
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

FAST TEMPORAL CONVOLUTIONS FOR REAL-TIME AUDIO SIGNAL PROCESSING

Stepan Miklanek and Jiri Schimmel

Department of Telecommunications
Brno University of Technology, Brno, Czech Republic

stepan.miklanek@vut.cz | schimmel@vut.cz

ABSTRACT

This paper introduces the possibilities of optimizing neural net-
work convolutional layers for modeling nonlinear audio systems
and effects. Enhanced methods for real-time dilated convolutions
are presented to achieve faster signal processing times than in pre-
vious work. Due to the improved implementation of convolutional
layers, a significant decrease in computational requirements was
observed and validated on different configurations of single layers
with dilated convolutions and WaveNet-style feedforward neural
network models. In most cases, equivalent signal processing times
were achieved to those using recurrent neural networks with Long
Short-Term Memory units and Gated Recurrent Units, which are
considered state-of-the-art in the field of black-box virtual analog
modeling.

1. INTRODUCTION

Recently, we have seen the adoption of deep learning methods
in all approaches to Virtual Analog (VA) modeling of nonlinear
systems [1, 2], guitar amplifiers [3, 4, 5, 6], time-varying effects
[7, 8, 9], and other digital audio effects [10, 11]. In addition to VA
modeling, deep learning methods have also found applications in
digital filter design [12] and target filter frequency response match-
ing [13].

The use of neural networks dominates mainly within the so-
called “black-box” approach, where knowledge of the internal lay-
out of the modeled systems is not required [14]. In this case, these
methods are a very efficient way to capture the characteristics of
a given device simply by obtaining a dataset of input and output
signals and then training a neural network that can emulate the
properties of any system regardless of its complexity. However,
analog units usually have user controls to change their behavior,
so it is usually necessary to acquire input and output signals with
different device settings to create models with variable parameters.
Creating such a dataset could be time-consuming, but neural net-
works can extrapolate between discrete values of captured control
settings. It has been shown that neural models, once trained, can
very faithfully simulate control positions that were not used for
training with marginal error [5, 15].

Deep learning methods have also found their application in
“white-box” VA modeling, which is a process of creating digital
versions of analog circuits with the possibility of changing the val-
ues of virtual components [16]. In [17], it was demonstrated that it
is possible to fine-tune the initial values of VA circuit components

Copyright: © 2022 Stepan Miklanek et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

using a procedure where a discrete circuit model with differen-
tiable scaling coefficients is created.

In 2016, we saw the advent of the WaveNet convolutional neu-
ral network architecture, which revolutionized the area of human
speech synthesis [18]. Variations of this structure were derived in
later years and successfully used to model distortion pedals [15],
tube guitar amplifiers [19], and effects such as compressors or re-
verbs [20, 21]. These types of neural networks became also known
as Temporal Convolutional Networks (TCNs). Besides to their ap-
plication in digital audio effects, they have recently been utilized
in tasks concerned with analyzing the rhythmic structure of songs
[22] or sound event localization [23]. Both the original WaveNet
model and different TCN variations consist of stacks of multi-
channel convolutional layers with dilated kernels, which help to
store information about previous development of time sequences.
This property is especially useful when working with stateful sys-
tems because their behavior is typically dependent on past values
of digital signal samples [24].

The TCNs are, at first sight, an ideal candidate for modeling
nonlinear systems and digital effects. However, previous work has
shown that using a large number of convolutional layers is neces-
sary to obtain faithful models [6]. Thus, mainly structures based
on Recurrent Neural Networks (RNNs) have lately been investi-
gated for nonlinear system and VA modeling [6, 7, 25]. The main
reason is the reduced complexity of these structures and the result-
ing lower computational demands. Another reason for examining
RNNs is their close relationship to previous modeling techniques
based on a nonlinear state space representation [24, 25].

RNNs seem to be the most suitable method for black-box mod-
eling nonlinear systems due to their processing efficiency and rel-
atively low complexity [5]. However, we would like to revisit pre-
viously proposed TCN models [15] and explore whether they can
approach RNN-like processing speeds thanks to optimized convo-
lutional layers. In later sections of the paper, we verify the com-
putational speed-up on different configurations of single convolu-
tional layers and neural networks.

The rest of this article is organized as follows. Section 2 de-
scribes temporal convolutions used in neural networks and their
realization for real-time audio signal processing. This section also
describes our convolution algorithm. Section 3 summarizes TCNs,
which were previously used to model nonlinear systems. Section 4
validates the proposed implementation of convolutional layers by
measuring the signal processing speed compared to implementa-
tions presented in previous work. Finally, Section 5 concludes the
paper.

2. TEMPORAL CONVOLUTIONS

First of all, we need to establish mathematical definitions of convo-
lution operations suitable for real-time signal processing in digital

DAFx.1

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

115

https://www.utko.fekt.vut.cz/
mailto:stepan.miklanek@vut.cz
mailto:schimmel@vut.cz
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

n = 0

n = 1

n = 4

.

.

.

w = 0

r = (0, 3, 1)

r = (1, 4, 2)

r = (4, 2, 0)

r = (0, 2, 4)

r = (5, 7, 9)

r = (1, 3, 5)

w = 1

w = 4

w = (0, 5)

w = (4, 9)

w = (1, 6)

Figure 1: Comparison between single buffer (left) and double buffered state (right) in terms of write and read pointer movement in
subsequent time steps n for convolutional layer with kernel of length 3 and dilation rate of 2. The black arrows indicate the write pointers,
and the grey arrows indicate the read pointers.

audio effects. It is usually desirable to work with either the current
signal sample or possibly some number of previous samples. The
main reason is that we do not have future signal values when pro-
cessing the signal in real time. Therefore, in this paper, we solely
consider discrete causal convolutions, which depend only on the
current and preceding samples of the signal.

The discrete causal convolution of input signal x and convolu-
tion kernel h is defined by the equation

(x ∗ h)[n] =
M−1∑
m=0

x[n−m]h[m], (1)

where m is the coefficient index of kernel h, M is the length of
kernel h, and n is the discrete time index. Thus, it is necessary
to have M − 1 previous samples of signal x stored in memory
when implementing this operation. TCN convolutional layers also
contain a dilation rate parameter that causes the kernels to stretch
back in time. Thus, we can can modify (1) as

(x ∗ h)[n] =
M−1∑
m=0

x[n−md]h[m], (2)

where d is the dilation rate. This modification necessitates increas-
ing the required buffer size, which can be calculated according to
the equation

sbuffer = d(M − 1) + 1. (3)

2.1. Buffer Variants

There are two basic strategies for implementing buffers for discrete
causal convolutions for real-time signal processing. The first is
using a single buffer whose size is computed by (3). The second
approach uses a double buffer, which is twice as long. Besides
memory size, the main difference between these methods is the
movement of the write and read pointers during each time step.
This is shown in Figure 1.

Both approaches achieve the same result, but the single buffer
requires only one memory write per time step. This feature is ad-
vantageous in terms of processing time since multi-channel convo-
lutions require storing a vector of input signals instead of a single
sample. In our case, we chose the single buffer method because
we strive to achieve the lowest possible computational complexity.

2.2. Proposed Convolution Algorithm

So far, there are only two (available) implementations of neural
convolutional layers for real-time audio signal processing. The
first one uses previously described single buffering [26], and the
later one utilizes double buffering [27].

Algorithm 1 Convolutional Layer Forward Propagation
Variables: Input channels x, output channels ŷ, layer output size
sout, write pointer w, vector of read pointers r, kernel size M ,
container of kernel weight arrays H , bias vector b, buffer array B,
buffer size sbuffer, array of selected buffer columns Bcols

1: function FORWARD(x, ŷ)
2: B[all, w]← x
3: Set the vector of read pointers r
4: for each i < K do
5: Bcols[all, i]← B[all, r(i)]

6: for each i < sout do
7: ŷ(i)← sum(Bcols ⊙H(i)) + b(i)

8: if w < (sbuffer − 1) then
9: w ← w + 1

10: else
11: w ← 0

Algorithm 1 describes our approach to forward propagation
through the convolutional layer. The input of the convolutional
layer is a vector x, where each element corresponds to one sample
of a given audio channel. This vector is then inserted into the two-
dimensional buffer array’s column, whose index is determined by
the write pointer w.

Then it is necessary to select the memory array columns whose
indices correspond to the elements of the vector of read pointers r.
The selected columns of buffer B are stored in array Bcols, whose
number of rows is equal to the number of input channels, and the
number of columns equals the kernel length M . The convolution
itself is then performed as the sum of the Hadamard product of
Bcols with ith element of the kernel array container H .

Each array from container H contains a number of convolu-
tion kernels equal to the count of input channels and must also
have the same dimensions as the Bcols array. The number of con-
volution operations is directly affected by the required number of
output channels sout. The result of the convolution operations is

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

116

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

input
waveform

• + to next layer

k layers

predicted
 output
ŷ

x

concat 1×1
conv

1×1
conv

dilated
conv

1×1
conv

tanh

σ

Figure 2: Block diagram of TCN (WaveNet-style) model with gated activation.

then assigned into the output vector ŷ. The only difference from
the discrete causal convolution definition is the addition of a bias b,
a vector of offset constants added to the output ŷ.1

The proposed algorithm was implemented using the Eigen li-
brary for C++. The Eigen library allows using fixed-sized vari-
ables, which can significantly speed up calculations, especially
when using small matrices and vectors [28]. This has already been
leveraged in the RTNeural framework for real-time neural network
inferencing [27].

An obvious disadvantage of using fixed-sized variables for
neural network models is the impossibility of changing the struc-
ture of the model during the run-time of a standalone program or
an audio plugin. Nevertheless, this approach may be suitable for
black-box modeling, as there is usually no need to change the neu-
ral network structure on the fly. In this work, we experimented
with two versions of a convolutional layer, the first with dynamic
variables and the second with static variables initialized at compile
time.

3. NEURAL NETWORK MODELS

From previous research, we are familiar with techniques for iden-
tification of nonlinear systems that follow the structure of a Wiener
or Wiener-Hammerstein model [14, 29]. These models are com-
posed of linear filters and a static nonlinear transfer functions,
which is also the case for TCNs.

To validate the proposed convolution algorithm, we chose the
neural network model presented in [19]. We decided to choose
this model mainly because of the availability of source code and
reference signal processing times from previous work.

This model is a feedforward variant of the original WaveNet
neural network [18] and consists of the following blocks. The first
block is a multi-channel 1 × 1 convolution with kernels of size 1,
whose input is a raw audio waveform. This step can be described
as a single-input multiple-output (SIMO) convolution. In [6], the
authors do not describe this block, but the implementation they
refer to includes this convolution operation. For this reason, we
decided to incorporate it as well. However, it is likely that this
convolutional layer is redundant.

1Biases are additional trainable parameters of neural networks.

The first block is followed by a stack of k convolutional layers
as shown in Figure 2. These layers have the same internal structure
except for the dilation rate parameter dk of the dilated convolution.
The output zk of the dilated convolution at the beginning of each
layer can be expressed as

zk[n] = f [(Hk ∗ xk)[n] + bk], (4)

where Hk is the dilated causal convolution kernel, xk is the layer
input, bk is the bias term, and f(·) is the nonlinear activation func-
tion. The convolutional layers in this model have multiple chan-
nels, so the filtering is done as a multiple-input multiple-output
(MIMO) convolution with the kernel Hk. The individual filters in
this kernel have impulse responses

h[n] =

M−1∑
m=0

wmδ[n−mdk], (5)

where δ[n] is the Kronecker delta function, and wm are the non-
zero coefficients of the filters learned by the network.

The individual layers also include residual connections, so the
input to the next layer is described by

xk+1[n] = Wkzk[n] + xk[n], (6)

where Wk is a 1× 1 convolution kernel that is responsible for the
ratio between the layer input xk and the layer output zk before the
next layer. Finally, outputs zk from each layer are fed into the 1×1
convolution block, which has only one output channel and mixes
all the outputs linearly.

The authors of [5, 6, 15, 19] performed a detailed investigation
of different configurations of this model in terms of the choice
of nonlinear functions, the number of layers, and the number of
convolution channels. For the sake of brevity, we decided to select
only the variant a gated activation function, so (4) can be modified
to

zk[n] = tanh[(Hfk∗xk)[n]+bfk]⊙σ[(Hgk∗xk)[n]+bgk], (7)

where tanh is the hyperbolic tangent, σ is the logistic sigmoid
function, symbol⊙ is the Hadamard product, Hfk is the filter ker-
nel, Hgk is the gate kernel, bfk and bgk are the filter and gate
biases, respectively.

DAFx.3

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

117

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

4. RESULTS

The evaluation process of signal processing speed using our algo-
rithm was performed first on individual convolutional layers with
different parameters and then on TCN models with different num-
bers of layers. We included the reference WaveNetVA implemen-
tation from [26] and the one from the RTNeural framework [27].
We measured how long it takes to process 1 second of a signal at
a sampling rate of 44.1 kHz in all tests. If the signal took longer
than 1 second to process, the layer or model could not be run in
real time. We repeated all measurements ten times. Therefore, all
values in the following figures are average signal processing times.
The processing speed is expressed as a factor of the requirement
for real-time application.

Although signal processing times of TCNs are reported in pre-
vious work [5, 6], to fairly compare the WaveNetVA implementa-
tion with ours, we have re-measured all processing times. The
results could be different, in particular, due to running the tests
on a different computer. As part of this work, we also compare
the signal processing speed of TCNs versus RNNs. To perform
this comparison, we implemented our version of RNNs because
the implementation’s source code from previous literature is not
freely available. In addition, we use the RNN signal processing
times from [5] as a reference.

4.1. Single Layer Performance

The performance of single convolutional layers was evaluated in
terms of dilation rate, kernel size, and the number of convolu-
tion channels. The RTNeural framework offers the use of layers
with fixed-sized and dynamic variables. Therefore, we chose lay-
ers with fixed-sized variables in the case of the RTNeural library
due to less computational overhead.

Figure 3 depicts the dependency of increasing dilation rate and
the consequent effect on processing speed. This test used a layer
with only one convolution channel and kernel size of M = 3.
Ideally, increasing the dilation rate should not result in a decrease
in processing speed. In the case of both our implementations and
WaveNetVA, the processing speed was almost constant at all dila-
tion rates. However, with RTNeural, we observed that the signal
processing time was slower with an increasing dilation rate. This is
because RTNeural performs the dilation rate increase by inserting
zero values between the non-zero filter coefficients. Effectively,
the convolution filters are extended, and the computational inten-
sity grows. Although it would be possible to modify the RTNeural
convolutional layer so that this slowdown does not occur, we have
not addressed this in our work.

Due to these findings, we decided to exclude RTNeural from
the tests in Section 4.2 because TCN models use layers with large
dilation rates, and thus their performance would be quite slow.

In Figure 4, it is possible to observe the dependence of com-
puting time on the kernel size for a layer with a single convolution
channel. In this test, the RTNeural library achieved the shortest
signal processing times in all cases except one. With longer fil-
ters, the processing speed decreases greatly for all implementa-
tions. TCNs usually do not need long convolutional filters, and
therefore this comparison is rather illustrative.

Our static implementation is slightly slower than RTNeural in
terms of kernel length because we use a variable with a dynamic
size for the convolutional layer memory. When using large dilation
rates, the memory array size requirements increase. Hence, it is

1 2 4 8 16 32 64 128 256 512 1024
Dilation rate

10

100

1000

10000

Pr
oc

es
si

ng
 s

pe
ed

 (×
 R

T)

WaveNetVA
RTNeural
Proposed (dynamic)
Proposed (static)

Figure 3: The processing speed of a single convolutional layer with
different dilation rates.

1 2 4 8 16 32 64
Kernel size

10

100

1000

10000

Pr
oc

es
si

ng
 s

pe
ed

 (×
 R

T)

WaveNetVA
RTNeural
Proposed (dynamic)
Proposed (static)

Figure 4: The processing speed of a single convolutional layer with
different kernel sizes.

not appropriate to use a fixed-sized variable as stated in the Eigen
library documentation [28].

Figure 5 shows the processing speed of a layer with a different
number of convolution channels, a kernel size of M = 1 and a
dilation factor of d = 1. With a lower convolution channel count,
our static implementation is slightly slower than RTNeural. Over-
all, both of our convolutional layer implementations are, with a
few exceptions, faster than WaveNetVA. Our dynamic version was
slightly slower than WaveNetVA when the number of convolution
channels exceeded 32.

In the same way, we also tested a convolutional layer with a
kernel size of M = 3 and a dilation factor of d = 2. This is
illustrated in Figure 6. We observed that our convolutional layers
were the fastest in almost all cases. However, it can be seen that
the advantage of a static implementation decreases rapidly with a
higher number of convolution channels.

We did not perform further comparisons of the individual con-
volutional layers, but the following section outlines the signal pro-
cessing speed-up using these layers in TCN models.

The source code for our implementation of convolutional lay-
ers was made publicly available at https://github.com/
stepanmk/FastTemporalConv.

DAFx.4

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

118

https://github.com/stepanmk/FastTemporalConv
https://github.com/stepanmk/FastTemporalConv

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

1 2 4 8 16 32 64
Convolution channels

1

10

100

1000

10000

Pr
oc

es
si

ng
 s

pe
ed

 (×
 R

T)

WaveNetVA
RTNeural
Proposed (dynamic)
Proposed (static)

Figure 5: The processing speed of a single convolutional layer with
a kernel size of 1, and a dilation rate of 1.

1 2 4 8 16 32 64
Convolution channels

1

10

100

1000

10000

Pr
oc

es
si

ng
 s

pe
ed

 (×
 R

T)

WaveNetVA
RTNeural
Proposed (dynamic)
Proposed (static)

Figure 6: The processing speed of a single convolutional layer with
a kernel size of 3, and a dilation rate of 2.

4.2. Neural Network Performance

When selecting the configuration of the TCN models, we followed
paper [19] and considered three dilation patterns

dk = {1, 2, 4, . . . , 512},
dk = {1, 2, 4, . . . , 256, 1, . . . , 256},
dk = {1, 2, 4, . . . , 128, 1, . . . , 128, 1, . . . , 128}.

The dilation patterns correspond to models with layer counts of
10, 18, and 24. All models had the convolution filter length set to
M = 3.

During the validation of our dynamic implementation of TCN
models, we found that it is possible to achieve roughly twice the
signal processing speed compared to previous work. Our convolu-
tion algorithm yielded some improvement, but the signal process-
ing speed was not dramatically increased. The results of this test
are shown in Figure 7.

Next, we compared our static implementation with previous
work. The results of this comparison are shown in Figure 8. The
speed-up ranged from 2 to 12.8 times for models with the largest
and lowest number of channels, respectively.

1 2 4 8 16 32 64
Convolution channels

0.1

1.0

10.0

Pr
oc

es
si

ng
 s

pe
ed

 (×
 R

T)

Reference (10 layers)
Reference (18 layers)
Reference (24 layers)
Proposed dynamic (10 layers)
Proposed dynamic (18 layers)
Proposed dynamic (24 layers)

Figure 7: Comparison of the reference TCN models and our dy-
namic implementation in terms of the processing speed. Models
located below the dashed line were unable to operate in real time.

1 2 4 8 16 32 64
Convolution channels

0.1

1.0

10.0

100.0
Pr

oc
es

si
ng

 s
pe

ed
 (×

 R
T)

Reference (10 layers)
Reference (18 layers)
Reference (24 layers)
Proposed static (10 layers)
Proposed static (18 layers)
Proposed static (24 layers)

Figure 8: Comparison of the reference TCN models and our static
implementation in terms of the processing speed. Models located
below the dashed line were unable to operate in real time.

To get a better idea of the computational speed-up, we selected
three configurations of TCN model hyperparameters as in [6]. The
configurations are shown in Table 1. The models are deliberately
ordered from least to most computationally expensive. Note that
the TCN2 and TCN3 models are identical in structure except for a
different number of convolution channels.

Table 1: Hyperparameters of selected TCN models.

Model TCN1 TCN2 TCN3
Activation Gated Gated Gated

Layers 10 18 18
Channels 16 8 16

Table 2 confirms that the most significant reduction in compu-
tation times was due to the static implementation of convolutional
layers. Our static version of TCN1 was 4 times faster than the ref-
erence implementation in processing the signal. In the case of the
TCN2 model, the processing speed was 6.2 times faster. Finally,
for the TCN3, the processing speed was 4.2 times faster.

DAFx.5

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

119

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Table 2: Compute times of 1 second of the audio signal using the
reference and proposed models.

Model Ref. Proposed (dynamic) Proposed (static)
TCN1 0.53 0.30 0.13
TCN2 0.62 0.27 0.10
TCN3 0.93 0.54 0.22

Interestingly, the TCN2 model was marginally faster than the
TCN1 model despite having a larger number of convolutional lay-
ers. This is because the TCN2 model has half the number of chan-
nels. However, in the case of the reference models, the lower chan-
nel count did not result in better performance of the TCN2.

We also compared the reference processing times from Table 2
with the times reported in [5, 6]. Our measured times for TCN1
and TCN2 were identical. The only difference we noted was with
TCN3, as the authors report a slightly shorter processing time of
0.91 s.

4.3. Comparison with RNNs

Table 3 shows the processing times for RNNs with Gated Recur-
rent Units (GRU) and Long Short-Term Memory (LSTM) units
adapted from [5]. Looking at the results from Table 2, we can ob-
serve that our static implementation of TCN models is similar in
processing speed to RNNs described in previous work. In fact, the
most complex TCN3 model is still approximately 1.8 times faster
than the largest LSTM model with a hidden size of 96. In the case
of the smallest TCN1 model, the processing speed is only 1.3 times
slower than the fastest RNN model with GRUs and a hidden size
of 32. We must also point out that the TCN2 model, which has
eight more layers than the TCN1 model, achieved almost the same
processing speed as the smallest RNN model.

Table 3: Compute times of 1 second of the audio signal for the
RNNs. The hidden size determines the computational complexity
of the models.

Model Hidden size Compute time (s)
GRU 32 0.097

LSTM 32 0.12
LSTM 64 0.24
LSTM 96 0.41

To further compare the RNN and TCN processing speed, we
implemented our version of RNNs according to [5] to measure
the compute times on our machine. We created two variants of
these networks using static and dynamic variables, as was the case
with TCNs. Figure 9 shows signal processing times of different
RNN and TCN configurations. For the RNN models, the blue bars
show the reference processing times reported in previous litera-
ture, and for the TCN models, these are our measured times of
the WaveNetVA implementation. The orange and gray bars show
the signal processing times using our RNN and TCN models with
dynamic and static variables, respectively.

First, we note that our RNN models were significantly faster
compared to the times reported in previous literature. We could
not determine why this was the case because the source code of
the original models was unavailable. Second, we found that using
static variables does not contribute to noticeably faster processing

GRU32 LSTM32 LSTM64 LSTM96 TCN1 TCN2 TCN3
Model type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
m

pu
te

 ti
m

e
(s

)

Reference
Dynamic
Static

Figure 9: Compute times of 1 second of the audio signal using
different RNN and TCN models.

times of RNNs because the mathematical operations within these
models are done with matrices of too large dimensions. On the
other hand, we must mention that a static implementation of TCN
models makes sense, especially when the models are composed of
layers with fewer convolution channels since the convolutions are
performed by computing a Hadamard product of small matrices.
Finally, due to our faster RNN implementation, our static TCN
models are still slower than some of the smaller RNN networks.
However, this is understandable since TCN models are composed
of a large number convolutional layers.

5. CONCLUSIONS

In this paper, we presented a method for optimizing convolutional
layers and neural network models for real-time audio signal pro-
cessing. By implementing layers with fixed-sized variables, we
achieved comparable processing times to state-of-the-art RNNs.
The proposed algorithm can be deployed not only in the TCNs
mentioned in this article but also in other variations of convolu-
tional neural networks, such as those introduced in [20, 21]. It
should also be possible to use simplified versions of these net-
works to model linear systems such as digital filters with arbitrary
frequency responses.

The TCNs described in this and previous papers are quite com-
plex and contain an excessive number of trainable variables. How-
ever, their main advantage is their use for black-box VA and audio
effect modeling, where only basic assumptions are made about the
internal structure of the devices in question. Nevertheless, there
may be further room for optimization of these types of neural net-
works in terms of their structure. Modifications to these networks
are beyond the scope of this article and are left as future work.

6. REFERENCES

[1] M. A. Martínez Ramírez and J. Reiss, “Modeling nonlinear
audio effects with end-to-end deep neural networks,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP19),
Brighton, UK, May 2019, pp. 171–175.

DAFx.6

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

120

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

[2] S. Nercessian, A. Sarroff, and K. J. Werner, “Lightweight
and interpretable neural modeling of an audio distortion ef-
fect using hyperconditioned differentiable biquads,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP21),
Toronto, Canada, June 2021, pp. 890–894.

[3] T. Schmitz and J.-J. Embrechts, “Nonlinear real-time em-
ulation of a tube amplifier with a long short time memory
neural-network,” in Proc. Audio Eng. Soc. 144th Conv., Mi-
lan, Italy, May 2018.

[4] Z. Zhang, E. Olbrych, J. Bruchalski, T. J. McCormick, and
D. L. Livingston, “A vacuum-tube guitar amplifier model
using long/short-term memory networks,” in Proc. IEEE
SoutheastCon, Saint Petersburg, FL, April 2018.

[5] A. Wright, E.-P. Damskägg, and V. Välimäki, “Real-time
black-box modelling with recurrent neural networks,” in
Proc. Int. Conf. Digital Audio Effects (DAFx-19), Birming-
ham, UK, September 2019.

[6] A. Wright, E.-P. Damskägg, L. Juvela, and V. Välimäki,
“Real-time guitar amplifier emulation with deep learning,”
Appl. Sci., vol. 10, no. 3, Jan. 2020.

[7] A. Wright and V. Välimäki, “Neural modelling of period-
ically modulated time-varying effects,” in Proc. Int. Conf.
Digital Audio Effects (DAFx-20), Vienna, Austria, Septem-
ber 2020.

[8] A. Wright and V. Välimäki, “Neural modeling of phaser and
flanging effects,” J. Audio Eng. Soc., vol. 69, no. 7/8, pp.
517–529, Nov. 2021.

[9] M. Martínez Ramírez, E. Benetos, and J. Reiss, “A general
purpose deep learning approach to model time-varying audio
effects,” in Proc. Int. Conf. Digital Audio Effects (DAFx-19),
Birmingham, UK, September 2019.

[10] M. A. Martínez Ramírez, O. Wang, P. Smaragdis, and N. J.
Bryan, “Differentiable signal processing with black-box au-
dio effects,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process. (ICASSP21), Toronto, Canada, June 2021.

[11] M. A. Martínez Ramírez, E. Benetos, and J. D. Reiss, “Deep
learning for black-box modeling of audio effects,” Appl. Sci.,
vol. 10, no. 2, Jan. 2020.

[12] J. Rämö and V. Välimäki, “Neural third-octave graphic
equalizer,” in Proc. Int. Conf. Digital Audio Effects (DAFx-
19), Birmingham, UK, September 2019.

[13] B. Kuznetsov, J. D. Parker, and F. Esqueda, “Differentiable
IIR filters for machine learning applications,” in Proc. Int.
Conf. Digital Audio Effects (DAFx-20in21), Vienna, Austria,
September 2020.

[14] F. Eichas and U. Zölzer, “Black-box modeling of distor-
tion circuits with block-oriented models,” in Proc. Int. Conf.
Digital Audio Effects (DAFx-16), Brno, Czech Republic,
September 2016.

[15] E.-P. Damskägg, L. Juvela, E. Thuillier, and V. Välimäki,
“Deep learning for tube amplifier emulation,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP19),
Brighton, UK, May 2019, pp. 471–475.

[16] M. Holters and U. Zölzer, “A generalized method for
the derivation of non-linear state-space models from circuit
schematics,” in Proc. 23rd European Signal Processing
Conf. (EUSIPCO), Nice, France, September 2015.

[17] F. Esqueda, B. Kuznetsov, and J. D. Parker, “Differentiable
white-box virtual analog modeling,” in Proc. Int. Conf. Digi-
tal Audio Effects (DAFx20in21), Vienna, Austria, September
2021.

[18] A. van den Oord et al., “WaveNet: A generative model for
raw audio,” arXiv preprint, Sep. 2016, arXiv:1609.03499v2
[cs.SD].

[19] E.-P. Damskägg, L. Juvela, and V. Välimäki, “Real-time
modeling of audio distortion circuits with deep learning,”
in Proc. Int. Sound and Music Computing Conf. (SMC-19),
Malaga, Spain, May 2019, pp. 332–339.

[20] C. J. Steinmetz and J. D. Reiss, “Efficient neural networks
for real-time analog audio effect modeling,” arXiv preprint,
Jun. 2021, arXiv:2102.06200v1 [eess.AS].

[21] C. J. Steinmetz and J. D. Reiss, “Steerable discovery of neu-
ral audio effects,” in 5th Workshop on Creativity and Design
at NeurIPS, 2021.

[22] S. Böck and M. E. P. Davies, “Deconstruct, analyse, recon-
struct: How to improve tempo, beat, and downbeat estima-
tion,” in Proc. of the 21st Int. Society for Music Information
Retrieval Conf., Montréal, Canada, October 2020, pp. 574–
582.

[23] K. Guirguis, C. Schorn, A. Guntoro, S. Abdulatif, and
B. Yang, “SELD-TCN: Sound event localization & detec-
tion via temporal convolutional networks,” in Proc. 28th
European Signal Processing Conf. (EUSIPCO), Montréal,
Canada, October 2021, pp. 16–20.

[24] J. D. Parker, F. Esqueda, and A. Bergner, “Modelling of non-
linear state-space systems using a deep neural network,” in
Proc. Int. Conf. Digital Audio Effects (DAFx-19), Birming-
ham, UK, September 2019.

[25] A. Peussa et al., “Exposure bias and state matching in re-
current neural network virtual analog models,” in Proc. Int.
Conf. Digital Audio Effects (DAFx20in21), Vienna, Austria,
September 2021.

[26] E.-P. Damskägg, L. Juvela, and V. Välimäki, “WaveNetVA,”
Available at https://github.com/damskaggep/WaveNetVA,
accessed March 15, 2021.

[27] J. Chowdhury, “RTNeural: Real-time neural network infer-
encing,” Available at https://github.com/jatinchowdhury18
/RTNeural, accessed March 15, 2021.

[28] G. Gaël, J. Benoît, et al., “The Matrix class,” Available at
https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass
.html, accessed March 15, 2021.

[29] F. Eichas and U. Zölzer, “Gray-box modeling of guitar am-
plifiers,” J. Audio Eng. Soc., vol. 66, no. 12, pp. 1006–1015,
Dec. 2018.

DAFx.7

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

121

https://github.com/damskaggep/WaveNetVA
https://github.com/jatinchowdhury18/RTNeural
https://github.com/jatinchowdhury18/RTNeural
https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html
https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html

	1 Introduction
	2 Temporal convolutions
	2.1 Buffer Variants
	2.2 Proposed Convolution Algorithm

	3 Neural network models
	4 Results
	4.1 Single Layer Performance
	4.2 Neural Network Performance
	4.3 Comparison with RNNs

	5 Conclusions
	6 References

@inproceedings{DAFx20in22_paper_43,
 author = "Miklanek, Stepan and Schimmel, Jiri",
 title = "{Fast Temporal Convolutions for Real-Time Audio Signal Processing}",
 booktitle = "Proceedings of the 25-th Int. Conf. on Digital Audio Effects (DAFx20in22)",
 editor = "Evangelista, G. and Holighaus, N.",
 location = "Vienna, Austria",
 eventdate = "2022-09-06/2022-09-10",
 year = "2022",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "3",
 doi = "",
 pages = "115--121"
}

