account
for instantaneous nonlinearity as well as feedback featured by the
original design. Together they create a computational issue
Instantaneous nonlinearity involves modeled maps

v = c(u) 6= m0u + v0

Instantaneous feedback involves modeled simultaneous signal
paths

u(t) −→ v(t) , v(t) −→ u(t)

Rarely the original design provides temporal delays as part of an
analog circuit. A delay τ does help compute nonlinear feedback
loops in the model. Ex.: analog delay lines, acoustic pipes

u(t) = v(t − τ) = c
(
y(t − τ)

)
.
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Modeling Instantaneous Nonlinear Feedback

Several methods have been developed across decades to model
(musical) analog circuits and (musical) instruments.

Some come up with a continuous-time model before discretization
Some embed a discretization map operating in the temporal
(t −→ kT = k/FS) or transformed (s −→ z) domain as part of
their definition, and come up with a discrete-time model.

Such approaches can be roughly classified based on their approach:
Multimensional shear of a time-domain system (2000)
Transformations of a state-space formulation of the equation
system, in the temporal (2015) or transformed domain (2003)
Wave decomposition of the original equation system, mainly Wave
Digital (WD) Filters (1989) or Digital Waveguide Filters (1993)
Energy-based (Hamiltonian)
Approximations (linerizations, inclusion of fictitious delays. . . ).
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Computing Instantaneous Nonlinear Feedback

Here we are not surveying existing modeling methods! We will be
instead surveying our recent research results on how numerical
solvers perform on a circuit/instrument model, and how they possibly
back-propagate to the modeling of a digital structure. Why?

Numerical solvers are often chosen by experts’ intuition or after
brute force simulations
They undergo some informal confabulation (“Newton-Raphson
wins over Fixed-Point”)
Rarely a performance analysis is made before simulations.

Specifically, we will investigate established solvers such as Fixed-Point
(FP) and Newton-Raphson (NR) in both Kirchhoff (digital, KD) and WD
filter networks (later on this screen by Alberto B.): the latter can be
linked to a physical interpretation.
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Focus of this tutorial

Computation of KD and WD filter networks using FP and NR solvers.

MUSICAL

Instrument

Electronic Circuit

SOLVER

Newton-Raphson (NR)

Fixed-Point (FP)

x[k] y[k]

MODEL

Kirchhoff (KD)

Wave Digital (WD)

We will show that
some quantitative preliminary analyses can be performed
they lead to results having general validity.
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Current scope and limitations

Linear blocks (i.e., digital filters) can be seen as a particular case.

u = [u1 . . . uN ]T external (also null) inputs to a network, including
contributions from linear blocks with memory
v = [v1 . . . vN ]T outputs from the same network.

N nonlinear scalar maps c = [c1, . . . , cN ]T : ci(v) =
∑N

j=1 ci,j(vj).

F u topological description from inputs to nonlinear maps
F v topological description of the network (map-to-map connections).

Hence, a network containing instantaneous nonlinear feedback is
described by this general equation:

v = F vc(v) + F uu.

Note: Local vector nonlinear maps — e.g. signal product, transistors:
ci(v) = vh · vk — can still be managed. (Ongoing research.)
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FP←→ KD: FP solution of a KD network

At every time step kT , system v [k ] = F vc(v [k ]) + F uu[k ] must be
satisfied—provided it can be (a modeling issue).
FP simply asks to iterate at every time step along index γ:

v (γ+1)[k ] = F vc(v (γ)[k ]) + F uu[k ]

until v (γ+1)[k ] ≈ v (γ)[k ] (the stop condition).

u[k]

c(·)

v[k]

c(·)

FP just asks to follow the signal flow
Valuable at design stage
Efficient implementation on cheap DSP (IoT, local memory)
Easy to program: apply nonlinear map to v and sum u; if stop
condition is not met then repeat.
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Condition for FP solution

Linear case (e.g. linear filters): iteration v (γ+1) = Av (γ) + x
converges if and only if the spectral radius ρ(A) is such that
ρ(A) < 1.
For every k , γ we define a vector function h(v) = F vc(v) + F uu
such that the spectral radius of the Jacobian matrix
Jh(v) = [h′i,j(vj)] of h(v) is less than one:

ρ
(
Jh(v)

)
< 1

Common practice: find A such that ρ
(
Jh(v)

)
≤ ρ(A) < 1

Note: upper bounds provide sufficient conditions (sometimes too
strong!).

Fontana & Bernardini (Univ. Udine)Physically-Interpretable Iterative Solvers Sep. 6, 2022 9 / 24



Instantaneous Nonlinear Feedback Performance of FP and NR in KD networks

Condition for FP solution

Linear case (e.g. linear filters): iteration v (γ+1) = Av (γ) + x
converges if and only if the spectral radius ρ(A) is such that
ρ(A) < 1.
For every k , γ we define a vector function h(v) = F vc(v) + F uu
such that the spectral radius of the Jacobian matrix
Jh(v) = [h′i,j(vj)] of h(v) is less than one:

ρ
(
Jh(v)

)
< 1

Common practice: find A such that ρ
(
Jh(v)

)
≤ ρ(A) < 1

Note: upper bounds provide sufficient conditions (sometimes too
strong!).

Fontana & Bernardini (Univ. Udine)Physically-Interpretable Iterative Solvers Sep. 6, 2022 9 / 24



Instantaneous Nonlinear Feedback Performance of FP and NR in KD networks

Condition for FP solution

Linear case (e.g. linear filters): iteration v (γ+1) = Av (γ) + x
converges if and only if the spectral radius ρ(A) is such that
ρ(A) < 1.
For every k , γ we define a vector function h(v) = F vc(v) + F uu
such that the spectral radius of the Jacobian matrix
Jh(v) = [h′i,j(vj)] of h(v) is less than one:

ρ
(
Jh(v)

)
< 1

Common practice: find A such that ρ
(
Jh(v)

)
≤ ρ(A) < 1

Note: upper bounds provide sufficient conditions (sometimes too
strong!).

Fontana & Bernardini (Univ. Udine)Physically-Interpretable Iterative Solvers Sep. 6, 2022 9 / 24



Instantaneous Nonlinear Feedback Performance of FP and NR in KD networks

Condition for FP solution

Linear case (e.g. linear filters): iteration v (γ+1) = Av (γ) + x
converges if and only if the spectral radius ρ(A) is such that
ρ(A) < 1.
For every k , γ we define a vector function h(v) = F vc(v) + F uu
such that the spectral radius of the Jacobian matrix
Jh(v) = [h′i,j(vj)] of h(v) is less than one:

ρ
(
Jh(v)

)
< 1

Common practice: find A such that ρ
(
Jh(v)

)
≤ ρ(A) < 1

Note: upper bounds provide sufficient conditions (sometimes too
strong!).

Fontana & Bernardini (Univ. Udine)Physically-Interpretable Iterative Solvers Sep. 6, 2022 9 / 24



Instantaneous Nonlinear Feedback Performance of FP and NR in KD networks

Example: EMS VCS3 VCF model (2008)
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EMS VCF - An upper bounding matrix

Bounding hyperbolic tangents (nonlinear filter blocks r(·), s(·), t(·)) with
straight lines:

|r(u)| ≤ r |u| , |s(u)| ≤ s|u| , |t(u)| ≤ t |u|

AVCF =



0 0 0 0 0 0 0 −ts
r 0 r 0 0 0 0 0
0 −s 0 s 0 0 0 0
0 0 −r 0 r 0 0 0
0 0 0 −s 0 s 0 0
0 0 0 0 −r 0 r 0
0 0 0 0 0 −s 0 s
0 0 0 0 0 0 −r −rs


.

det(AVCF) = (ts)r(rs)N/2−1 = (rs)N/2t

Check whether its roots are such that |rs|N/2|t | < 1, or |rs| < |t |−N/2.
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FP convergence speed in the EMS VCF

Critical VCS3 VCF resonance frequency and feedback gain
parameters r = 1, s = 1500/FS, and t = 10 for FP convergence speed
correspond to (N = 8)

|rs|N/2|t | ≈ 10−5

when the model runs at FS = 44.1 kHz.

A more elaborate upper bound condition which applies the Gershgorin
theorem to AVCF shows that

FP is highly sensitive to changes in the resonance parameter
FP convergence is guaranteed for every choice of the EMS VCS3
control parameters if φ /

√
577·103

FS
, with φ the radius of the largest

Gershgorin disk (FP convergence if 0 ≤ φ < 1).
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Example: Ring Modulator (RM) model
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Instantaneous Nonlinear Feedback Performance of FP and NR in KD networks

RM - An upper bounding matrix

This time the Jacobian matrix depends on the signal differences!

JRM(Ξ) =



0 0 0 −
ρmg′(ξ1,4)

2

ρmg′(ξ1,5)

2
−
ρmg′(ξ1,6)

2

ρmg′(ξ1,7)

2
ρm 0

0 0 0
ρag′(ξ2,4)

2
−
ρag′(ξ2,5)

2
−
ρag′(ξ2,6)

2

ρag′(ξ2,7)

2
0 ρa

0 0 0 ρi g
′(ξ3,4) ρi g

′(ξ3,5) −ρi g
′(ξ3,6) −ρi g

′(ξ3,7) 0 0
1/2 −1/2 −1 0 0 0 0 0 0
−1/2 1/2 −1 0 0 0 0 0 0
1/2 1/2 1 0 0 0 0 0 0
−1/2 −1/2 1 0 0 0 0 0 0
− µ

LFS
0 0 0 0 0 0 0 0

0 − µ
LFS

0 0 0 0 0 0 0



with
g(·) diode conductance,
uj ≤ ξi,j ≤ vj such that gi(u)− gi(v) =

∑N
j=1 g′i,j(ξi,j)(uj − vj) ,

µ = 1 for backward Euler, µ = 1/2 for trapezoidal rule during finite
differentiation.
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FP convergence speed in the RM

After some algebra around the Gershgorin disks:

‖g′‖∞ ≤
φ2

8

( 1
Ri

+
CpFS

µ

)
.

Observations:
larger voltage amplitudes rapidly increase g′, pushing FP toward
divergence unless FS is further increased
at high FS the above bound depends on the product φ2CpFS/µ.
This means that faster convergence afforded by smaller φ values
results in smaller ranges of convergence as a side effect. In
practice we expect that higher rates may accelerate speed,
however with no benefit for FP stability
almost no effect of the finite difference scheme choice.
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Instantaneous Nonlinear Feedback Performance of FP and NR in KD networks

RM: simulations using FP, also with forced stop γ = 0
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NR←→ KD: NR solution of a KD network

NR finds a root of f (v) by iterating along γ: v (γ+1) = v (γ) − f (v (γ))

f ′(v (γ))
.

Provided v [k ] = F vd(v [k ]) + F uu[k ] = c(v [k ]) + x [k ] at every
time step kT , we can look for a zero of the function
f (v) = v − c(v)− x by computing and then evaluating at every γ
the inverse of J f (v (γ)) = I − Jc(v (γ)):

v (γ+1) = v (γ) −
(
I − Jc(v (γ))

)−1(v (γ) − c(v (γ))− x
)
.

Note: v (γ+1) = v (γ) − v (γ)−c(v (γ))−x
1−c′(v (γ+1))

= c(v (γ))−c′(v (γ))v (γ)+x
1−c′(v (γ))

, i.e.,

x

c(·)

z
−1

−c
′(v(γ))

1
1−c′(v(γ))

v
(γ+1)

v
(γ) v

NR belongs to the fixed-point scheme family
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A multidimensional basin of NR convergence

We consider a basin such that M‖v − v (γ)‖∞ ≤
(
M‖v − v (0)‖∞

)2γ

A solution trajectory v (γ) falling within that basin will converge with
quadratic speed to solution v — FP converges with linear speed.

Let H f (v) =
[
f ′′i,j(vj)

]
. Holding appropriate continuity, derivability,

invertibility hypotheses etc. in n-D space I then if v (0) ∈ I,
M‖v − v (0)‖∞ < 1, then an NR iteration starting from v (0)

generates a trajectory converging to v with quadratic speed with

M(v) =
1
2
‖J f (v)−1H f (v)‖∞.

A basin extension cannot be computed before knowing the
solution v . Nevertheless, M(v) will be used proficiently.
The smaller M(v), the larger ‖v − v (0)‖∞ can be. The faster too??
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Example: Diode Clipper (DC) model
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Backward Euler: v [k ] = T
C

(u[k ]−v [k ]
R − gD(v [k ]) + gD(−v [k ])

)
+ v [k − 1].

Black: polynomial diode characteristic i = gD(v) = VPv41(v).

Grey: exponential diode characteristic i = gD(v) = ID(ev/2VE − 1).
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NR convergence speed in the DC

M(v) =
1
2

∣∣∣ f ′′(v)

f ′(v)

∣∣∣ =
1
2

∣∣∣ ρ
(
g′′D(v)− g′′D(−v)

)
1 + ρ

(
g′D(v) + g′D(−v)

)∣∣∣
Strong (inverse) correlation between M(v) and speed:
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Global convergence if M(v) is limited. With both diodes, two symmetric
maxima equal to M(∞) = 1

4VE
and M

(
3
√

1
2ρVP

)
= 3
√

2ρVP , respectively.
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Example: RM model (the same as before)

Rearranging J f (v) = I − Jc(v) — we already saw Jc = JRM:

J f =

[
I ∅
−B I

] [
I ∅
∅ I − BA

] [
I −A
∅ I

]
,

with

A(v) =


−ρm

2 g′D(v4) ρm
2 g′D(v5) −ρm

2 g′D(v6) ρm
2 g′D(v7) ρm 0

ρa
2 g′D(v4) −ρa

2 g′D(v5) −ρa
2 g′D(v6) ρa

2 g′D(v7) 0 ρa

ρlg′D(v4) ρlg′D(v5) −ρlg′D(v6) −ρlg′D(v7) 0 0


and

B =



1/2 −1/2 −1
−1/2 1/2 −1
1/2 1/2 1
−1/2 −1/2 1
− 1

LFs
0 0

0 − 1
LFs

0

 .
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NR convergence speed in the RM: some algebra

After some algebra, here, too:

J f (v)−1H f (v) =

[
∅ (I − AB)−1C
∅ B(I − AB)−1C

]
with

C(v) =


−ρm

2 g′′D(v4) ρm
2 g′′D(v5) −ρm

2 g′′D(v6) ρm
2 g′′D(v7) 0 0

ρa
2 g′′D(v4) −ρa

2 g′′D(v5) −ρa
2 g′′D(v6) ρa

2 g′′D(v7) 0 0

ρlg′′D(v4) ρlg′′D(v5) −ρlg′′D(v6) −ρlg′′D(v7) 0 0


in which, using backward Euler,

ρm =
Rm

1 + RmCFs
, ρa =

Ra

1 + RaCFs
, ρl =

Rl

1 + RlCpFs
.

and, finally, ‖J f (v)−1H f (v)‖∞ = ‖B‖∞‖(I − AB)−1‖∞‖C‖∞.
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NR convergence speed in the RM: results

As for FP vs. VCF, unfortunately ‖C‖∞ depends on g′′D(v):

‖C‖∞ ≤ 4 max{ρm, ρa, ρl}g′′D
(

max
i=4,5,6,7

{vi}
)
.
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C = Cp = 10−9 F, L = 0.8 H, Ra = 600 Ω, Ri = 50 Ω, Rm = 80 Ω,
FS = 44.1 kHz.
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Intermediate conclusions (before WD)

Alberto B. will make better use of M(v) shortly!

References:

Fontana, Federico, and Enrico Bozzo. “Explicit fixed-point computation
of nonlinear delay-free loop filter networks.” IEEE/ACM Transactions on
Audio, Speech, and Language Processing 26, no. 10 (2018): 1884-1896.

Fontana, Federico, and Enrico Bozzo. “Newton-Raphson solution of
nonlinear delay-free loop filter networks.” IEEE/ACM Transactions on
Audio, Speech, and Language Processing 27, no. 10 (2019): 1590-1600.

Credit: Enrico Bozzo
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Circuital Models of Audio Systems

• The model of an electrical circuit is made of
◦ Equations describing the network topology called:
• Kirchhoff Voltage Laws (KVL)
• Kirchhoff Current Laws (KCL)

◦ Constitutive equations of circuit elements such as:
• One-port elements (e.g., sources, resistors, capacitors, inductors,

diodes)
• Multi-port elements (e.g., opamps, transformers, gyrators,

transistors, vacuum tubes)

• When implicit discretization methods are used, the resulting
system of discrete-time equations in the Kirchhoff domain is
implicit
◦ Constitutive equations and topological information are merged
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Wave Digital Filters and Circuit Emulation
• Wave Digital Filter (WDF) theory developed by A. Fettweis

during the 70s was originally conceived as a methodology for
modeling digital filters by discretizing reference analog circuits

• WDF theory poses the basis for completely new methods for
emulating linear and nonlinear circuits in the Wave Digital
(WD) domain

Figure: Photo of Alfred Fettweis.
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General Considerations on WDFs

• A WDF is derived discretizing a reference analog circuit

• Circuit elements and circuit topology are modeled separately

• One-port circuit elements are modeled as input-output blocks
characterized by scattering relations

• Topological interconnections of elements are modeled using
MIMO junctions characterized by scattering matrices

• Elements and junctions are modeled in a port-wise fashion

• Each port of an element or junction is characterized by a pair
of port variables called wave variables

• One free parameter is introduced for each port
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Definition of Voltage Waves
• Kirchhoff variables at port n (of a generic port element or

junction) are
◦ the port voltage vn
◦ the port current in

• Wave variables (voltage waves) are defined as [1]

an = vn + Znin bn = vn − Znin (1)

◦ an is the incident wave
◦ bn is the reflected wave
◦ Zn 6= 0 is a scalar free parameter called reference port resistance

• Inverse mapping

vn =
an + bn

2
in =

an − bn
2Zn

(2)
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Constitutive Equations of One-Port Elements
• In the continuous-time domain (t is the time variable)

ξ (v(t), i(t)) = 0 (3)

◦ v(t) is the port voltage and i(t) is the port current
◦ ξ is a (linear or nonlinear) dynamic or instantaneous function

• In the discrete-time domain

ξ̃ (v[k], i[k]) = 0 (4)

◦ v[k] = v(kTs) and v[k] = v(kTs), where k is the sampling index
and Fs = 1/Ts is the sampling frequency

◦ if the element is memoryless we have that ξ̃(x, y) = ξ(x, y),
otherwise ξ̃(x, y) 6= ξ(x, y)
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Linear One-Port Elements

• The majority of linear one-port elements in the discrete-time
domain is characterized by a constitutive equation in the form

v[k] = Re[k]i[k] + Ve[k] (5)

◦ Re[k] is a resistance parameter
◦ Ve[k] is a voltage bias parameter
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Linear Resistor

• In the continuous-time domain the constitutive equation of a
linear resistor with resistance R is

v(t) = Ri(t) (6)

• In the discrete-time domain we get

v[k] = Ri[k] (7)

• Eq. (7) is a special case of eq. (5) in which:
◦ Re[k] = R
◦ Ve[k] = 0
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Linear Resistive Voltage Generator

• In the continuous-time domain the constitutive equation of a
linear resistive voltage source with source signal Vg(t) and
internal series resistance Rg is

v(t) = Rgi(t) + Vg(t) (8)

• In the discrete-time domain we get

v[k] = Rgi[k] + Vg[k] (9)

• Eq. (9) is a special case of eq. (5) in which:
◦ Re[k] = Rg

◦ Ve[k] = Vg[k] = Vg(kTs)
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Linear Dynamic Elements

• In the continuous-time domain the constitutive equation of a
linear dynamic element (capacitor or inductor) is

y(t) = µ
dx(t)

dt
(10)

◦ x(t) is a port voltage or port current
◦ y(t) is a port current or port voltage
◦ µ is a (capacitative or inductive) real coefficient

• In the Laplace domain, where s is the complex frequency
variable, (10) is written as

Y (s) = sµX(s) (11)
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Possible Time Derivative Approximations

Mappings from the Laplace domain with complex frequency
variable s to the Z-domain with complex variable z = esTs

• Backward Euler Method

s← 1− z−1
Ts

(12)

• Trapezoidal Rule (a.k.a. bilinear transform or Tustin’s method)

s← 2

Ts

1− z−1
1 + z−1

(13)

• Many other discretization methods are usable (e.g., finite
difference methods, Runge-Kutta methods, etc . . . )
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Linear Capacitor

• In the Laplace domain the constitutive equation of a linear
capacitor with capacitance C is

I(s) = sCV (s) (14)

• After applying the bilinear transform (13) to (14), in the
discrete-time domain we get

v[k] =
Ts
2C

i[k] +
Ts
2C

i[k − 1] + v[k − 1] (15)

• Eq. (15) is a special case of eq. (5) in which [2]:
◦ Re[k] = Ts/(2C)
◦ Ve[k] = Tsi[k − 1]/(2C) + v[k − 1]
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Linear Inductor

• In the Laplace domain the constitutive equation of a linear
inductor with inductance L is

V (s) = sLI(s) (16)

• After applying the bilinear transform (13) to (16), in the
discrete-time domain we get

v[k] =
2L

Ts
i[k] +

2L

Ts
i[k − 1]− v[k − 1] (17)

• Eq. (17) is a special case of eq. (5) in which [2]:
◦ Re[k] = 2L/Ts
◦ Ve[k] = (2Li[k − 1])/Ts − v[k − 1]
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Linear Wave Digital One-Port Element

• Kirchhoff-to-Wave transformation in the discrete-time domain

v[k] =
a[k] + b[k]

2
, i[k] =

a[k]− b[k]

2Z[k]
(18)

• Applying the substitution (18) in (5) and solving for b[k], we
get the scattering relation of a generic linear one-port element

b[k] =
Re[k]− Z[k]

Re[k] + Z[k]
a[k] +

2Z[k]

Re[k] + Z[k]
Ve[k] (19)

• Adaptation case (the instantaneous dependency of b[k] from
a[k] is eliminated)

b[k] = Ve[k] , with Z[k] = Re[k] (20)
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Implementation of Linear WD One-Ports

Table: Wave mappings of common WD linear one-port elements.

Constitutive Eq. Wave Mapping Adaptation Condition

v(t) = Vg(t) +Rgi(t) b[k] = Vg[k] Z[k] = Rg

v(t) = Ri(t) b[k] = 0 Z[k] = R

i(t) = C
dv(t)

dt
b[k] = a[k − 1] Z[k] =

Ts
2C

v(t) = L
di(t)

dt
b[k] = −a[k − 1] Z[k] =

2L

Ts
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Nonlinear Diode Model with Resistances

• Extended Shockley diode model for exponential p–n junction
diodes

ξ(v, i) = Is
(
e
v−Rsi
ηVt − 1

)
+
v −Rsi

Rp

− i = 0, (21)

◦ saturation current Is
◦ thermal voltage Vth
◦ ideality factor η
◦ series resistance Rs
◦ parallel resistance Rp

• Eq. (21) is nonlinear and it cannot be put in the form (5)
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Nonlinear WD Diode Model
• Substitute (18) into the discrete-time version of eq. (21)

• The result is a transcendental equation in the WD domain

• The following closed-form solution for b can be found [3, 4]

b = f(a) = −ω
(
λ− σ µ

κ
+ ln

(
−σ
κ

))
σ

− µ

κ
, (22)

σ =
Z1−ρ +RsZ−ρ

2ηVt
, λ =

a
(
Z1−ρ −RsZ−ρ)

2ηVt
,

κ = −
Z1−ρ + Z−ρ(Rs +Rp)

2IsRp
,

µ = 1−
a
(
Z1−ρ − Z−ρ(Rs +Rp)

)
2IsRp

.

(23)

◦ ω is the Omega Wright function, defined in terms of the first
branch of the Lambert function as ω(x) =W0(e

x) with x ∈ R
• The nonlinear WD diode cannot be adapted!
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Thèvenin Equivalent of Nonlinear One-Ports

• If we consider a generic operating point (v0, i0) on the
nonlinear v-i curve, we can locally approximate the nonlinear
element through the linearization

v = Re(v0, i0)i+ Ve(v0, i0) (24)

• (24) is a line with slope Re and y-intercept Ve that is tangent
to the v-i curve and passes through (v0, i0).

• For the extended Shockley model, we can write

Re(v, i) = v′(i) = − ∂ξ(v, i)/∂i
∂ξ(v, i)/∂v

=
1 + Rs

Rp
+ IsRs

ηVt
e
v−Rsi
ηVt

1
Rp

+ Is
ηVt
e
v−Rsi
ηVt

.

(25)
Ve(v, i) = v −Re(v, i)i (26)
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Thèvenin Equivalent of Nonlinear One-Ports

• The local Thèvenin equivalent model that approximates the
nonlinearity close to the operating point (v0, i0) could thus be
adapted by setting

Z = Re(v0, i0) (27)

• However, in most scenarios, knowing (v0, i0) requires to
already have the circuit solution at disposal!

• Re(v0, i0) needs to be estimated exploiting the past samples of
the simulation
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Topological Junctions or Connection Networks
• A N -port topological junction is an open interconnection

network (i.e., without electrical loads) characterized by
◦ a vector of port voltages v = [v1, . . . , vN ]

T

◦ a vector of port currents i = [i1, . . . , iN ]
T

• Example:

A B C

D

−+ Vin Rm Rout

C4 C5

Rf

i3
i6

i2

i5i4

i1

+

−
v3

1

(a) Reference circuit.

A B C

D

i2 i6 i3

i4 i5

i1

+
v2
−

+
v6
−

+
v3
−

+ v4 − + v5 −

+ v1 −

1

(b) Topological connection network.
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Relations between Port Variables
• Found a subset of independent port voltages we have that

v = QTvt (28)

◦ vt is the vector of size q× 1 collecting independent port voltages
◦ Q is the fundamental cut-set matrix of size q ×N

• Found a subset of independent port currents we have that

i = BT il (29)

◦ il is the vector of size p× 1 collecting independent port currents
◦ B is the fundamental loop matrix of size p×N

• p+ q = N
• Orthogonality property

BQT = 0p×q , QBT = 0q×p (30)
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How to find independent port variables?

• Consider the digraph D of the reference circuit where the
edges represent the loads of the connection network (one per
port), while the vertices represent the nodes of the circuit [5]

• Apply a tree-cotree decomposition to D
◦ A tree T of D is defined as a connected acyclic subgraph of D

containing all vertices
◦ A cotree C of D is a subgraph of D containing all the edges of
D that are not in a reference tree T

• Independent port voltages in vt are those related to the edges
of the tree

• Independent port currents in il are those related to the edges
of the cotree
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Example 1: Series Connection Network

A B

D C

−+ Vin

Rf

Rm

Rn
i4

i1

i2

i3

1

A B

D C

4

1

2

3

1

i = BT il →


i1
i2
i3
i4

 =


1
1
1
1

 i1 (31)
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Example 2: Parallel Connection Network

A

B

−+Vin Rf Rm Rn

i4
i1 i2 i3

1

A

B

4 1 2 3

1

v = QTvt →


v1
v2
v3
v4

 =


1
1
1
1

 v4 (32)
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Example 3: Bridged-Tee Connection Network

A B C

D

−+ Vin Rm Rout

C4 C5

Rf

i3
i6

i2

i5i4

i1

+

−
v3

1

A B C

D

2 6 3

54

1

1

i = BT il →


i1
i2
i3
i4
i5
i6

 =


1 0 0
0 1 0
0 0 1
−1 −1 0
−1 0 1

0 −1 −1


i1i2
i3

 (33)
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WD Junctions (Adaptors)

• In the WD domain a topological connection network is
modeled as a WD scattering junction (also called adaptor)

• Kirchhoff-to-Wave mapping of port variables

v =
1

2
(a + b) , i =

1

2
Z−1 (b− a) (34)

◦ a = [a1, . . . , aN ]
T vector of waves reflected by the junction

◦ b = [b1, . . . , bN ]
T vector of waves incident to the junction

◦ Z = diag[Z1, . . . , ZN ] is the diagonal matrix of free parameters

• Scattering relation
a = Sb (35)

◦ S is a N ×N scattering matrix
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Formation of the Scattering Matrix

• If q ≤ p use

S = 2QT (QZ−1QT )−1QZ−1 − I (36)

◦ I is the N ×N identity matrix
◦ the inversion of the q × q matrix QZ−1QT is required

• If q ≥ p
S = I− 2ZBT (BZBT )−1B (37)

◦ I is the N ×N identity matrix
◦ the inversion of the p× p matrix BZBT is required
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Properties of the Scattering Matrix

• Losslessness:
STZ−1S = Z−1 (38)

• Self-inverse Property:
SS = I (39)

• Reciprocity:
STZ−1 = Z−1S (40)
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Reflection-Free Ports in WD Junctions
• One port of a topological WD junction can be made

reflection-free (we say the port is adapted)

• The nth port of a WD junction is made reflection-free if the
nth diagonal entry snn of S is imposed to be zero

snn = 0 (41)

• Condition (41) can be satisfied by properly setting the free
parameter Zn

• Examples
◦ The nth port of a N -port series WD junction is made

reflection-free by setting Zn =
∑
k 6=n

Zk

◦ The nth port of a N -port parallel WD junction is made

reflection-free by setting Z−1n =
∑
k 6=n

Z−1k
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Modeling WDF Structures with One Nonlinearity

• The WDF is modeled as a connection tree

• The nonlinear one-port element is the root

• WD topological junctions are the nodes
◦ Ports of WD junctions either connected to other WD junctions

or to the nonlinear element are made reflection-free

• Linear WD one-port elements are the leaves
◦ Linear WD elements are all adapted

• In case the topology is solely made of series-parallel
connections, the WDF can be modeled as a Binary Connection
Tree (BCT)
◦ In a BCT nodes are 3-port series or parallel WD junctions [6]
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Generic Connection Tree with One Node

A. Bernardini & F. Fontana Wave Digital Methods 37/83

37/83



Example of Binary Connection Tree

1278 4 5

3

9 6

RoutVin
Rin

CL

D

1278 4 5

3

9 6

RoutVin
Rin

CL

D

1

• In the BCT structure nodes are 3-port series/parallel adaptors.
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Brief Overview on Iterative WD Methods (1/2)
Fixed-point methods:

• In Schwerdtfeger et al. [7, 8] a fixed-point method invoking
the multi-dimensional WDF formalism [9] was developed.

• Another WD fixed-point method was proposed in [10] by
Kabir et al. who discussing the future works noticed that:
“the optimum selection of reference impedances (port resistances)

at nonlinear device ports [. . . ] may have to be adaptive since the

optimum values are dependent on the circuit state.”

• Scattering Iterative Method (SIM) (described later).
There were no systematic studies on the optimal selection of
reference port resistances until the publication of SIM by
Bernardini et al., originally proposed in [11, 12] for the
analysis of large nonlinear photovoltaic arrays and later
extended in [13, 2, 14, 15] for the solution of dynamic
nonlinear audio circuits.
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Brief Overview on Iterative WD Methods (2/2)

Newton Raphson methods or variants thereof:

• Christoffersen proposed in [16] a hybrid scheme including
fixed-point and NR method as particular cases, showing
flexibility and efficiency in solving several nonlinear circuits.

• Other Newton’s approximated schemes using the secant
method applied to a diode clipper circuit were discussed in
Schwerdtfeger et al. [17].

• An NR method based on automatic differentiation is applied
by Kolonko et al. in [18] for solving the circuit in [17].

• Further NR methods using backtracking and improved initial
guesses proved to fit WD models of a diode clipper circuit and
a circuit with a 2-port transistor in Olsen et al. [19].

• NR method proposed by Bernardini et al. [20] (described
later).
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Scattering Iterative Method (SIM): WDF Structure

Let us consider a WDF structure composed of:

• an arbitrary reciprocal lossless scattering junction characterized
by scattering matrix S

• (non)linear one-port elements connected to the junction

• a = [a1, . . . , aN ]T , i.e., the vector of waves incident to the
elements and reflected from the junction

• b = [b1, . . . , bN ]T , i.e., the vector of waves incident to the
junction and reflected from the elements

• Z = diag([Z1, . . . , ZN ]), i.e., the matrix of port resistances
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SIM: Example of WDF Structure
Ring modulator circuit and its WDF realization:

µ θ

γ

ξ

τ

λ

+−Vin

Rin

LA CA

D1

D
4 D 2

D3

Rd

Cd Rc

+ −

Vc

CB LB Rout

−

+

Vout

1

WD Junction
embedding two 3-winding

transformers

Rout

LB

CB

LA

CA

D1 D2 D3 D4

Rd Cd

− +

VcRc

−+Vin

Rin

a1 b1 a2 b2 a3 b3 a4 b4

a11 b11 a9 b9 a13 b13

a10

b10

a5

b5

a7

b7

a8

b8

a6

b6

a12

b12

1

A. Bernardini & F. Fontana Wave Digital Methods 44/83

44/83



SIM Stages

SIM is a fixed-point iterative method that solves the reference
circuit at each sampling step k by performing the stages:

• Initialization

• Local Scattering Stage

• Global Scattering Stage

• Convergence Check

A. Bernardini & F. Fontana Wave Digital Methods 45/83

45/83



SIM: Initialization

• At a given sampling step k, the diagonal matrix Z[k] of free
parameters is firstly updated.
◦ Free parameters Zn corresponding to linear elements are set

according to the adaptation conditions.
◦ Free parameters Zn of nonlinear elements are set as close as

possible to the slopes of the tangent lines passing through
the operating points on the v–i characteristics.

◦ Since the operating points at sampling step k are not known at
this stage, as an estimate, we set the free parameters equal to
the tangent slopes at sampling step k − 1.

• Then, the updated Z[k] is also used to update the scattering
matrix S[k].

• The vector of waves incident to the elements is initialized as
a(0)[k] = a[k − 1].
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SIM: Local Scattering Stage

The waves reflected from the elements and incident to the
junction are computed.

• For linear elements, the reflected waves are computed
explicitly according to the scattering relations in Table 1, and
remain fixed during SIM iterations until convergence:

b(γ)n [k] = Ven[k] . (42)

• For nonlinear elements, at each SIM iteration γ we compute:

b(γ)n [k] = fn(a(γ−1)n [k]) . (43)
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SIM: Global Scattering Stage

At each SIM iteration γ, the waves incident to the elements are
computed as

a(γ)[k] = S[k]b(γ)[k] (44)
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SIM: Convergence Check

• Local and global scattering stages are repeated until the
following convergence condition is met

||v(γ)[k]− v(γ−1)[k]|| < εSIM (45)

is met, where

v(γ)[k] =
1

2

(
a(γ)[k] + b(γ)[k]

)
• The tolerance εSIM is a small number, e.g. εSIM = 10−4.
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SIM Convergence Analysis

• Let us rewrite the Global Scattering Stage (omitting [k] for
the sake of readability)

a(γ) = Sb(γ) (46)

• Making also the Local Scattering Stage explicit, we get

a(γ) = Sf
(
a(γ−1)) (47)

where
f(a) = [f1(a1), . . . , fN(aN)]T .
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SIM Convergence Analysis

• The fixed-point iterative process of SIM is characterized by the
repeated application of the vector function

h(a)
.
= Sf(a). (48)

• Recalling the Banach Fixed-Point Theorem [21]; having a
contractive mapping h : Ω ⊂ RN → RN with a ∈ Ω,

a(γ) = h(a(γ−1)) (49)

has a fixed-point a∗ (i.e., a∗ = h(a∗)), and a sequence of
iterates a(γ) converges to a∗.

• To guarantee the SIM convergence it is sufficient to prove the
mapping h(a) to be contractive.
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SIM Convergence Analysis

• According to the mean value theorem for vector-valued
functions [22], any functional map having its Jacobian norm
less than one is a contraction.

• Defined the Jacobian matrix of h(a) as Jh(a), we can
conveniently verify this condition using the spectral radius of
Jh(a), since for every matrix norm ||.|| we have that

ρ(Jh(a)) ≤ ||Jh(a)|| (50)

• Therefore, the condition

ρ(Jh(a)) < 1 (51)

is sufficient for h(a) to be a contraction.
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SIM Convergence Analysis

• The Jacobian of h(a) can be expressed as

Jh(a) = SJf (a) (52)

where Jf (a) is the Jacobian of f(a) and is given by

Jf (a) = diag ([f ′1(a1), . . . , f
′
N(aN)]) (53)

where f ′n(an) is the derivative of the nth WD element
scattering relation w.r.t. an.

• The SIM convergence condition can hence be rewritten as

ρ (SJf (a)) < 1 . (54)
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SIM Convergence Analysis

It can be proven that if

1. the topological junction is lossless and reciprocal

STZ−1S = Z−1 , SS = I (55)

2. one-ports are characterized by strictly monotonically increasing
v–i characteristics

v′n(in) > 0 (56)

then SIM globally (always) converges to the fixed point!
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SIM Convergence Analysis

• It can be proven that if the topological junction is lossless and
reciprocal and Jf (a) is diagonal (only one-port elements)

ρ (SJf (a)) ≤ ρ (Jf (a)) (57)

• ρ (Jf (a)) is the largest diagonal entry of Jf (a) in modulus!
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SIM Convergence Analysis

• Let us define waves as functions of current i

a = v(i) + Zi = φ(i)

b = v(i)− Zi = ψ(i) = ψ(φ−1(a))

• We can express the nth diagonal entry of Jf (a) as

f ′n(an) =
ψ′(φ−1(an))

φ′(φ−1(an))
=
v′n(in)− Zn
v′n(in) + Zn

(58)

where f ′n(an) is the derivative of fn(an) w.r.t. an, whereas
v′n(in) is the derivative of vn(in) w.r.t. in.

• f ′n(an) can be thought of as the reflection coefficient of the
Thévenin equivalent model.

• Hence, for adapted linear elements we have f ′n(an) = 0.
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SIM Convergence Analysis

• Moreover, according to (58), if we choose the free parameters
to be positive, i.e.,

Zn > 0 , (59)

we have that
0 ≤ |f ′n(an)| < 1 (60)

because, by assumption, v′n(in) > 0.

• Therefore, we can state that convergence is guaranteed since

ρ (SJf (a)) ≤ ρ (Jf (a)) < 1 . (61)

• Moreover, the lower ρ (Jf (a)) the higher the SIM convergence
speed!

• It follows that the closer Zn to v′n(in) the higher the SIM
convergence speed!
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SIM Properties

• Physically interpretable free parameter choice
Zn = Ren = v′n(in)

• Guarantee of Convergence for circuits with one-port
monotonically increasing nonlinearities and reciprocal lossless
junctions

• Accuracy

• Efficiency

• Parallelizability: the Local Scattering Stage is embarrassingly
parallelizable

• Accommodation of time-varying parameters at no additional
cost!
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Bottleneck of SIM

• Initialization Stage is the bottleneck of SIM: in particular, the
update of S at every sample

• Keeping Zn ≈ Ren has the advantage of
maintaining the spectral radius of the SIM iteration matrix small

• However the advantage gained in updating the free parameters
Zn is counterbalanced by the cost of recomputing the
scattering matrix S
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Dynamic Scattering Matrix Recomputation (DSR)

Let us define the metric

φ[k − 1] =
N∑
n=1

|Ren(vn[k − 1], in[k − 1])− Zn[k − 1]|

• given a small threshold ξDSR

• if φ[k − 1] ≤ ξDSR → Zn and S are left unaltered

• if φ[k − 1] > ξDSR → Zn and S are updated
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DSR Example: Asymmetric Diode Clipper

(i) Circuit (j) WDF
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DSR Example: Asymmetric Diode Clipper
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DSR Example: Asymmetric Diode Clipper
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WDNR: Definition of the Iteration Function

• Let us define the function g(a) = [g1(a), . . . , gN(a)]T as

g(a) = Sa− f(a) , (62)

such that at the fixed-point a∗ we have

g(a∗) = Sa∗ − f(a∗) = 0 . (63)

• Its Jacobian matrix is

Jg (a) = S− Jf (a) , (64)

where
Jf (a) = diag [f ′1(a1), . . . , f

′
N(aN)] . (65)
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WDNR Method

• Set the initial guess a(0), we apply the NR iterative update rule

a(γ) = a(γ−1) − J−1g

(
a(γ−1))g (a(γ−1)) . (66)

• Defined a small tolerance ξWDNR, the stop condition is

‖v(γ) − v(γ−1)‖ < ξWDNR , (67)

where

v(γ) =
1

2

(
a(γ) + f

(
a(γ)
))

.

• the above operations are done at each sampling step k

A. Bernardini & F. Fontana Wave Digital Methods 66/83

66/83



WDNR Quadratic Convergence Conditions

• There exists a basin around the solution a where the NR
solver can be initialized to converge on a with quadratic speed.

• The basin is included inside an hypersphere centered on the
solution point a and with radius 1/M(a) such that

M(a) =
1

2

∥∥J−1g (a)Hg(a)
∥∥
∞ ≤

√
N

2

∥∥J−1g (a)Hg(a)
∥∥ (68)

where the second order derivatives f ′′n(an) are collected in

Hg (a) = −diag
[
f ′′1 (a1), . . . , f

′′
N(aN)

]
.

• The larger the radius 1/M(a), the larger the basin of
quadratic convergence
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WDNR Quadratic Convergence Conditions

• It can be proven that

∥∥J−1g (a)
∥∥ ≤√Zmax

Zmin

1

1−
∥∥Jf (a)

∥∥ , (69)

in which
∥∥Jf (a)

∥∥ < 1, while Zmax and Zmin are respectively
the largest and smallest port resistance.

• Hence

M(a) ≤
√
N

2

√
Zmax

Zmin

∥∥Hg(a)
∥∥

1−
∥∥Jf (a)

∥∥ . (70)
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WDNR: Choice of Free Parameters
• How to choose the free parameters (port resistances) Zn?

• The larger the radius 1/M(a), the larger the basin of
quadratic convergence

•
M(a) ≤

√
N

2

√
Zmax

Zmin

∥∥Hg(a)
∥∥

1−
∥∥Jf (a)

∥∥ . (71)

We can minimize the upper bound in (71) by both
minimizing its numerator and maximizing its denominator.

• Maximizing the denominator is straightforward. In fact,∥∥Jf (a)
∥∥ can be set to zero by choosing

Zn = v′n(in) . (72)

• The upper bound depends also on the second-order derivatives
f ′′n(an), through

∥∥Hg(a)
∥∥.
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WDNR Quadratic Convergence Conditions

• There is no theoretical guarantee that condition Zn = v′n(in)
minimizes (71). For this reason, this choice remains heuristic.

• Zn = v′n(in) is attractive since it generalizes the concept of
linear one-port adaptation of traditional WDF theory [1].

• In fact, for linear one-ports, the adaptation condition is

Zn = Ren = v′n(in)

• For linear one-ports condition f ′′n(an) = 0 always holds,
implying that the radius 1/M(a) is infinitely large in a fully
linear WD network.

• If all one-ports are linear and condition Zn = v′n(in) is applied
then NR converges in just one iteration.
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WDNR Quadratic Convergence Conditions

• There is no quantitative expression putting the size of the
basin in relation with the speed of convergence.

• However, there is ample evidence that the larger the basin, the
faster the convergence is.

• Notice that condition Zn = v′n(in) can not be set exactly, as
all vn and in variables become apparent after the computation
through NR of the vector a of incident waves.

• Keeping robustness and efficiency in mind, a reasonable
estimation of the values v′n(in) can be made using the port
variables at the previous sampling steps when setting the
current port resistances.
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WDNR: Ring Modulator Simulations
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WDNR: Ring Modulator Simulations
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• Upper plot: gin = 5 V, fin = 1500 Hz, gc = 5 V and
fc = 500 Hz, Fs = 44.1 kHz

• Lower plot: gin = 5 V, fin = 1500 Hz, gc = 5 V and fc = 810
Hz, Fs = 44.1 kHz
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WDNR: Ring Modulator Simulations
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• gin = 5 V, fin = 1500 Hz, gc = 5 V and fc = 500 Hz,
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WDNR: Ring Modulator Simulations
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Family of WD Geometric Fixed Point Solvers

A new family of WD solvers is under study!

• The family includes fixed-point (SIM) and Newton-Raphson as
limit cases

• The speed of convergence is higher than fixed-point (linear)
and lower than Newton-Raphson (quadratic)

• Except for WDNR, no need to compute inverse Jacobian
matrices

• The choice of free parameters Zn ≈ v′n(in) is always good for
all solvers of the family

A. Bernardini, E. Bozzo, F. Fontana. Wave Digital Geometric

Fixed-Point Solvers for Circuits with Multiple One-Port Nonlinearities.

To be submitted to Elsevier Signal Processing.
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