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ABSTRACT

An approach to designing dynamical systems with a three-dimen-
sional state space is described that can be used to build a variety 
of non-periodic oscillators. The state space is taken to be a 3-
sphere, which is identified with the manifold of unit quaternions. 
Any such system can be described as a quaternion-valued ordinary 
differential equation, which is digitally realized using an approx-
imation as a finite difference e quation. Two examples are shown. 
Compared to previous applications of dynamical systems used to 
generate audio samples, the approach described here offers a wide 
choice of specific flows which can neither diverge nor approach a 
stable limit point.

1. INTRODUCTION

An oscillator may be thought of as an unstable feedback system, 
and, conversely, any unstable feedback system that has a bounded 
state space can be viewed as an oscillator. This equivalence has 
long been a rich source of inspiration for electronic musicians; 
classic examples include Rain Forest (David Tudor) [1, 2], Horn-
pipe (Gordon Mumma) [3], Look at the back of my head for awhile 
(Salvatore Martirano) [4], Pendulum Music (Steve Reich) [5], and 
I am Sitting in a Room (Alvin Lucier) [6], among many others.

As a way of relinquishing detailed control over musical pro-
cesses, this tendency or current in electronic music composition 
can be seen as a reflection of a broader shift in 20th-century “art 
music" practice. So, for instance, John Cage made extensive use 
of chance processes as a way to avoid having to assert his own 
volition during the composition process, much in the same way 
as the early atonal composers used tone rows and series. (Al-
though the word “chance" in common usage implies randomness, 
many chance processes did not include any specifically random 
elements; for instance, Cage’s Freeman Etudes [7] relies on star 
charts and Zorn’s Cobra [8] on unpredictable human group dy-
namics. Here we will be concerned only with deterministic pro-
cesses.)

By the early 1970s, when modular analog synthesizer design 
had reached its mature stage, synthesizer builders had adopted 
these ideas in their module designs. A well-known example is 
the Buchla 259 dual analog oscillator [9] in which the two oscilla-
tors could be coupled in a variety of ways to yield complex, non-
periodic behaviors. Buchla’s own performance practice showed 
transparently his interest in complex, evolving dynamical systems 
as a catalyst for musical creativity.

In this paper we present a class of algorithms, realized digi-
tally, in which non-periodic oscillators are considered as dynami-
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cal systems. The use of dynamical systems that can exhibit peri-
odic, bifurcating-period, and/or chaotic behaviors as generators of
musical waveforms is already well known; a representative exam-
ple is the Chua oscillator [10]. These systems are defined as first-
order ODE systems that are thought of as creating a flow within
a state space, where the “state" is simply the tuple of variables
that are related by the ODE system. For example, the double-well
oscillator [11] responds to a forcing input that can determine the
frequency of the output, or, if greatly reduced in amplitude, allow
the oscillator to settle into one of two possible limit cycles with a
different frequency. There is a regime of chaotic behavior between
the two extremes.

A quite different, and fruitful, use of dynamical systems as
signal generators is the use of ODEs to physically model a vi-
brating body such as a musical instrument. Here again there is
a vast literature. These systems tend to be high-dimensional; for
instance the widespread use of delay lines to “model" an air col-
umn or taut string can be regarded as an Euler-method solver for an
ODE whose state consists of hundreds or thousands of individual
points along the air column or string. The literature on this topic
is too vast to even summarize here.

There is also a large literature on a related but different topic,
that of iterated functions such as circle maps [12]. We will not
consider this class of chaotic systems here but note in passing that
the ODE approach is inherently continuous in time and can be up-
and down-sampled to change pitch and/or limit foldover effects.
There is no corresponding way to continuously speed up or slow
down the output of an iterated map. The dynamical systems con-
sidered here have the general advantage that they are inherently
continuous in time and thus are more intuitively controllable than
iterated functions, although still not at all straightforward to deal
with.

Our approach will be most closely related to that of coupled
oscillator systems, which we consider in the following section. A
key advantage to this type of system is that it is relatively easy
to prevent the system from simply stopping by reaching a stable
point. The parameter space of such a system describes how the fre-
quencies of the oscillators should depend on each others’ phases,
and for this reason it is easier—although not exactly easy—to un-
derstand how changing parameters will change the output sound,
as compared to more abstractly defined systems such as the Chua
oscillator or the Lorenz attractor.

One type of behavior that one could hope for in a musical
sound generated by a dynamical system could be changes over
longer time frames that somehow relate to short-time behavior
[13]. This is motivated by the idea that musical form should re-
flect musical material, as argued classically by composers such as
Varese and Stockhausen. Simply listening to the output of, say,
a Lorenz attractor gives the impression of timbral roughness but
not of sound that varies over a musical time scale. As we will
see, the quaternion-phase oscillator shown here will get us a bit
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closer to this ideal, and can be made to do so within a relatively
low-dimensional state space and parameter space.

2. COUPLED OSCILLATORS AS DYNAMICAL
SYSTEMS

If we think of a collection of coupled oscillators as a dynamical
system, the state space of the dynamical system consists of all pos-
sible combinations of phases of the oscillators. So, for example,
two coupled digital oscillators can be seen as a discrete-time ap-
proximation of a) flow through a state space that can be identified
with a torus S1 × S1 [14], as shown in figure 1. Here the vectors
show the velocity of a continuous flow through the state space. In
the horizontal region where the phase of the independent oscilla-
tor, x2, is near zero, the phase of the dependent one, x1, changes
its frequency so that it, likewise, is attracted to the point of zero
phase. The extent of the sync band (the region near x2 = 0) and
the strength of attraction within it are parameters of the flow, along
with the base frequencies of the two oscillators.

x1

x2

0.5

0

-0.5
-0.5 0 0.5

Figure 1: Flow diagram for a soft-synced oscillator pair. The os-
cillator with phase x1 (horizontal axis) is soft-synced to the other
one. The state space is a torus with top/bottom and left/right edges
identified.

This oscillator pair can be theoretically described as a dynam-
ical system:

(
dx1

dt
,
dx2

dt
) = v(x1, x2) (1)

where v is a vector-valued function of the two state variables x1

and x2, and is depicted as the vector field shown in the figure.
If the coupling is sufficiently strong, the dependent oscillator

can be phase-locked into a multiple of the frequency of the in-
dependent one, so that the output is periodic. This is equivalent
to saying that the time-varying state—the ordered pair (x1, x2)—
reaches a limit cycle. If the parameters are chosen to give a weaker
coupling between the two oscillators the system can become non-
periodic. However, since the state space is two-dimensional and
since two different trajectories through state space cannot cross
each other, we don’t see anything that could be called chaotic be-
havior. The minimum dimensionality that would permit such be-
haviors is three.

3. THE 3-SPHERE AS STATE SPACE

If we wish to design a dynamical system with a three-dimensional
state space, an obvious choice of space would be three-dimensional
Euclidean space, R3. This has the advantage of having a six-
dimensional symmetry group (spatial rotations and translations),
bringing many mathematical conveniences. But since R3 is un-
bounded, it is often difficult to prevent state trajectories from rac-
ing off to infinity. On the other hand, no bounded subset of R3

sports a symmetry group of more than three dimensions, as for
example the unit ball does.

Here we will propose the 3-sphere, S3, as an ideal state space
for building chaotic flows. It has the advantages of low dimension-
ality, compactness, and a large, six-dimensional symmetry group.
Furthermore, no topologically based differences between dynami-
cal behaviors in R3 versus S3 can arise, since, even though the two
spaces are not homeomorphic, we can remove any single point
from S3 that happened not to be hit by a certain trajectory–such a
point always exists—to make a space homeomorphic to R3 after
all. This was not the case for our earlier toroidal state space which
allows dynamical behaviors that are not possible on, say, a disc.
Choosing S3 as a state space gives us the smallest possible inter-
esting dimensionality and topological complexity and, at the same
time, maximum symmetry.

Supposing that we have settled on S3 as a state space for a
dynamical system, one fruitful way to design one and/or study its
behavior is to identify the state space with the set of unit quater-
nions. The set Q of quaternions is defined as:

Q = {a+ bi+ cj + dk | a, b, c, d ∈ R} (2)

where i, j, k are all square roots of −1, any two of which anti-
commute, and

ij = k, jk = i, ki = j (3)

The norm of a quaternion q is defined as

|q| =
√

a2 + b2 + c2 + d2 (4)

The subset of Q where j = k = 0 can be identified with the
complex plane C. We can describe a continuous-time, complex-
valued sinusoidal oscillator as a dynamical system whose state
space, S1, is identified with the set of unit complex numbers,
whose time evolution obeys the differential equation:

dz

dt
= f(z) · z (5)

where f(z) takes pure imaginary values. Under this condition we
can check that

d

dt
(|z|2) = 0 (6)

so that if the initial state lies on the unit circle, the time-varying
state never goes outside it. For the system to oscillate sinusoidally
we take f(z) = iω, independent of z, in which case ω is the
angular frequency.

The same thing can be done using quaternions in general. The
state of the oscillator is then a time-dependent unit quaternion q(t)
(i.e., satisfying |q(t)| = 1 for all t), that satisfies a differential
equation

dq

dt
= Ω(q) · q (7)

where we now choose Ω(q) always to take the form

Ω = ωii+ ωjj + ωkk (8)
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i.e., to have a real part equal to zero. We can identify the triple
(ωi, ωj , ωk) as a three-dimensional frequency. In the same way as
before we find that

d

dt
(|q|2) = 0 (9)

so that if q(0) is taken to be a unit quaternion, then the entire
trajectory over time will lie on the unit 3-sphere a2+b2+c2+d2 =
1, which is our desired state space.

4. SYMMETRIES OF THE STATE SPACE

In order to study the behavior of a quaternion oscillator with fixed
quaternion frequency ω = (0, ωi, ωj , ωk) we will need to invoke
the symmetry of the state space, which we now make explicit. For
any orthogonal 3-by-3 matrix O, there is an automorphism:

A : Q → Q (10)(
a

(b, c, d)⊤

)
↪→

(
1 0
0 O

)(
a

(b, c, d)⊤

)
(11)

that leaves the real part a untouched but applies a rotation matrix
to the triple b, c, d. This is a four-dimensional rotation that leaves
the point (1, 0, 0, 0)—the quaternion equal to the real number 1—
fixed.

In addition there are isometries that preserve addition but not
multiplication, which are applied by multiplying by a fixed unit
quaternion:

T : Q → Q (12)

q ↪→ q0q (13)

where |q0|2 = 1. These are also rotations, and any rotational sym-
metry of the unit sphere |q| = 1 can be decomposed as the com-
position TA of an automorphism followed by multiplication by a
constant.

5. FIXED FREQUENCY QUATERNION OSCILLATOR

Returning to the continuous-time oscillator with fixed quaternion
frequency Ω = (0, ωi, ωk, ωk), we choose an automorphism A
that maps Ω to (0, ω, 0, 0) where

ω = |Ω| =
√

ω2
i + ω2

j + ω2
k (14)

The resulting differential equation is reduced to the earlier complex-
valued one whose solution is

q(t) = exp(iωt)q(0) = (cosω + i sinω)q(0) (15)

Multiplying by any unit complex number acts on a quaternion as
a rotation in the (1, i) plane and an equal rotation in the (j, k)
plane. Applying the inverse automorphism shows that oscillation
at a generally chosen quaternion frequency can be decomposed as
simultaneous sinusoidal oscillation in two oblique planes that are
perpendicular to each other, at the frequency given by equation 14 .

The intrepid reader will now see the possibility of frequency
modulation–in which the three-component quaternion frequency
varies in time—changing not only the resultant frequency ω but
also the orientation of the planes of rotation. Phase modulation
can be generalized to multiply the oscillator’s quaternion-valued
output on the left and/or right by time-varying unit quaternions,
without affecting the oscillator’s internal state. We will leave these
avenues unexplored for now.

6. DISCRETE TIME

In practice we don’t wish to use the closed-form solution of equa-
tion 15, since it only holds if the frequency is constant in time, and
neither do we wish to try to solve the differential equation numer-
ically: we want a discrete-time recurrence relation. Once again
we work by analogy with the simpler complex-valued oscillator to
propose the recurrence relation:

q[n] = r(q[n− 1]) · q[n− 1] (16)

where r(q) is a unit quaternion that depends on the state q. Com-
paring this with the continuous-time solution of equation 15, we
get that

r(q) ≈ exp(τΩ) (17)

where τ is the sample period.
Although this invocation of the exponential function is per-

fectly legitimate (it can be defined via the differential equation it-
self, or as a Taylor series, or as a limiting product of numbers near
1), here we simply evaluate it by applying the reverse of the auto-
morphism that took us into the complex plane. A solution to the
complex recurrence is given by

z[n] = cos(ωτ) + i sin(ωτ) (18)

and since the inverse automorphism sends

(0, 1, 0, 0) ↪→ (0, ωi, ωj , ωk)/ω (19)

we get

r(q) ≈ cos(ωτ) +
sin(ωτ)

ω
· (0, ωi, ωj , ωk) (20)

To realize the oscillator we simply plug this formula for r into
the recurrence relation (equation 16). The oscillator’s raw output
is in the form of four audio signals that may be played in different
loudspeakers, or, additionally or alternatively, may be subjected to
any desired waveshaping function. In practice it is usually enough
to send two of the four state variable to left and right channels
of a stereo pair; the resulting signal gets louder and softer as the
total instantaneous signal power |q|2 = 1 is variously distributed
among the four components.

7. SOME PRACTICAL CONSIDERATIONS

The phase spaces of a dynamical system can often offer one or
more points of stability, toward which a path can be fatally at-
tracted. The 3-sphere has the convenient property that it admits
continuous flow velocities that never vanish. (This is not possible,
for example, on the 2-sphere). If the flow velocity, or equivalently
the quaternion frequency, is a continuous function of the state, it
suffices that the frequency be nonzero everywhere for there to be
no points of stabililty.

We will also be interested in frequencies that are discontinu-
ous functions of the state space, in which additional conditions are
necessary to prevent the state getting caught in a discontinuity; for
instance, two or more regions could meet at a point in state space
toward which paths converge from all directions. We can prevent
this from happening by constraining the three frequency compo-
nents to be nonnegative everywhere, and to have a norm that is
always positive but also never exceeding π radians per sample.
Quaternion frequencies Ω greater than π in length are analogous
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to frequencies greater than the Nyquist in an ordinary, complex-
valued signal.

Although there is no obvious correlate to the Nyquist theorem
for quaternion-valued signals—the proof of the Nyquist theorem
blithely assumes that multiplication is commutative—we can at
least observe that for a constant quaternion frequency Ω, each of
the four components of the quaternion phase is a sinusoid whose
frequency is |Ω|, and so in this simple case we must keep the norm
of the quaternion frequency below π.

Although I don’t know of any proof, I can offer a further con-
jecture about quaternion frequency functions obeying the above
constraints (never zero; individual components always nonnega-
tive; norm below π): that such functions allow no path to lie en-
tirely within any one open hemisphere. This conjecture motivated
the examples developed below.

That the frequency has three distinct components raises a ques-
tion: is a time-varying quaternion frequency Ω(t) directly observ-
able? The answer is yes and no. Any attempt to generalize Fourier
analysis to allow multiple-component frequencies would require a
multidimensional time axis, which we don’t have in practice. On
the other hand, if we are presented with the phase of a particular
quaternion oscillator, we can simply divide two successive sam-
ples to find an instantaneous quaternion frequency. In principle
at least, in this situation one could hear the distinction between
different quaternion frequencies.

Due to numerical accuracy limitations, in practice the norm
of the computed state of a quaternion oscillator will slowly drift.
(This was already an issue for a complex-valued oscillator com-
puted using the recurrence relation). To prevent this we renormal-
ize the state at each time step.

Alternatively, the oscillator can be converted into a nonlinear
filter by applying a gain smaller than one to the quaternion phase
at each step of the recursion, and adding a term for a filter input.
If we insert a saturation function the gain may be set greater than
one, and the system becomes an oscillating filter analogous to the
Moog ladder filter [15, 16].

8. EVALUATION BY EXAMPLE

The reader or listener should be warned that the author has a weak-
ness for ornery, glitchy sounds. The techniques shown here are
quite capable of yielding more mellifluous results than are shown
here, but a thorough exploration of those possibilities is left for
another time and/or another investigator.

We start by considering how to exploit the symmetries of the
phase space to obtain a seven-dimensional parameter space that
can give rise to usefully variable sounds. We observe that the path
generated by a fixed quaternion frequency is a circle. Except in
special cases, exactly half of this circle lies inside any fixed hemi-
sphere. If we now fix two different quaternion frequencies to hold
inside and outside the hemisphere, the path will describe two (usu-
ally different) semicircles, both meeting at the two points of inter-
section with the boundary, normally at two different speeds.

So far we have only made a periodic waveform which could be
made by many other means. To make the example interesting, we
take two different hemispheres, which, with their complements,
cut the phase space into four regions. Again hewing to the simplest
reasonable scenario, we let the quaternion frequency alternate be-
tween two fixed ones, Ω1 and Ω2.

We now exploit the symmetries of the phase space to place the
two hemispheres in a specific position: first, multiply each point

by a fixed quaternion to make the first hemisphere align with the
i, j, k subspace, by moving one of its poles to the quaternion 1.
A phase q lies in this hemisphere or its complement depending on
the signum of Re(q).

The other hemisphere pair is then described by the signum of a
multiple of q, say ηq. We now exploit the (i, j, k) automorphism to
choose η to lie in the (1, i) plane, so that the only free parameter is
its angle of inclination. The original path can thus be transformed
into one that is described by two quaternion frequencies and one
angle of inclination.

We further simplify our example by setting the angle of incli-
nation at π/2 radians (i.e., η = i) and so dividing the space into
four equal quadrants. Moreover, since we still have not used the
(j, k) component of the automorphism, we could now invoke that
to place an additional constraint on Ω1 and Ω2 to reduce the num-
ber of parameters to five, but there is no clear principle guiding the
choice so for now we leave the number of parameters at six.

One complication creeps into the realization of this oscilla-
tor: the frequency switches discontinuously as the phase crosses
hemisphere boundaries, and the exact time of the transition may
strobe audibly against the DSP sample rate. This can be quite au-
dible if one or both quaternion frequencies is high in magnitude.
To ameliorate this situation we design a soft crossover function
whose maximum slope is controlled by one additional parameter,
which we call the crossover slope. The resulting parameter space is
seven-dimensional, consisting of two quaternion frequencies and
the crossover slope.

tab-1

tab-i

tab-j

tab-k

real
part
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j coef

k coef

1

-1

0 1000

Figure 2: The evolution of the four components of a quaternion
oscillator, plotted in time. Vertical ranges are from -1 to 1; the
(horizontal) time axis is in samples at an arbitrary rate.

Figure 2 shows the four components of the oscillator phase,
as a function of sample number, in our example with one possible
choice of parameters. The time units are quite arbitrary. In prac-
tice one can change the speed globally by multiplying the quater-
nion frequency by a constant factor. In the realization described
here, the six frequency parameters are controlled as percentages
of a base frequency which is specified separately, which for con-
venience is given in continuously variable “floating-point MIDI"
units.

Figure 3 shows the same example as a path through phase
space. The coordinate axes are assigned to the j and k compo-
nents. The 1 component (the real part) is indicated by the size
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Figure 3: The same as figure 2, but with the j and k components
graphed on the horizontal and vertical axes. The size of the dots in-
dicate value of the real part (the “1" term), ranging from -1 (small-
est) to 1 (largest).

of the drawn points (which during occasional fast transitions are
separately visible but run together much of the time and show up
as as a thickening of the path instead). Unsurprisingly, the two-
dimensional projection shows a sequence of ellipsoidal arcs, since
the quaternion frequency changes by steps as a hemisphere is en-
tered or exited.

This signal was generated using a Pure Data demonstration
patch uploaded to the directory
msp.ucsd.edu/ideas/quaternion-osc/ .
A subdirectory contains three stereo soundfiles that show off other
types of behavior that would be less amenable to graphing. The
parameters are, first, a reference frequency given in midi units;
next, the two quaternion frequencies (six components) given as
percentages of the reference frequency; and finally the crossover
slope, usually between 1 and 100.

This example shows some behaviors similar to that of other
known chaotic dynamical systems. For example, the Lorenz at-
tractor can be used to generate sound directly by taking everyone’s
favorite parameters ρ = 28, σ = 10, β = 8/3, and choosing a
time scale so that the x, y, and z components of the state are heard
audibly. The result is a dirty but partly pitched sound. This is
audibly somewhat like the “nasty clarinet sound" settings on the
sample patch.

The present network can exhibit interesting limit cycle behav-
iors. As figure 3 suggests, limit cycles can give rise to complicated-
looking periodic waveforms, which may have symmetries com-
ing from those of the underlying space and choice of quaternion
frequencies—for instance, the graphed waveform has only odd
harmonics. It is also fairly easy to find settings with at least two
different limit cycles with different waveforms and frequencies,
such as the third parameter set in the demonstration patch. This
behavior resembles that of the double-well oscillator.

The last sound example shows that behavior approaching limit

cycles can be entertainingly complex. This is obtained in the demon-
stration patch by switching from either of the first four parameter
sets to the fifth one.

It should be acknowledged that, even in this very simple case,
it is exceedingly hard to understand how to change the parameters
to obtain some specifically desirable result. So far, the only proven
method for searching for parameters is trial and error.

9. MUSICAL APPLICATION

One desirable quality of an unstable system would be that it exhibit
audibly unpredictable results over a range of different time scales.
This is not a property either of the demonstration patch, or of the
two prior examples considered. One reason for this is that, with
only four regions cut off by hemispheres, any trajectory is likely
to frequently hit all four regions. If we wish for the path to some-
times visit certain regions and sometimes different ones, we could
simply increase the number of regions and give each one its own
quaternion frequency. This was done as part of an original music
production which we will describe here.

The resulting piece, Your microphone appears to be noisy, by
the Higgs whatever (Kerry Hagan and Miller Puckette), is avail-
able on
msp.ucsd.edu/media/music/
2020.10.29.higgs-whatever-noisy-mic.mp4 .
It is an eight-minute improvised duo in which each player controls
a separate quaternion oscillator. The controls are mapped from
acoustic sources, a guitar and a clarinet, whose sounds are only
momentarily heard directly.

As in the simpler example described above, the quaternion
frequency was held constant except upon crossing hemispherical
boundaries. To the “1" and “i" boundaries we added “j" and “k"
ones. Rather than specify a separate quaternion frequency for all
16 regions they cut out, we specify a base frequency as a triple,
and four additional frequencies to be added on the positive 1, i, j,
and k hemispheres, each constrained to be in a particular direction
so that only one parameter is needed for each.

Leaving out the crossover slope for simplicity and letting s
denote the unit step function

s(x) =

{
1 x ≥ 0
0 otherwise (21)

the quaternion frequency is set to

Ω(q) = Ω0 + (0, p1s(q1), pis(qi), pjs(qj) + pks(qk)) (22)

where (q1, qi, qj , qk) denote the components of the time-varying
state q and p1, ..., pk, are nonnegative parameters controlling the
magnitude of additional quaternion frequencies to add when in the
(q1 ≥ 0), ..., (qk ≥ 0) hemispheres.

That entering and exiting the 1-hemisphere affects the i com-
ponent of the quaternion frequency, and so on, is an arbitrary choice.
In general, for each hemisphere we could add a three-parameter,
general quaternion frequency. Furthermore, the choice of four
hemispheres as regions in which to add frequency is arbitrary.
They are chosen to be hemispheres to maximize the likelihood that
any given path will frequently cross boundaries, but it might be
even more interesting to allow some of the regions to be smaller in
volume and to affect the path more sparsely in time.

Figures 4 and 5 show one possible behavior of the resulting
system, which is also included as a second demonstration patch on
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Figure 4: time-varying quaternion phase for a real example; same units as before.

the website. Figure 4 in particular suggests that the time patterns
are now highly irregular over both shorter and somewhat longer
time scales, as we had wished.

It is possible also with this patch to further increase the time
instability of the outputs by choosing such a high crossover slope
that sample rate strobing becomes noticeable, particularly since
the chaotic nature of the flow allows small variations in periodic-
ity to have major effects on subsequent time evolution. This was
unwittingly a factor in the piece. The presence of strobing can be
checked simply by lowering the base frequency. If the behavior is
the same (only slowed down) then strobing is not a major contrib-
utor to the sound quality, and otherwise it is. One can always hear
the non-strobed “truth" if one slows the system down sufficiently.

10. CONCLUSION

The main desiderata expressed in this paper are to achieve a wide
range of musical timbres using a coherent and low-dimensional
dynamical system; to allow for intuitive exploration of the pa-
rameter space; and to give rise to both timbral variety (considered
as short-time behavior) and behaviors over musically perceptible
time spans, which might thus be somehow perceptually linked.
None of these goals can be assessed using a quantitative test. We
can at best offer subjective assessments of the relative advantages
and disadvantages of one dynamical system over another one.

As compared to other known dynamical systems that generate
audio signals, we are able to exhibit many of the same fundamen-
tal behaviors such as chaotic motion and limit cycle bifurcation.
Somewhat more tenuously, we can claim to easily find parameters
leading to “interesting" behaviors over longer time spans. This
behavior is also possible to get with classical coupled-oscillator
systems.

The quaternion oscillator combines the advantages of a low-

dimensional and topologically simple state space, with the avail-
ability of a large class of possible flows on that space—any in-
tegrable function whose three components are nonnegative and
never all zero, and whose norm is below the Nyquist frequency—
any one of which will at least oscillate and never limit to a stable
point. Within this huge range of possibility we easily found one
low-dimensional parameter space that gives rise to sounds inter-
esting enough to use in a finished piece of music.
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