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ABSTRACT

Deep learning models applied to raw audio are rapidly gaining
relevance in modeling audio analog devices. This paper investi-
gates the use of different deep architectures for modeling audio
optical compression. The models use as input and produce as
output raw audio samples at audio rate, and it works with no-
or small-input buffers allowing a theoretical real-time and low-
latency implementation. In this study, two compressor parame-
ters, the ratio, and threshold have been included in the modeling
process aiming to condition the inference of the trained network.
Deep learning architectures are compared to model an all-tube
optical mono compressor including feed-forward, recurrent, and
encoder-decoder models. The results of this study show that feed-
forward and long short-term memory architectures present limita-
tions in modeling the triggering phase of the compressor, perform-
ing well only on the sustained phase. On the other hand, encoder-
decoder models outperform other architectures in replicating the
overall compression process, but they overpredict the energy of
high-frequency components.

1. INTRODUCTION

Virtual Analog (VA) modeling aims to emulate in the digital do-
main electrical or electro-mechanical musical devices. This field
has a long history, and so far several digital models for different
types of analog devices have been proposed [1]. The nonlinearities
in circuits or mechanics of these devices determine their unique
and appealing sonic characteristics. Such nonlinearities are chal-
lenging to model because they need to be emulated with digital
signal processing algorithms.

Digital models are categorized as “white-box” or “black-box”.
The first category is based on the simulation of the system’s com-
ponents by discretizing differential equations to generate a numeri-
cal solution. A “black-box” model replicates the system’s response
by observing the input-output behavior to estimate the model’s in-
ner parameters. Examples of the “white-box” approach for VA are
found in [2, 3], while “black-box” models are used in [4, 5].

Recently, studies based on deep learning techniques have
shown promising results in model audio systems, supported by op-
timized libraries and modern GPU-equipped workstations. Convo-
lutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) are the predominant techniques in this field. WaveNet is
among the most used architectures [6], which is a fully proba-
bilistic and auto-regressive deep neural network using a stack of
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convolutional layers to model the conditional probability distribu-
tion. Several modifications of WaveNet have been proposed [7, 8].
These architectures have also been employed to model nonlineari-
ties in circuits of analog audio effects. In particular, a feed-forward
variant of WaveNet has been used with a vacuum-tube amplifier [9]
and distortion pedals [10]. RNNs have been used for the same task
as well [11], and in some cases, the implementation of the infer-
ence part satisfies the real-time constraints [12, 13]. Another in-
teresting approach is described in [14], where a hybrid model with
an adaptive front-end, followed by a latent-space, and a synthesis
back-end has been investigated to achieve a general-purpose deep
learning model for audio effects. This has been applied to different
types of analog effects, with both short-term and long-term mem-
ory, including plate and spring reverberators [15]. Lastly, sim-
pler architectures, such as feed-forward deep neural networks have
been explored as well. In [16], a feed-forward deep neural network
embedded within a discrete-time state-space system has been pro-
posed to model guitar distortion circuits and a low-pass filter. In
this work, the authors used measurements of inner signals within
the circuits to learn the trajectory of the system, which represents
the set of points in the state space that are the future states resulting
from a given initial state.

This paper follows up VA investigation using deep learning
techniques and addresses the case of an optical compressor. Com-
pression is a particular type of audio processing that reduces the
dynamic of the signal, taming the volume of loud sounds and am-
plifying quiet sounds according to a specific temporal profile. An
earlier attempt to model an analog optical leveling amplifier has
been presented in [17], where the authors take a frequency do-
main approach and use large artificial neural networks working on
relatively long segments of the input signal. A more recent ex-
ample exhibits real-time modeling of the same device [18] by ex-
ploiting a modified version of a Temporal Convolutional Network
(TCN) [19]. In this paper we also explore the conditioning of the
model against two control parameters of the device, allowing the
trained network to apply different types of compression. Previous
works are mostly focused on modeling for a static representation
of the audio effect (i.e. fixed parameters), while a single variable
control parameter has been considered in [9, 13, 17] and two vari-
able control parameters only in [18]. The conditioning is realized
by feeding the network with extra inputs. In this study, we fol-
low a similar approach proposed in [9, 13, 17] but we scale up the
problem to two variable parameters. In addition, as noted in [13],
deep networks can suffer from aliasing-like effects. For this rea-
son, we also investigated how our models are affected by the same
problem.

The rest of the paper is organized as follows. Section 2 details
the specific compressor device. An overview of the different archi-
tectures used in this study is presented in Section 3. Dataset, ex-
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periments and, measurements are described in Section 4. Section 5
provides an objective evaluation of the results and the comparison
between the different architectures. Finally, Section 6 concludes
this paper by discussing open challenges and future directions.

2. DEVICE UNDER STUDY

A dynamic range compressor is an automatic volume control: it at-
tenuates the amplitude of an audio signal by a given amount when
this exceeds a given threshold. Its functioning is regulated by the
threshold parameter, the point above which the compressor starts
to attenuate the input signal, and the ratio parameter, the amount
of compression applied. Compressors present two additional pa-
rameters, namely the attack and release, which determine the time
it takes to apply and remove the attenuation.

The compressor we chose for this study is the CL 1B', the
popular unit manufactured by TUBE-TECH. Originally introduced
in 1991, the CL 1B is tube-based and optical, where the audio sig-
nal feeds a lighting element that in turn illuminates a light-sensitive
resistor in the compression circuit. The resistance affects the com-
pression circuit determining how much and how quickly to atten-
uate the incoming audio signal. The CL 1B presents an output
tube-based push-pull amplifier with variable gain, which is used
to add harmonic distortion after the compression stage and not to
limit the dynamics. The unit also features an input amplifier whose
gain can be tuned only internally for calibration purposes. In this
work, we condition the CL 1B model only against variations of
the threshold and ratio parameters. The remaining are fixed, as
detailed in Section 4. With these settings, the trained model cap-
tures the leveling amplifier component of the CL. 1B compressor.

3. DEEP LEARNING NETWORK ARCHITECTURES

We investigate several architectures to model the CL. 1B compres-
sor. In particular, we use fully connected and Long Short-Term
Memory (LSTM) layers with a sequential architecture as well as
with an encoder-decoder configuration.

I

Figure 1: Generic architectures for the feed-forward and recurrent
neural networks. 1 represents the fully connected or LSTM hidden
layer for the feed-forward and recurrent model, respectively. In
both cases, the last layer indicated as f, is a fully connected unit
with a single neuron. xy, t, and ry, represent the input, threshold,
and ratio value at time-step n.

3.1. Feed-forward models

Feed-forward models are relatively simple neural networks, as il-
lustrated in Figure 1, consisting of only k fully connected layers

http://wuw.tube-tech.com/
cl-1b-opto-compressor/
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with u neurons. Neurons in each layer can include an activation
function. When the activation function is absent, the layer per-
forms an affine transformation. In our experiments, these networks
are fed with a single input audio sample and predict a single audio
output sample at each time step. Hence, the output layer presents
a single neuron only. The model can be represented with the fol-
lowing equation:

In = f"(2n;0), M
which defines a mapping where y,, is the predicted output sample,
Ty, is the input sample, 6 is the parameters the network learns, and

f* the approximated function. In the rest of this paper, we refer to
the model as "FF’.

3.2. Recurrent models

For the recurrent models, we select gated RNN-based models, in
particular LSTM [20]. In this case, the networks’ architecture con-
sists of k& LSTM layers, including v units, and a final fully con-
nected layer with a single neuron. LSTMs partially solve some of
the shortcomings of vanilla RNNs when modeling long sequences,
such as the vanishing gradient problem [21]. LSTMs featuring a
gated recurrent unit with skip-connections allow gradients to flow
across many time-steps. The LSTM model is shown in Figure 1.
This time in Eq. 1 has to be added the recurrent unit’s state at the
previous time step S, —1, becoming

(@3]

The unit’s state consists of two vectors, the cell state, ¢, and the
hidden state, h. At each time-step, the current time-step input,
T, the initial cell state, ¢,,—1, and the initial hidden state, h, 1
represent the inputs. The LSTM then produces the updated hidden
state, h,, and the updated cell state, c,,, as the outputs.

Gn = [ (xn; 5n-1;0).

States

Encoder Decoder

T

Lovesd | [ w ]
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Figure 2: ED model architecture. Encoder and Decoder can be
stacked layers, and f represents the final fully-connected layer
with a single neuron and followed by a nonlinear activation func-
tion. t and r stand as threshold and ratio values used as condition-
ing for the network. The internal states of the encoder, computed
with k past samples of the input sequence, act as conditioning for
the decoder. The decoder is trained to predict the output sample
given the input sample at the current time-step and conditioned by
the internal state computed by the encoder.
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3.3. Encoder-decoder models

The third architecture is designed in an encoder-decoder fashion,
following the architectures for sequence modeling tasks [22]. In
the sequence-to-sequence model, the encoder processes n past
sample of the input sequence and returns its final internal state and
output. The output is discarded while the internal state is passed
to the decoder as a sort of conditioning. Specifically, the final state
vector and output from the encoder set the first internal state of the
decoder. The decoder then learns to predict the target at each time-
step, given m past values of the true output ([n — 1,...,n — m]).
The decoder is trained to predict the target signal at the next time-
step, given the previous outputs. The architecture of the decoder,
as shown in Fig. 2, presents single or multiple stacked LSTM lay-
ers, ending with a fully connected layer including a single neu-
ron. This architecture exploits the so-called "teacher forcing", a
method for training recurrent neural network models that use the
ground truth from prior time-steps as input. In this case, a separate
auto-regressive setup for inference has to be implemented.

Compared to the sequence-to-sequence model, our proposed
architecture presents some key changes. The decoder was condi-
tioned on the input sequence but without including the sample at
the current time-step. This sample was instead the input for the
decoder, which was trained to predict the output given only the
samples from the input sequence. In this way, the encoder passes
the internal state computed from past time-step samples and the
decoder learns to predict the target at each time-step, given the in-
put sample at the current step. In this case, a separate inference
model is not needed since the networks are not trained with the
ground truth. In the rest of this paper, we refer to the model as
ED’.

3.4. Conditioning

In the case of FF and LSTM models, threshold and ratio values
were added to the input vector to have an input vector with three
values: up = [Tn,tn,Tx], as illustrated in Fig. 1. On the other
hand, in the case of encoder-decoder architecture, threshold and
ratio were included in the encoder input. Since in the encoder,
past samples were also used in the prediction process, the input
becomes a kx3 dimensional matrix with k representing the number
of past samples considered. The decoder layer was fed with only
the input values at current time step. In all cases, before to fed the
networks, the conditioning values were normalized between [0,1].

4. EXPERIMENTAL STUDIES

We carried out experiments with all architectures detailed in the
previous section, which have been implemented in Python using
Tensorflow. For the training, we used an Adam optimizer with
0.001 as the initial learning rate. The Mean Squared Error (MSE)
has been selected as the loss function. To select the best config-
uration for each architecture, we used Optuna [23], a framework
for the automated search of optimal hyper-parameters. Regarding
ED models, we experimented with changing the size of the input
raw audio input vector, appending a variable number of past input
samples to the current input sample. In particular, we explored
[2,4,8,16] as input vector size, which are relatively small values
that can provide a low-latency response in a theoretical real-time
implementation. We have also explored different sizes for each
architecture, considering 8, 16, 32, 64, or 128 numbers of hidden
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units and 1 or 2 layers. For the activation function, we experi-
mented with the sigmoid and tanh, since their S-shaped charac-
teristic curves are close to the nonlinear saturation profiles usu-
ally found in analog circuits. For each combination of the hyper-
parameters listed above, we trained the various architectures for
20 epochs. Results on the test set were evaluated quantitatively
by observing the MSE and by graphically analysing the predicted
waveforms against the target ones.

The three final models (best FF, best LSTM, and best ED) have
been trained for 100 epochs with a batch size of 128, using an early
stopping condition in case performance does not improve after 20
epochs. The models were evaluated against three different settings
of the parameters, representing gentle (threshold = —10 dBU, ra-
tio = 4.66:1), medium (threshold = —30 dBU, ratio = 3.33:1), and
heavy (threshold = —40 dBU, ratio 7.33:1) compression. Medium
compression conditioning values were not seen by the networks
during training. The architectures of the final models and the as-
sociated results are detailed in section 5.

4.1. Dataset

The Dataset has been collected from the CL. 1B by feeding its in-
put with a selection of audio signals and simultaneously recording
its output. A MOTU M4 audio interface* was used for this pur-
pose. The input is a mono audio signal which has an overall dura-
tion of 332 s and it includes a sequence of frequency sweeps (rang-
ing from 20-Hz to 20 kHz), white noises with increasing amplitude
(linear and logarithmic ramp), guitar, bass, and drums recordings
(loop and single notes). Sweeps and white noises have different
lengths, specifically 0.2, 0.4, 0.8, and 1.6 s. Guitar, bass, and
drums are taken from Fraunhofer IDMT datasets’® and they were
included with a variety of amplitudes. Since the compressor af-
fects and depends on the dynamics of the sounds, this selection in-
cludes signals with a wide variety of amplitude levels and temporal
envelopes. The left input channel of the audio interface was con-
nected to the left output channel of the interface itself. The right
input channel of the audio interface was connected to the output of
the compressor, and the input of the compressor was connected
to the right output channel of the audio interface. This allows
recording effectively both compressor’s input and output signals
compensating for the minor sound coloring and latency of the au-
dio interface. The audio data was recorded at a sampling rate of
96 kHz and then downsampled to 48 kHz for training the models.
A rate of 48 kHz provides a good trade-off between audio quality
and computational requirements for training and inference of the
considered models. Before starting the recording session, the lev-
els of the audio interface inputs were matched, keeping the settings
of the compressor in such a way that it was not triggered by the in-
put signal, and then calibrated by adjusting the input gains of the
audio interface. Finally, the output signals were recorded with dif-
ferent values for the threshold and ratio parameters. For the ratio,
the output signal was recorded at 7 equally spaced values span-
ning from 2:1 to 10:1. Attack and release times were both fixed
at 0.5 ms and 50 ms, respectively. These are fairly fast attack and
release times. Considering the sampling rate of 48 kHz, we have
approximately 24 samples for the attack phase and 2400 samples
for the release. This resulted in limiting the delay between reach-
ing the threshold and triggering the compression, and in turn, the

’https://motu.com/en-us/products/m-series/m4/
3https://www.idmt.fraunhofer.de/en/
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temporal dependencies that the network must learn. For the thresh-
old, we recorded the output with values spaced by 10 dBU starting
from —10 dBU to —40 dBU. In total, we have 28 permutations of
ratio and threshold values, for a total recording time of 2.58 hours.
Finally, the compressor output gain was fixed at 0 dBU.

4.1.1. Training, Validation & Test sets

The recordings with the ratio set to 3.33:1 and threshold set to
—30 dBU are used only for testing the model and are not included
in the training and validation sets. In this way, we had a portion
of the dataset with parameter values not seen in the training phase,
which allows one to further test the capability of the model to cor-
rectly predict the output using unseen conditioning parameters. In
the same way, a portion of sounds of 32 s, including guitar, bass,
drum kick, hi-hat, and sweep, with different values of ratio and
threshold has also been used exclusively for testing the general-
ization capability of the networks. The selected sounds present
different amplitudes as well. However, all of them are within the
reach of the minimum (—10 dBU) threshold activating the com-
pressor. Finally, the models have been trained on 85% of the re-
maining dataset, while 15% served for validation.

5. RESULTS & DISCUSSION

In this section, we detail the results achieved by training the ar-
chitectures described in Section 3, commenting on their perfor-
mance and limitations. Generally, regarding the FF and LSTM
models, we have not observed particular improvements when us-
ing the tanh activation function in the last hidden and output layer
with respect to sigmoid ( 0.56% of test error reduction), but we
kept this option for the later experiments since the training con-
verges faster. On the other hand, with the ED model, the sigmoid
provided better performance ( 34, 71% of test error reduction).
Experiments on FF models show that they perform best with
2 layers with 32 units each. The validation and test errors for the
different numbers of hidden units are detailed in Tab. 1. The ac-
tivation function (’tanh’) was added in the last hidden layer (I in
Fig. 1). This configuration determined an improvement of 80.62%
in the test error compared to the case of "tanh’ in the output layer
and 82.82% compared to the use of only linear activation func-
tions. FF models, as visible in Fig. 4 (b), appear to learn well
the sustained dynamic of the output sounds, hence the amount of
compression to be applied. However, they fall short in predicting
the attack phase of the compression, in some cases operating as
the compression is applied instantaneously. This behavior was ex-
pected because FF networks do not embed information about the
past input signal and it is more challenging for them to capture the
time dependencies, which are crucial for modeling compression.
Therefore FF models present evident limitations when predicting
output for impulsive input signals. This behavior is visible in the
heavy-compression example in Fig. 3, where the target waveforms
represent the real output of the compressor. The predicted signal
is a compressed drum kick sound. The initial ’click’ is not well
predicted, while the rest is fairly accurate. This behaviour gener-
ates lower energy at high frequencies, as visible in the associated
power spectrum, where the accuracy drops for components higher
than 1 kHz. Other examples are visible in Fig. 4. Sounds as hi-hat
and guitar are better predicted by analyzing the frequency repre-
sentation of the signal, while in the time domain we can still see
limitations on the attack phase prediction. For the bass signal, the
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Table 1: Validation and Test losses for the two layers FF and LSTM
models, and ED model (16 samples of window length) against the
number of hidden units. Test conditioning loss refers to tests with
compression settings never seen by the networks during training.
Test loss instead refers to the test with all the other parameter com-
binations seen during the training. In both cases, the test signals
include sounds not used to train the models.

FF model

# units Val loss Test conditioning loss Test loss
] 2.0858¢~° 1.8236e¢~° 2.8656¢ 1
16 2.0047¢~5 1.2695¢~° 2.9173¢~1
32 1.8755¢7° 1.2208¢° 2.5381¢ 4
64 2.1747¢7° 1.8929¢° 2.8372¢ 4
128 | 2.0411e7® 1.2868¢~° 2.8080e 4

LSTM model

# units Val loss Test conditioning loss Test loss
8 1.5943e~° 1.0857¢~° 2.6795¢~ T
16 1.5811e° 1.0975¢7° 2.4218¢™*
32 1.5672¢° 1.0689¢~° 2.4300e 4
64 1.5873e~° 1.0916e~° 2.4684¢ 4
128 | 1.6568¢° 1.2076e° 2.4371e~*

ED model

# units Val loss Test conditioning loss Test loss
8 6.5702¢ 4.7197¢7° 1.2214e~ 7
16 5.2088¢e 6 3.8354¢ 76 1.0342¢~*
32 4177376 3.2147¢76 0.6228¢ 4
64 3.9449. 6 3.0945¢ 0.6207¢
128 | 4.0206e~° 3.1645¢~6 0.6222¢~4

models predict instead slightly larger values in the initial part, re-
sulting in additional energy at high-frequency components.
Similar to the FF models, also LSTMs perform better with 2
layers and 32 units. Tab. 1 summarizes the errors for different
numbers of hidden units. In this case, the "tanh’ activation func-
tion is used in the output layer. This determined a 7.44% reduc-
tion in the test error compared to the use of the linear activation
function and 3.16% compared to the use of ’tanh’ in the last hid-
den layer only. In Fig. 5(c) is visible how they present almost the
same limitations as the FF model. LSTM models match accurately
the amount of the compression during the sustained part but do
not show particular improvements in predicting the initial transient
phase of the sound. Therefore, performance on impulsive signals
is overall better than FF models, although overall performance is
very close to the FF case, with slightly lower losses, as visible in
Figs. 3 and 5. This can be explained by the fact that LSTMs are
able to take into account past information and hence learn the tem-
poral dependencies during the attack phase with a higher accuracy.
Encoder-decoder models present a clear performance im-
provement compared to previous architectures. The encoder takes
into account past samples of the input signal, helping the networks
to learn the attack and release compression profiles. Losses for dif-
ferent numbers of past input samples given as input to the network
are detailed in Tab. 2. Using an input size of 16 samples provided
the best performance. This result is reasonable and expected, since
increasing the size turns in greater information regarding the past
of the signal. The best number of units per layer is 64, as can be
seen in Tab. 1. We kept one layer in both encoder and decoder
for two reasons: to limit the size and to compare against other
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guitar [E1] (middle), and bass [Al] (bottom) and relative power
spectra of the entire signal using the best ED model.

architecture with the same overall number of layers. In general,
considering the frequency response, the encoder-decoder architec-
tures show limitations in modeling accurately the high frequency
response, especially when the input is a low-frequency signal, such
as the drum kick and bass, as can be seen in Figs. 3 and 6. For these
signals, the energy of the high-frequency component is relatively
low, and inaccurate predictions in such a portion of the spectrum
are not sufficiently penalized by the loss function. However, the
encoder-decoder approach shows the best accuracy and learning
capability in predicting the attack and release phases, as can be
seen in Fig. 3.

Table 3 details the Error-to-Signal Ratio (ESR) obtained us-
ing the three best models over four different types of input sounds:
drum kick, hi-hat, guitar, and bass. The associated best models’
configurations are reported in Tab. 5. To further assess the condi-
tioning capability of these models, we computed setting the thresh-
old to —30 dBU and the ratio to 3.33:1. These values were not
included in the dataset used for training the network.

Given the vast difference between the number of parameters,
we also compared the performance across the models keeping the
capacities roughly similar ( 13k number of parameters). These
results confirm the previous quantitative evaluation and for space
reasons, we report the computed test loss only. The test losses are
2.8100e~* for the FF model with 12, 703 parameters (two layers
with 110 units each), 2.4300e~* for the LSTM model with 12, 961
parameters (two layers with 32 units each), and 0.6437¢~* for ED
model with 12, 761 parameters (one encoder and one decoder layer
with 38 units each).

Listening to the predicted signals, the models can be ranked
differently than the quantitative evaluations based on the ESR. In
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Table 2: Validation and Test losses for the ED models against the
number of the input window length. The results refer to models
with encoder and decoder consisting of one layer and 8 neurons,
0.001 learning rate, and ’sigmotd’ activation function in the out-
put layer. Test conditioning loss refers to tests with compression
settings never seen by the networks during training. Test loss in-
stead refers to the test with all the other parameter combinations
seen during the training. In both cases, the test signals include
sounds not used to train the models.

Input size | Validation loss | Test cond. loss Test loss
2 1.3356e° 9.2715¢=° 1.2173¢~3
4 8.8111e~ 6 6.3076e¢ 2.1775e 4
8 8.8367¢ 6 7.4624e76 1.2916e¢*
16 6.5702¢ 6 4.7197¢6 1.2214¢7*

Table 3: ESR values for the best models predict the compressor
output for four different input sounds: drum kick, hi-hat, guitar,
and bass. These samples and the threshold (—30 dBU) and ratio
(3.33:1) values used for conditioning have not been included in
the sets during the training.

r=3.33:1,r=-30 Kick Hi-Hat | Guitar Bass
FF 0.0691 | 0.0730 | 0.0452 | 0.0552
LSTM 0.0567 | 0.0732 | 0.0361 | 0.0629
ED 0.0273 | 1.3445 | 0.0203 | 0.0375

particular, the FF model appears to perform better than LSTM,
which resulted in slightly more noisy. The ED model predictions
are generally worse than the previous two models due to the noise
at high frequencies. In general, hi-hat predictions are all perceptu-
ally closest and similar to the original one, likely due to their noisy
sonic characteristics.

To further evaluate the performance, we also investigated the
behaviour of our models in predicting the output for two different
combinations of ratio and threshold included in the dataset rep-
resenting gentle and heavy compression. The input signals were
the same used for the previous evaluation. As expected, these ex-
periments show that it is more challenging to accurately predict
output for larger values of the parameters, especially for the ra-
tio. These determine abrupt changes in the dynamics and turn
into a more challenging scenario for the models. This can also
be observed in Tab. 1 and Tab. 2, where for all models the test
conditioning losses are generally lower than the test and validation
losses. Conditioning losses refer to a single medium compression
scenario with settings not included in the training set. This case
is easier to predict than heavier compression scenarios, which are
included in the other losses.

While similar perceptual performance emerges when listening
to the predicted sounds, Tab. 4 shows that LSTM and FF mod-
els perform closer to ED models with smaller (i.e. easier) values
of the ratio. Instead, with more compression and in turn bigger
transients, ED models appear significantly more capacity to make
accurate predictions, especially due to their ability to model accu-
rately the attack and release phases.

A comprehensive set of audio examples, additional figures,
dataset, and source code are available online.*

“https://github.com/RiccardoVib/
CONDITIONED-MODELING-OF-OPTICAL-COMPRESSOR
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Figure 7: Spectrograms of frequency sweep input (a), and of output the predictions for the FF (b), LSTM (c), ED (d) models.

Spectrograms refer to 3.33:1 of ratio and —30 dBU of threshold.

Table 4: ESR values for the best models predict the compressor
output for four different input sounds: drum kick, hi-hat, guitar,
and bass. While conditioning values used in these tests are not
new for the models, the samples used here were not part of the
training or validation set.

r=4.66:1,r=-10 Kick Hi-Hat | Guitar Bass
FF 0.0093 | 0.0318 | 0.0068 | 0.0156
LSTM 0.0091 | 0.0287 | 0.0058 | 0.0131
ED 0.0092 | 1.3408 | 0.0054 | 0.0063
r=7.33:1,tr=-40 Kick Hi-Hat | Guitar Bass
FF 0.2582 | 0.1860 | 0.0765 | 0.2746
LSTM 0.1624 | 0.1643 | 0.0941 | 0.1529
ED 0.1090 | 1.2532 | 0.0407 | 0.1255

Table 5: Models Set-Ups after hyper-parameter tuning.

FF
# Layers: 2
# Hidden Units: 32
Activation function: 'tanh’  Activation function: ’tanh’
# of Parameters: 1,217 # of Parameters: 12,961
ED
# Encoder Layers: 1
# Decoder Layers: 1
# Hidden Units: 64
Activation function: ’sigmoid’
# of Parameters: 34, 369

LSTM
# Layers: 2
# Hidden Units: 32

5.1. Aliasing-like effect

To investigate the aliasing-like issue, we analyzed the pre-
dicted output for a 16 s input frequency sweep in the range
[20,20000] Hz. Listening to the predicted output sound and in-
specting the associated spectrograms it is evident that the FF and
LSTM models are more severely affected by this problem, which
can be heard starting from 3 kHz. For the other types of input sig-
nals included in the dataset, aliasing is not noticeable when listen-
ing to the predicted compressor output signals. Encoder-decoder
models, on the other hand, appear to be more robust against the
aliasing-like issue, and therefore they outperform other architec-
tures also from this perspective. Indeed, aliasing is noticeable only
from 5 kHz onward when using the frequency sweep as the input.
Aliasing is visible in Fig. 7, which shows the spectrograms for the
prediction of the four architectures with the frequency sweep at
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their input. As expected, we noticed that the aliasing is reduced for
models with better ESR. Fig. 7 shows the case of ratio and thresh-
old set to 3.33:1 and —30 dBU, respectively. The same overall
behaviour was observed in the other two cases, gentle and heavy
compression. The only difference we noted is the perceptibility of
this problem. With gentle compression, since the amplitude of the
sweep is greater than in the other two cases, the aliasing-like issue
can be heard slightly earlier. The opposite situation happens with
heavy compression.

6. CONCLUSION & FUTURE WORK

In this study, we investigated different deep learning architectures
for conditioned modeling of an audio analog optical compressor.
The models work with no- or small-input buffers in such a way
to be suitable for low-latency real-time implementations. In this
investigation, two compression parameters, such as the ratio and
threshold, have been included as conditioning values for the net-
works. The applied architecture was feed-forward and long short-
term memory layers, in series or in an encoder-decoder fashion.
To evaluate the performance, we used four types of sound sig-
nals (kick, hi-hat, guitar, and bass) not included in the training
dataset and three different compression settings (heavy, medium,
and gentle). The low-frequency signals, such as basses and drum
kicks, are the most challenging to predict accurately. Experiments
show that feed-forward and LSTM architectures are capable to
learn the sustained part of the compression process but show limi-
tations with the transients. The proposed encoder-decoder model,
inspired by sequence-to-sequence architectures, appears to outper-
form feed-forward and LSTM. In particular, it can learn longer
temporal dependencies and predict challenging scenarios such as
heavy compression with higher accuracy. In addition, the largest
encoder-decoder model we used takes approximately 48 hours for
the training, on a virtual workstation equipped with 8-Core of an
Intel Xeon Gold 5215 CPU @ 2.50 GHz, 32 GB of memory, and
a GPU NVIDIA Tesla V100 PCle 16 GB (shared with another
instance), and 2.256 seconds for the inference of one second of
audio (0.047 ms per sample) on a 2.3 GHz 8-Core Intel Core 19
processor. Encoder-decoder models also appear to suffer less from
the aliasing-like effect. All models are capable of interpolating be-
tween ’conditioning’ settings, and compressing accurately audio
signals using parameters not included in the training dataset. In
general, all models show more difficulties to predict high frequen-
cies, which results particularly noticeable in the case of the kick
and bass.

In future work, we will investigate in more detail the encoder-
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decoder approach. Experiments indicated positive correlations be-
tween network size and accuracy. Therefore, we cannot exclude
performance improvements with larger encoder-decoder models,
although the computational burden will further reduce the rates
at which experiments can be carried out and the extent to which
these models can be used for real-time inference (at least with cur-
rent computing technologies and architectures). Another aspect to
improve is the selection of the loss function because, as previously
mentioned, the MSE does not penalise enough wrong predictions
for frequencies with low energy, resulting in audible noisy predic-
tions. Moreover, we will extend the conditioning to the full set CL
1B, including also attack and release time. This will change the
temporal behaviour of the system because the compression would
be applied and removed in a variable amount of time. In this way,
the model must also learn different temporal dependencies accord-
ing to the conditioning signals. Finally, we will explore how work-
ing with higher sampling rates influences and potentially reduce
the aliasing-like issue. Several models in literature have shown
that suffer from this aspect but a proper understanding of this phe-
nomenon is still an open challenge.

7. REFERENCES

[1] Jyri Pakarinen, Vesa Viliméki, Federico Fontana, Victor
Lazzarini, and Jonathan S Abel, “Recent advances in real-
time musical effects, synthesis, and virtual analog models,”
EURASIP Journal on Advances in Signal Processing, vol.
2011, pp. 1-15, 2011.

[2] Maximilian Rest, Julian D Parker, and Kurt James Werner,
“Wdf modeling of a korg ms-50 based non-linear diode
bridge vcf,” in Proceedings of the International Conference
on Digital Audio Effects (DAFx), Edinburgh, UK, 2017, pp.

5-7.

[3] Jingjie Zhang and Julius O Smith III, “Real-time wave digital
simulation of cascaded vacuum tube amplifiers using modi-
fied blockwise method,” in Proc. 21th Intl. Conf. Digital

Audio Effects (DAFx-18),(Aveiro, Portugal), 2018.

Felix Eichas and Udo Zolzer, “Black-box modeling of dis-
tortion circuits with block-oriented models,” in Proceed-
ings of the International Conference on Digital Audio Effects
(DAFx), Brno, Czech Republic, 2016, pp. 5-9.

Ben Holmes and Maarten Van Walstijn, “Physical model
parameter optimisation for calibrated emulation of the dal-
las rangemaster treble booster guitar pedal,” in Proc. of the
19th Internation Conference on Digital Audio Effects, Brno,
Czech Republic, 2016, pp. 47-54.

(4]

(3]

[6] Adron Van Den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew W Senior, and Koray Kavukcuoglu, “Wavenet: A

generative model for raw audio,” SSW, vol. 125, pp. 2, 2016.
[7]

Dario Rethage, Jordi Pons, and Xavier Serra, “A wavenet
for speech denoising,” in 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2018, pp. 5069-5073.
(8]

Marco A Martinez Ramirez and Joshua D Reiss, “End-to-end
equalization with convolutional neural networks,” in 21st
International Conference on Digital Audio Effects (DAFx-

18), 2018.

+ _\ienna

S
DBEx

295

[9] Eero-Pekka Damskidgg, Lauri Juvela, Etienne Thuillier, and
Vesa Viliméki, “Deep learning for tube amplifier emula-
tion,” in ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 471-475.

Eero-Pekka Damskigg, Lauri Juvela, Vesa Viliméki, et al.,
“Real-time modeling of audio distortion circuits with deep
learning,” in Proc. Int. Sound and Music Computing
Conf.(SMC-19), Malaga, Spain, 2019, pp. 332-339.
Zhichen Zhang, Edward Olbrych, Joseph Bruchalski,
Thomas J McCormick, and David L Livingston, “A vacuum-
tube guitar amplifier model using long/short-term memory
networks,” in SoutheastCon 2018. IEEE, 2018, pp. 1-5.

Thomas Schmitz and Jean-Jacques Embrechts, “Nonlinear
real-time emulation of a tube amplifier with a long short
time memory neural-network,” in Audio Engineering Society
Convention 144. Audio Engineering Society, 2018.

Alec Wright, Eero-Pekka Damskégg, Vesa Vilimiki, et al.,
“Real-time black-box modelling with recurrent neural net-

works,” in 22nd international conference on digital audio
effects (DAFx-19),2019.

MA Martinez Ramirez, Emmanouil Benetos, and Joshua D
Reiss, “Deep learning for black-box modeling of audio ef-
fects,” Applied Sciences, vol. 10, no. 2, pp. 638, 2020.

Marco A Martinez Ramirez, Emmanouil Benetos, and
Joshua D Reiss, “Modeling plate and spring reverberation us-
ing a dsp-informed deep neural network,” in ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 241-245.

Julian D Parker, Fabidn Esqueda, and André Bergner, “Mod-
elling of nonlinear state-space systems using a deep neural
network,” in Proceedings of the International Conference on
Digital Audio Effects (DAFx), Birmingham, UK, 2019, pp.
2-6.

Scott H Hawley, Benjamin Colburn, and Stylianos I Mimi-
lakis, “Signaltrain: Profiling audio compressors with deep
neural networks,” arXiv preprint arXiv:1905.11928, 2019.

Christian J Steinmetz and Joshua D Reiss, “Efficient neural
networks for real-time modeling of analog dynamic range
compression,” in Audio Engineering Society Convention 151.
Audio Engineering Society, 2022.

[10]
[11]
[12]
[13]

[14]

[15]
[16]

(17]

(18]

[19] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager,
“Temporal convolutional networks: A unified approach to
action segmentation,” in European Conference on Computer

Vision. Springer, 2016, pp. 47-54.
Sepp Hochreiter and Jiirgen Schmidhuber, “Long short-term

memory,” Neural computation, vol. 9, no. 8, pp. 1735-1780,
1997.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep
learning, MIT press, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Sequence to
sequence learning with neural networks,” Advances in neural
information processing systems, vol. 27, 2014.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama, “Optuna: A next-generation
hyperparameter optimization framework,” in Proceedings of
the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining, 2019, pp. 2623-2631.

222
DBEX

(20]

(21]

(22]

(23]



	1  Introduction
	2  Device under study
	3  Deep Learning Network Architectures
	3.1  Feed-forward models
	3.2  Recurrent models
	3.3  Encoder-decoder models
	3.4  Conditioning

	4  Experimental Studies
	4.1  Dataset
	4.1.1  Training, Validation & Test sets


	5  Results & Discussion
	5.1  Aliasing-like effect

	6  Conclusion & Future Work
	7  References


@inproceedings{DAFx20in22_paper_6,
    author = "Simionato, Riccardo and Fasciani, Stefano",
    title = "{Deep Learning Conditioned Modeling of Optical Compression}",
    booktitle = "Proceedings of the 25-th Int. Conf. on Digital Audio Effects (DAFx20in22)",
    editor = "Evangelista, G. and Holighaus, N.",
    location = "Vienna, Austria",
    eventdate = "2022-09-06/2022-09-10",
    year = "2022",
    month = "Sept.",
    publisher = "",
    issn = "2413-6689",
    volume = "3",
    doi = "",
    pages = "288--295"
}


