
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

PHYSICAL MODELING USING RECURRENT NEURAL NETWORKS WITH FAST
CONVOLUTIONAL LAYERS

Julian D. Parker∗

Native Instruments GmbH
Berlin, Germany

firstname.lastname@native-instruments.de

Sebastian J. Schlecht∗

Aalto Acoustics Lab and Media Lab
Aalto University
Espoo, Finland

sebastian.schlecht@aalto.fi

Rudolf Rabenstein† ∗

Multimedia Communications and Signal Processing
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Erlangen, Germany
Rudolf.Rabenstein@fau.de

Maximilian Schäfer† ∗

Digital Communications
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Erlangen, Germany
max.schaefer@fau.de

ABSTRACT

Discrete-time modeling of acoustic, mechanical and electrical sys-
tems is a prominent topic in the musical signal processing litera-
ture. Such models are mostly derived by discretizing a mathemat-
ical model, given in terms of ordinary or partial differential equa-
tions, using established techniques. Recent work has applied the
techniques of machine-learning to construct such models automat-
ically from data for the case of systems which have lumped states
described by scalar values, such as electrical circuits. In this work,
we examine how similar techniques are able to construct models of
systems which have spatially distributed rather than lumped states.
We describe several novel recurrent neural network structures, and
show how they can be thought of as an extension of modal tech-
niques. As a proof of concept, we generate synthetic data for three
physical systems and show that the proposed network structures
can be trained with this data to reproduce the behavior of these
systems.

1. INTRODUCTION

Discrete-time modeling of systems (both acoustic, mechanical &
electrical) which are relevant to musical uses has a long history in
the literature. This discipline is known as physical modeling, or as
virtual-analog when referring to the subset of electrical systems.
Popular approaches to such problems in the acoustic or mechan-
ical domain include direct numerical solution of ordinary differ-
ential equations (ODEs) or partial differential equations (PDEs)
via finite differences [1], digital waveguides [2] and modal ap-
proaches like the Functional Transformation Method (FTM) [3,4].
Popular approaches in the electrical domain include finite differ-
ences or state-space models [5], wave digital filters [6] and the
Port-Hamiltonian formalism [7]. As is well-known, in the last 10
years Machine Learning (ML) and specifically Neural Networks

∗ Equal contribution
† This work was supported by the German Research Foundation (DFG)

under grant number RA 807/7-1
Copyright: © 2022 Julian D. Parker et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

(NN) have seen an unprecedented explosion in research, in both
theoretical topics and in their application to many diverse fields
of study.Applications of such techniques to modeling musically-
relevant electrical circuits has seen much research in the last sev-
eral years [8–10]. Such circuits can generally be thought to be gov-
erned by ODEs. The application of NNs to model PDE-governed
systems has also seen some research, but strongly in the domain
of scientific computing [11, 12]. However, with some exceptions
[13], there is little work on the use of NNs to model musically
relevant PDE-governed systems at audio-rates. In this work we
attempt to make some first steps into this domain. In particular,
we extend on network types previously proposed in the scientific-
computing domain for the modeling of PDE-governed systems
[11] and propose novel network structures with improved capa-
bility to be applied in the audio domain. The proposed network
structure is perfectly suited for the modeling of oscillating acous-
tical systems which we show by revealing the similarities to estab-
lished techniques for physical modeling based on modal synthesis.
Finally, we demonstrate the viability of the proposed structures by
the modeling of three example systems. All required code for re-
producing the results are provided online [14].

In Sec. 2 we review current research on the application of
NNs to solve PDEs, and introduce the proposed network struc-
tures. Moreover, we review the relevant formalism of the FTM
and discuss its connection to the proposed NN structure. In Sec. 3,
we introduce three acoustical systems which are used for the eval-
uation of the proposed NN structures. In Sec. 4 we first explain
the NN training procedure applied and discuss the performance of
our proposed NN structure compared to analytical solutions of the
example systems. Sec. 5 concludes the paper.

2. MODELING PDES USING NN STRUCTURES

The modeling of ODE-governed systems via the application of ma-
chine learning is relatively trivial to construct, given that we can
write such a system in the general case as follows

u̇(t) = g(u(t)), (1)

where u is an n-dimensional vector of scalar-valued states, and g
is an arbitrary pointwise mapping Rn → Rn. This formulation
even encompasses implicitly defined ODE systems, given that we

DAFx.1

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

138

https://www.native-instruments.com/en/
mailto:firstname.lastname@native-instruments.de
mailto:sebastian.schlecht@aalto.fi
https://www.lms.tf.fau.eu/
mailto:Rudolf.Rabenstein@fau.de
https://www.idc.tf.fau.de
mailto:dafx2019@gmail.com
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

do not need to know g in analytical form, and hence it can be
assumed to resolve the implicit relationship.

From this formulation, it is clear that we can learn the dy-
namic of any ODE system by approximating the function g with
a neural network. This learned function can then be used directly
within a standard ODE solver [15]. Alternatively, a recurrent neu-
ral network (RNN)-like structure can be trained to reproduce the
progression between sampled values of u [8].

Modeling PDEs is conceptually a little more difficult, as they
deal with the evolution of higher-dimensional distributed states
rather than 0-dimensional scalar states, and hence cannot be char-
acterized by a pointwise mapping. Initial work in this area, known
as physically informed neural networks (PINN), approached this
problem by using a neural network to directly learn the solution
manifold of the system as a function of coordinates. Such an ap-
proach has two major downsides in the context of audio-focused
physical modeling. Firstly it requires the governing PDE to be al-
ready known. Secondly, it learns only the solution to a particular
set of initial conditions, and therefore cannot be used flexibly to
reproduce the response to arbitrary excitations.

Recent work has framed the problem differently, by formulat-
ing time-dependent PDE-systems analogously to (1) as follows

u̇(x, t) = G(u(x, t)), (2)

where u = (ui)
N
i=0 is a vector of space and time-dependent states,

e.g., physical quantities of the underlying system, on a bounded
n-dimensional region x ∈ V ⊂ Rn, and G is an operator mapping
between function spaces.

The machine-learning problem can be formulated by discretiz-
ing u in space and time. In particular, we apply spatial sampling
on an arbitrary grid of discrete sampling points xn with n ∈ I,
where the index set I is chosen such that xn ∈ V , and temporal
sampling at regular intervals in time, i.e., t = kT with discrete-
time index k and sampling interval T . The temporal and spatial
discretization of u in (2) yields the tensor

U[xn, k] = (ui[xn, k])
N
i=0 . (3)

The discretization of u allows us to define a discretized version of
the PDE (2) in terms of the tensor (3) as follows

U[xn, k + 1] = Ĝ (U[xn, k]) , (4)

where Ĝ is a discretized version of the original operator G. Ap-
proximating the operator Ĝ by a NN is known as the neural oper-
ator approach [11]. In the following, we use the shorthand Uk to
denote the tensor at time k, and uk

ij... denotes its elements, where
i is the index of the physical quantity, j . . . denote the n spatial
variables.

There are many options for what type of network to use for this
approximation. The first impulse might be to flatten the tensor U
and use a standard dense network. This approach would make no
assumptions about the relationship between elements of the tensor.
This could work theoretically, but discards a number of structural
priors that can be used to inform the network design and to ease
training. The dimensions of the tensor U in (2) representing the
discretized spatial domains are made up of progressively sampled
values from continuous functions. The values along these dimen-
sions are strongly related as they embed some concept of locality
and ordering. Instead of using a fully dense transformation to op-
erate along these dimensions, it is therefore more sensible to use a

structure that contains these assumptions and transforms the data
with some type of kernel. Previous work has investigated a num-
ber of approaches to this, including graph neural networks [16],
convolutional neural networks with small kernels [16], and trans-
forming into the spatial Fourier domain [11]. This last technique
has seen the greatest success, and is known as the fourier neural
operator (FNO) approach.

These kernel-type methods of approximating the operator can
be considered to be closely related to general kernel methods for
the solution of PDEs such as Green’s Functions or the eigenfunc-
tions of the spatial differentiation operator concealed in (2) [3, 4].
These relations are discussed in further detail in Sec. 2.3.

FNO-based techniques are significantly better suited than the
PINN approach for audio-focused physical modeling, but have so
far only been applied in the context of scientific computing. Com-
pared to many typical scientific computing problems, modeling
audio-range behaviour requires a system to reproduce dynamics
over a wide frequency range, and across long time-scales relative
to the temporal sampling frequency. Initial experiments showed
that taking the existing FNO-based structures and applying them
directly to audio-focused problems did not produce ideal results -
in particular the modeled behaviour would degenerate after a rela-
tively small number of timesteps. The goal of this work was there-
fore to improve the existing FNO-based structures in the aspects
important to audio-range modeling.

2.1. Fast convolution layer

Starting from the n-dimensional spectral convolution layer pro-
posed in the context of the FNO [11,16], we make some modifica-
tions for more generalized usage. Firstly, we discard the concept
of zeroing some of the bins of the FFT of the data. This zeroing is
effectively just a crude lowpass filter implemented in the Fourier
domain, and is not beneficial in the general use-case. We also add
correct padding of the spatial dimensions to ensure that the layer
is performing non-cyclic convolution.

The operation of the layer on the internal state tensor H with
elements hνj... can be written as follows

S(hνj...) = F̃−1

[∑
κ

Aνκj...F̃(hκj...) + bνj...

]
, (5)

where F̃ denotes an operator encompassing padding, applying the
FFT and truncating the spectrum to remove negative frequency
components. Conversely F̃−1 encompasses reconstructing the neg-
ative freq-uency components from the transformed positive freq-
uency components, applying the inverse FFT, and then truncat-
ing to remove padding. Note that this linear transformation with
A and b is fully dense with respect to input and output channels
but diagonal in terms of frequency bins. The elements Aνκj...

and bνj... of this transformation are complex, and are the train-
able parameters of the layer. With these modifications, the layer
can be thought of as a standard convolutional layer with kernels
fixed to the width of the domain, but implemented using the well-
established method of fast-convolution via multiplication in the
Fourier domain. This has an advantage in computational com-
plexity, and also re-contextualizes the training problem by mov-
ing parameters from the spatial domain into the Fourier domain.
It should be noted that whilst the general discretization shown in
(3) allows arbitrary spatial sampling grids, the use of the FFT to
implement convolution could be argued to enforce a regular recti-
linear spatial grid. This is certainly true in the linear case, but in

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

139

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

F1

S1 φ

D1

+ F2 FMHk Hk+1

Figure 1: Block diagram showing the recurrent cell of the FRNN
structure (dependencies of H on discrete time index k are denoted
in the superscript for brevity).

the context of stacked layers with non-linearites, this may not be
true. Nonetheless, it is reasonable to assume that compensating for
a non-regular grid may use significant capacity of the network. A
proper investigation of this topic is left to future work, with only
data sampled on rectilinear spatial grids considered here.

2.2. FNO-derived RNN structures

Previously presented FNO structures have dealt with time-evolu-
tion by learning mappings from spatially sampled states at mul-
tiple input time-steps [11], or single input time-steps [17] to the
next time-step. These structures can be thought of as a type of
teacher-forced RNN, but were not previously discussed as such. In
this work we introduce several related structures that are designed
explicitly as RNNs, and trained using standard RNN training tech-
niques such as back propagation through time (BPTT).

2.2.1. Fourier Recurrent Neural Network (FRNN)

This structure is shown in Fig. 1. It consists of a recurrent structure
that maps sequentially between time-steps of the spatially-sampled
internal states of the network, through a variable number of map-
ping blocks

Hk+1 = FM ◦ FM−1 ◦ . . . F1(H
k), (6)

where H is a tensor containing the internal states of the system at
all spatial-sampling points, and the mapping block is given by

Fm(H) = ϕ(Sm(H)) +Dm(H), (7)

where S is the described fast convolution layer (5), ϕ is an element-
wise activation function such as tanh or ReLU and D represents a
weighted skip connection.

This structure is related to that presented in previous FNO lit-
erature [17] but with the skip connection positioned to prevent van-
ishing gradients when using BPTT on longer sequences, and with-
out the restriction that internal states must correspond with phys-
ical states. Compared to this structure, we also do not condition
the input with the coordinates of the spatial grid. This structure
can also be considered to be closely related to a generic RNN, and
to the STN structure proposed for modeling ODE-governed sys-
tems [8].

2.2.2. Fourier Gated Recurrent Unit (FGRU)

The gated recurrent unit (GRU) [18] is an RNN structure that has
seen great success in a variety of tasks from language modeling to
black-box modeling of electrical circuits [9]. We propose a gener-
alization of this structure by replacing dense layers with fast con-
volution layers. The structure is shown in Fig. 2, and can be written

• +

Sz σ

1−

•

Sr

σ

tanh

Sh

•

Hk

R

Ĥ

Z

Hk+1

Figure 2: Block diagram showing the recurrent cell of the FGRU
structure (dependencies of H on discrete time index n are denoted
in the superscript for brevity).

as follows

Z = σ(Sz(H
k)), (8)

R = σ(Sr(H
k)), (9)

Ĥ = tanh(Sh(R⊙Hk)), (10)

Hk+1 = (1− Z)⊙Hk + Z⊙ Ĥ, (11)

where H is a tensor as in (6), (7), σ is the element-wise sigmoid
function, and Sz , Sr , Sh are fast convolution layers.

This structure inherits the well-known beneficial qualities of
the GRU, including a linear path to avoid vanishing gradients dur-
ing BPTT, the ability to effectively multiply inputs, and safety
against explosive instability due to the bounded nature of the states.

2.2.3. Training procedure

We formulate the training problem as taking a tensor of the initial
conditions of the states of the physical system, sampled on an n-
dimensional regular grid, and producing a tensor of one dimension
higher, representing the evolution of these spatially sampled states
over a number of time-steps. This is a form of BPTT, in contrast
to the single time-step to single time-step mappings previously de-
scribed [17], and hence has the advantage that the network can
learn to deal with its own error as propagated through the recur-
sion.

For the presented RNN structures, the number of internal states
can be freely specified. This is especially important in the case of
the FGRU, as it is the only mechanism by which to scale the capac-
ity of the structure. Restricting the internal states H to correspond
exactly to the physical states U of the system we are modeling
would therefore be overly restrictive. Instead, we apply a process
called soft state-matching [19]. This consists of defining two train-
able linear maps A, b and Ã, b̃, respectively,

h0
νj... = Min(u

0
ij...) =

∑
κ

Aνκu
0
κj... + bν , (12)

uk
ij... = Mout(h

k
νj...) =

∑
κ

Ãiκh
k
κj... + b̃i, (13)

where hνj... are the elements of the network’s internal state tensor
H and uij... are the elements of the tensor U containing the states
of the system being modeled. The superscript k denotes time-step.

DAFx.3

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

140

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Min Cell

Mout

Cell

Mout

Cell

Mout

U0 H0 H1

U1 U2

Hk

Uk

Figure 3: Block diagram showing the repeated application of an
RNN cell from Fig. 1 along with the action of the state-matching
layers.

These maps translate from the dimensionality of the states of the
system being modeled to that of the network, and vice-versa. The
first mapping is applied to translate the initial conditions to the
initial internal states of the network, and the second mapping is
used to translate the states of the network to the states of original
system. With the addition of these mappings, the network can be
thought of as operating in a higher-dimensional latent space which
contains a linear embedding of the original state-space. The com-
bination of recursive training via BPTT with these mapping layers
is shown in Fig. 3.

2.3. Relation between FNO structures and Kernel Methods

As previously mentioned, there is a strong relation between the
FNO approach and general kernel methods for the solution of PDEs
in the form of (2). In the following we investigate the FTM, as a
kernel method for finding analytical solutions to (2), the relation
to FNOs and to the proposed FNO-derived RNN Structures.

2.3.1. Functional Transformation Method (FTM)

The FTM is a powerful method for modeling the oscillation of
acoustic systems in terms of transfer functions and a detailed de-
scription of its derivation and application can be found, e.g., in
[3,4,20]. For example, the method has been applied for the model-
ing of strings (see, e.g., [3,21]), membranes (see, e.g., [22,23], and
room acoustics (see, e.g., [24, 25]). The basic idea of the FTM is
to transform the mathematical description of an acoustical system
in terms of PDEs, e.g., (2), into a discrete-time simulation model
by the application of functional transformations for time and space
dependencies. Consider a vector valued PDE, which is a specific
realization of the general PDE in (2)

Cu̇(x, t) = Lu(x, t), x ∈ V, t > 0, (14)

defined on spatial domain V and its boundary ∂V . In PDE (14),
matrix C ∈ RN×N is a capacitance matrix and L is a N × N
sized spatial differentiation operator. The state vector u ∈ RN×1

contains N physical quantities of the underlying acoustical system
such as deflection, sound pressure or particle velocities (see, e.g.,
[25, Eqs. (26), (34)]). To complete PDE (14), we assume a set of
homogeneous boundary conditions defined on ∂V , cf. [20], and an
initial condition for the vector u at t = 0, i.e., u(x, 0) = ui(x).

In order to derive an FTM model for (14), u is expanded into
an infinite set of bi-orthogonal basis functions Kµ ∈ CN×1 and
K̃µ ∈ CN×1 for the operator L, where the dedicated eigenvalues
sµ, µ ∈ N0 constitute the discrete spectrum of L [26]. With ba-
sis function Kµ and K̃µ a forward and inverse Sturm-Liouville

transform (SLT) are defined as follows

ūµ(t) = T {u(x, t)} =

∫
V

K̃H
µ (x)Cu(x, t) dx, (15)

u(x, t) = T −1{ūµ(t)} =
∞∑

µ=0

1

Nµ
ūµ(t)Kµ(x). (16)

Forward SLT (15) expands u into the basis functions K̃µ yielding
the expansion coefficients ūµ. In the context of acoustics, (15)
expands a system into its modes and the time-dependent expansion
coefficients ūµ describe their temporal evolution. The inverse SLT
in (16) represents u as series expansion with basis functions Kµ

and scaling factors Nµ =
∫
V
K̃H

µCKµ dx. Further properties
of (15) and (16) such as the existence of a differentiation theorem
and the bi-orthogonality of K and K̃ are discussed in detail in
[4, Sec. 4.7.3]. We note that the shape of K and K̃ depends on
the spatial shape of the underlying system, e.g., for geometrically
simple systems basis functions are often trigonometric functions,
Bessel functions or combinations thereof [4, Sec. 4.7.4].

Application of the forward SLT (15) to PDE (14) and exploit-
ing the differentiation theorem [25, Eq. (18)] leads to expansion
coefficients defined in terms of Laplace transfer functions

ūµ(t) = esµtūi,µ
c s Ūµ(s) =

1

s− sµ
ūi,µ, (17)

where the coefficients ūi,µ follow from the expansion of the initial
values ui, i.e., ūi,µ = T {ui(x)}.

Truncating the number of eigenvalues sµ to be finite, i.e., µ =
0, . . . , Q − 1, and transforming (16) and (17) into the discrete-
time domain allows the formulation of the FTM model in terms of
a vector valued state space description (SSD) [4, 25]

ū[k + 1] = eAT ū[k] + T ūiδ[k], (18)
u[x, k] = C(x)ū[k], (19)

with the discrete time index k, sampling interval T , i.e., t = kT ,
and the discrete-time Dirac delta function δ[k]. State equation (18)
is a vector valued discrete-time version of (17), where the vector
ū = (ūµ)

Q−1
µ=0 contains the expansion coefficients, the diagonal

matrix A ∈ CQ×Q contains the eigenvalues sµ on its main diago-
nal and ūi = (ūi,µ)

Q−1
µ=0 . Output equation (19) is a clever reformu-

lation of the inverse SLT in (16) by representing the truncated sum
by a matrix-vector multiplication with the transformation matrix

C(x) =
[

1

N0
K0(x), . . . ,

1

NQ−1
KQ−1(x)

]
. (20)

2.3.2. Relation between FTM and FNO-derived RNN Struc-
tures

The FTM formulation allows some interpretation of the fast con-
volution layer proposed in the FNO-derived RNN structure. The
state equation (18) describes the time-evolution of the modes phase
and amplitude ū. The state transition matrix eAT is diagonal, such
that time-evolution of each mode state ū is decoupled.

For a set of discrete spatial sampling points xn with n ∈ I and
discrete time k, the transformation (15) and (16) are

ū[k] =
∑
n∈I

C̃H
(xn)CVn u[xn, k], (21)

u[xn, k] = C(xn) ū[k], (22)

DAFx.4

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

141

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

where Vn denotes the finite volume element replacing the infinites-
imal volume element dx and C̃ is defined by the eigenfunctions K̃
similar to (20). For geometrically simple examples, such as strings
and rectangles, the underlying basis functions Kµ are trigonomet-
ric. In a linear time-invariant system, the internal modes can be
recovered readily from the time evolution of the spatial variables.
A relation between two consecutive time steps in the space domain
follows by inserting (18) and (21) for k > 0 into (19)

u[xn, k + 1] =
∑
ν∈I

G(xn|xν)u[xν , k] (23)

with the matrix in the form of an eigenvalue decomposition

G(xn|xν) = C(xn)e
AT C̃H

(xν)CVn. (24)

Note that (23) is the linear version of the general discretized PDE
(4) and G(xn|xν) resembles a discrete version of the Green’s
function of (14). Transition matrix G can be numerically recov-
ered from the spatial variables by solving a least squares problem
in (23) on a sufficiently long time frame. The eigenvalue decom-
position of G yields then eigenvalues eAT .

Similar operations are performed by the fast convolution layer
in (5). An FFT transforms the spatial variables into a transform do-
main with complex exponential basis functions, thus also trigono-
metric functions such as in C. The processing step in (5) applies
a diagonal transition matrix Aνκj... to the transform-domain vari-
ables. The result is transformed back to the spatial variables via the
inverse FFT. There are also notable differences between the given
approaches. The fast convolution layer applies a bias term, i.e.,
bνj... in (5). The FNO-derived RNN structure typically concate-
nates multiple layers (see (6)), uses non-linear activation functions
and skip connections in-between (see (7)). Because of the mapping
performed by the first and last network layers as in (13), the NN
recombines and expands the spatial variable inputs and outputs.

3. ACOUSTIC SYSTEMS

In this section we introduce a number of acoustic systems which
are used to test the viability of the proposed NN structures. First,
we investigate two linear systems, – a lossy dispersive string and a
2D wave equation. For both systems we employ well investigated
models obtained by the FTM as introduced in Sec. 2.3.1. Second,
we investigate a tension modulated string as a non-linear system
which we solve, after a few modifications, by a non-linear ODE-
solver in Python.

The models presented have been well investigated previously
therefore we just present the parts necessary for a comprehensible
presentation. We refer the reader to the relevant literature where
appropriate.

3.1. Linear Lossy Dispersive String

The oscillation of a vibrating string of length ℓ, i.e., 0 ≤ x ≤ ℓ
at times t > 0 can be described by a PDE in terms of the string
deflection u0(x, t) as follows [2]

ρsAu1(x, t) + EIu′′′′
0 (x, t)− Ts0u

′′
0 (x, t)

+ d1u1(x, t)− d3u
′′
1 (x, t) = 0, (25)

where partial derivatives for space are denoted by a prime, i.e.,
∂u
∂x

= u′, and velocity by u1. The oscillation of the string in (25) is

influenced by several physical parameters. In particular, ρs denotes
the string density, A is the cross section area, I is the moment of
inertia and Ts0 is the constant tension of the string. Constant E
denotes Young’s modulus. The parameters d1 and d3 introduce
frequency-independent and frequency-dependent damping into the
oscillation of the string. As boundary conditions we assume that
the string is simply supported, which requires that the deflection
u0 and its second derivative u′′

0 are zero at both ends, see [21]. At
t = 0, deflection is defined by an initial value u0(x, 0) = ui(x).

The derivation of an FTM model for the lossy dispersive string
has been discussed, e.g., in [3,20,21,25] for different applications
in sound synthesis. To this end, we don’t show the exact formulas
for all components of the FTM model, instead we refer the reader
to the most recent FTM references:

• To derive the state transition matrix eAT in (18), we used
the eigenvalues sµ from [25, Eq. (37)].

• The eigenfunctions Kµ in C in (20) and K̃µ for the expan-
sion in (15) can be found in [25, Eq. (39)].

The vector of states u, c.f. (14), (2), comprises string deflection u0

and velocity u1, i.e., u = [u0, u1]
T. For training and evaluation

we use different initial values ui, i.e., a delta impulse, a smooth
excitation by a raised cosine, and a random initial condition.

3.2. 2D Wave Equation

The evolution of sound pressure u0 and particle velocities uv =
[u1, u2]

T in a bounded 2-dimensional (2d) region of size 0 ≤ x ≤
Lx, 0 ≤ y ≤ Ly is described by the 2d wave equation

ρ0u̇v(x, y, t) + gradu0(x, y, t) = 0, (26)

ρ0 c
2
0 divuv(x, y, t) + u̇0(x, y, t) = 0, (27)

where ρ0 denotes the density of air and c0 is the speed of sound.
The operators grad and div denote gradient and divergence in 2D
Cartesian coordinates, respectively. For the boundary conditions
we assume fully reflective boundaries, i.e., particle velocities uv

vanish at the boundaries. At t = 0, sound pressure u0 is defined
by an initial value, i.e., u0(x, y, 0) = ui(x, y). The 2D wave
equation (26), (27) and its extension to 3D are frequently used in
room acoustics [27, 28]. The components required to establish a
FTM model for the 2D wave equation are as follows:

• To derive the state transition matrix eAT in (18), we used
the eigenvalues sµ from [25, Eq. (30)].

• The eigenfunctions Kµ in C in (20) and K̃µ for the expan-
sion in (15) can be found in [25, Eq. (31)].

The vector of states u, c.f. (14), (2), comprises sound pressure u0

and particle velocities uv, i.e., u = [u0, u1, u2]
T. Similar to the

string we use different types of initial conditions ui, i.e., a 2d delta
impulse, and a random sound pressure distribution.

3.3. Non-linear Tension Modulated String

As a non-linear acoustical system we consider a tension modulated
string [3,29–32]. Tension modulation is a non-linear phenomenon
which affects the pitch of the string. In particular, when the string
is deflected from the rest position, the arc length measured along
the string is larger than the string length ℓ at rest. This additional
“stretching” leads to an increased tension and subsequently to an
increased pitch.

DAFx.5

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

142

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

x (/m)

←
t(

/s
)

low

0

high

Figure 4: Examples of training pairs in the case of the linear string
model. The top row shows the initial conditions, in this case of
two states. The bottom row shows the evolution of the first state
over a small time period. The dataset includes both states.

The PDE describing the oscillation on a tension modulated
string is similar to the linear case (25), except for the tension which
depends on u0(x, t) and is defined as follows

Ts(u0) = Ts0 + Ts1(u0), (28)

where Ts0 is the tension of the string at rest as defined in (25). The
additional tension Ts1(u0) arising from the additional arc length
∆lstr(u0) of the string is derived from Hooke’s law [32]

Ts1(u0) = EA
∆lstr(u0)

ℓ
=

EA

2ℓ

∫ ℓ

0

(
u′
0(x, t)

)2
dx. (29)

In contrast to the linear example systems, we derived a numeri-
cal model for the tension modulated string. In particular, we em-
ployed a two-staged procedure to obtain numerical solutions for
the deflection u0 and velocity u1 of the tension modulated string:

1) First we decompose PDE (25), extendend by the non-linear
tension (28), into a set on non-linear ODEs by the applica-
tion of a Fourier-Sine transformation [30].

2) The system of ODEs is converted into a vector formulation
of size M ODEs, solved numerically in Python.

Similar to the linear string we employ different types of initial con-
ditions for u0, i.e., a delta impulse and a random initial condition,
and the same state vector u.

4. EVALUATION

The networks described in Sec. 2 were implemented in the Py-
Torch framework [33], and are available at the accompanying web-
site [14]. A reference implementation of the previous Markov-
FNO approach was also adapted from existing code, with the ad-
dition of support for BPTT. These networks were then trained on
datasets generated from the models described in 3. These datasets
consist of 1024 pairs of a set of initial conditions and the response
over a set period of time. The initial conditions are split between
two categories. Half consist of the response to randomly posi-
tioned impulses or plucks, and the other half the response to set-
ting the initial conditions to random values across the domain. The
datasets are normalized to have unit variance. One tenth of each
dataset is retained for validation. Further physical parameters of

x (/m)

←
t(

/s
)

FGRU FRNN Ref Truth

Figure 5: Deflection of the linear string over time and space as
obtained by the proposed FGRU and FRNN structures, the ref-
erence FNO model and the analytical solution obtained by FTM.
The color scaling is the same as given in Fig. 4. The red tick mark
represents the duration of examples used during training.

the datasets are given at the accompanying website [14]. Fig 4
shows an example of the types of training pairs provided in the
case of the 1d string.

4.1. Training methodology

Training was conducted using the AdamW optimizer [34] with de-
fault parameters, and the 1-cycle learning-rate scheduling scheme
[35] modulating from a learning rate of 10−4 to 10−3, with MSE
between the target and predicted output sequences as the objective.
Training was conducted for 5000 epochs with batch size set indi-
vidually for each dataset in order to maximize GPU memory us-
age. The training was conducted on cloud-hosted virtual machines
equipped with NVIDIA T4 GPUs. All training code is made avail-
able at the accompanying website, which also documents the used
hyper-parameters [14]. Network capacities were set to be approxi-
mately equal between the different network architectures. In prac-
tice, this means using the same number of internal states, with
3 stacked layers in the FRNN and reference FNO model used to
match the non-variable 3 layers in the FGRU.

4.2. Results

In the below table we give MSE values for the proposed models
and the reference model, validated on a reserved subset of the data
not seen during training:

FGRU FRNN Ref.
1d linear string 7.79e-3 1.43e-2 3.50e-1

1d nonlinear string 2.27e-3 2.63e-2 1.06
2d wave equation 1.86e-2 1.54e-2 1.12e-4

4.2.1. Linear Lossy Dispersive String

Fig. 5 shows the result of exciting the models trained on the linear
string data with an impulse halfway along its length. The time-
span shown is approximately 10x that seen by the models during
training. As can be clearly seen, the best performing model is the
FGRU, which manages to sustain accurate behavior over the ma-
jority of the time-period considered. The FRNN also decays at

DAFx.6

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

143

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

approximately the correct rate, but exhibits more and more disper-
sion after the time-span seen during training. The reference FNO
model seems to fit the behavior well during the time-span seen dur-
ing training, but breaks down completely after that. This ordering
of accuracy is also confirmed by the validation MSE values.

We can further examine the behavior of the models by using
the approximate eigenvalue decomposition derived in 2.3.2. The
results are shown in Fig. 6. We observe that for many of the promi-
nent low-frequency poles of the original FTM model, the NNs re-
cover a pole with similar frequency and magnitude. As expected
from the comparison in Fig. 5, the FGRU best matches the pole
magnitudes, although the FRNN also matches them well at low
frequencies. The reference FNO model seems to have estimated
some pole frequencies well, but significantly damped. All of the
models seems to struggle above 4kHz.

103 104

Pole freq. (/Hz)

−
0.

3
−

0.
2

−
0.

1
0.

0
Po

le
m

ag
.(

/d
B

)

FGRU
FRNN
Ref.
Truth

Figure 6: Estimated poles of the linear string inferred from the
model outputs presented in Fig. 5.

4.2.2. Non-linear Tension Modulated String

Fig. 7 shows the result of exciting the models of the nonlinear
tension modulated string with a pluck halfway along the string’s
length, with an initial pluck amplitude of 1mm. Again the time
period shown is roughly 10x that used for training. Broadly the
same hierarchy is seen as in the case of the linear string in Fig. 5.
The result from FGRU fits the behaviour well over a quite long
period, although it appears to be slightly more damped than the
ground truth. Moreover, the triangular-like waveshape induced by
the nonlinear behavior is reproduced well by the FGRU. The re-
sults from FRNN fit the data during the initial cycle which has
been seen during training, but then spurious damping and disper-
sion dominates. The reference FNO model is not able to fit the data
at all, with training plateauing very early and never converging on
a reasonable approximation. Again, this hierarchy seems to gen-
eralize to a wider set of examples, as is reflected in the validation
MSE values seen above.

4.2.3. 2d Wave Equation

Fig. 8 shows the result of exciting the trained models with an
impulse halfway along the x dimension, and slightly less than
halfway along the y dimension. In this case, the time period shown
is around 2x that seen during training. In this case we see an inter-
esting reversal of the results seen on the string models. The refer-
ence FNO model performs the best, with the FRNN and especially

x (/m)

←
t(

/s
)

FGRU FRNN Ref Truth

Figure 7: Deflection of the tension modulated string over time and
space as obtained by the proposed FGRU and FRNN structures,
the reference FNO model and the numerical solution described in
Sec. 3.3. The color scaling is the same as given in Fig. 4. The red
tick mark represents the duration of examples used during training.

the FGRU falling off in accuracy after 1ms. These observations
are in agreement with the validation MSE calculated over a wider
range of examples. It is beyond the scope of the current work to
properly examine why the hierarchy of performances is reversed
in this case. An initial speculation might be that given the math-
ematically very simple structure of this model (despite its higher
dimension count), the FNO might be benefiting from some kind
of regularization effect gained by the constriction of the internal
states back to the physical states between each time step. Further
investigation of this phenomenon is left to future work.

0
m

s

FGRU FRNN Ref. Truth

0.
5

m
s

1.
0

m
s

x (/m)

y
(/

m
)

Figure 8: Spatial distribution of sound pressure at different points
in time as obtained by the proposed FGRU and FRNN structures,
the reference FNO model and the analytical solution obtained by
the FTM model.

5. CONCLUSIONS

In this work we gave an overview of existing methods of model-
ing PDEs using NNs. We presented two new structures based on
the FNO approach, designed to perform better in audio-oriented
tasks. We compared these structures theoretically to the FTM,

DAFx.7

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

144

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

and showed that they have significant mathematical parallels. This
opens up an interesting new avenue in terms of the interpretability
of these networks.

As an initial proof of concept, we trained the proposed net-
work structures to reproduce datasets generated by existing phys-
ical models. The results of this training show that the proposed
networks have potential for physical modeling in the audio do-
main. Future work could explore the applicability of such models
to systems which are harder or more computationally expensive to
model using existing techniques.

6. REFERENCES

[1] S. Bilbao, Numerical Sound Synthesis, John Wiley and Sons, Chich-
ester, UK, 2009.

[2] J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith, “The
Simulation of Piano String Vibration: From Physical Models to Fi-
nite Difference Schemes and Digital Waveguides,” J. Acoust. Soc.
Am., vol. 114, no. 2, pp. 1095–1107, 2003.

[3] L. Trautmann and R. Rabenstein, Digital Sound Synthesis by Physi-
cal Modeling Using the Functional Transformation Method, Springer
US, Boston, MA, 2003.

[4] M. Schäfer, Simulation of Distributed Parameter Systems by Transfer
Function Models, Doctoral thesis, Friedrich-Alexander-Universtität
Erlangen-Nürnberg (FAU), 2019, https://opus4.kobv.de/
opus4-fau/frontdoor/index/index/docId/13174.

[5] M. Holters and U. Zölzer, “A generalized method for the derivation
of non-linear state-space models from circuit schematics,” in 23rd
Eur. Signal Process. Conf. (EUSIPCO), 2015, pp. 1073–1077.

[6] A. Fettweis, “Wave Digital Filters: Theory and Practice,” Proc.
IEEE, vol. 74, no. 2, pp. 270–327, 1986.

[7] A. Falaize and T. Hélie, “Passive guaranteed simulation of analog
audio circuits: A port-Hamiltonian approach,” Appl. Sci., vol. 6, pp.
273, 9 2016.

[8] J. Parker, F. Esqueda, and A. Bergner, “Modelling of nonlinear state-
space systems using a deep neural network,” in Proc. 22nd Int. Conf.
Digit. Audio Eff. (DAFx-19), Birmingham, UK, 2019.

[9] A. Wright, E.-P. Damskägg, and V. Välimäki, “Real-time black-box
modelling with recurrent neural networks,” in Proc. 22nd Int. Conf.
Digit. Audio Eff. (DAFx-19), Birmingham, UK, 2019.

[10] E.-P. Damskägg, L. Juvela, E. Thuillier, and V. Välimäki, “Deep
learning for tube amplifier emulation,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP 2019), Brighton, UK, 2019,
pp. 471–475.

[11] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar, “Fourier Neural Operator for Para-
metric Partial Differential Equations,” 2020, http://arxiv.
org/abs/2010.08895.

[12] M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
J. Comp. Phys., vol. 378, pp. 686–707, 2019.

[13] L. Gabrielli, S. Tomassetti, S. Squartini, and C. Zinato, “Introduc-
ing deep machine learning for parameter estimation in physical mod-
elling,” in Proc. 20th Int. Conf. Digit. Audio Eff. (DAFx-17), Edin-
burgh, UK, 2017.

[14] J. D. Parker, S. J. Schlecht, M. Schäfer, and R. Rabenstein, “Ac-
companying website and code repository,” 2022, https://
julian-parker.github.io/DAFX22_FNO/.

[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Multistep neural
networks for data-driven discovery of nonlinear dynamical systems,”
2018, https://arxiv.org/abs/1801.01236.

[16] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya,
A. Stuart, and A. Anandkumar, “Neural Operator: Learning Maps
Between Function Spaces,” pp. 1–89, 2021, http://arxiv.
org/abs/2108.08481.

[17] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar, “Markov neural operators for learn-
ing chaotic systems,” 2021, https://arxiv.org/abs/2106.
06898.

[18] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and
Yoshua Bengio, “On the properties of neural machine transla-
tion: Encoder-decoder approaches,” 2014, https://arxiv.
org/abs/1409.1259.

[19] A. Peussa, E.-P. Damskägg, T. Sherson, S. Mimilakis, L. Juvela,
A. Gotsopoulos, and V. Välimäki, “Exposure bias and state match-
ing in recurrent neural network virtual analog models,” in Proc. Int.
Conf. Digit. Audio Eff. (DAFx-21), Vienna, Austria, 2021.

[20] S. Petrausch and R. Rabenstein, “A Simplified Design of Multidi-
mensional Transfer Function Models,” in Proc. Int. Workshop Spec.
Meth. Multirate Sig. Process., Vienna, Austria, 2004, pp. 35–40.

[21] M. Schäfer, P. Frenstátský, and R. Rabenstein, “A Physical String
Model with Adjustable Boundary Conditions,” in 19th Int. Conf.
Digit. Audio Eff. (DAFx-16), Brno, Czech Rep., 2016, pp. 159–166.

[22] R. Rabenstein, T. Koch, and C. Popp, “Tubular Bells: A Physical and
Algorithmic Model,” IEEE Trans. Audio Speech Lang. Process., vol.
18, no. 4, pp. 881–890, 2010.

[23] H. Han and V. Lostanlen, “wav2shape: Hearing the Shape of a Drum
Machine,” http://arxiv.org/abs/2007.10299, 2020.

[24] S. Petrausch and R. Rabenstein, “Simulation of room acoustics
via block-based physical modeling with the functional transforma-
tion method,” in IEEE Workshop Appl. Sig. Process. Audio Acoust.
(WAASPA), 2005, pp. 195–198.

[25] M. Schäfer, R. Rabenstein, and S. J. Schlecht, “A String in a Room:
Mixed-Dimensional Transfer Function Models for Sound Synthesis,”
in 23rd Int. Conf. Digit. Audio Eff. (DAFx2020), 2020, pp. 24–30.

[26] R. V. Churchill, Operational Mathematics, Mc Graw Hill, Boston,
Massachusetts, 1972.

[27] J. Blauert and N. Xiang, Acoustics for Engineers, Springer, Berlin,
Heidelberg, 2008.

[28] H. Kuttruff, Room Acoustics, CRC Press, Boca Raton, 6. edition,
2016.

[29] L. Trautmann and R. Rabenstein, “Sound synthesis with tension
modulated nonlinearities based on functional transformations,” in
Acoust. Music: Theory Appl. (AMTA), Montego Bay, Jamaica, 2000.

[30] S. Bilbao, “Modal-type synthesis techniques for nonlinear strings
with an energy conservation property,” in 7th Int. Conf. Digit. Audio
Eff. (DAFx’04), Naples, Italy, 2004, pp. 119–124.

[31] F. Avanzini, R. Marogna, and B. Bank, “Efficient synthesis of tension
modulation in strings and membranes based on energy estimation,”
J. Acoust. Soc. Am., vol. 131, pp. 897–906, 2012.

[32] T. Tolonen, V. Välimäki, and M. Karjalainen, “Modeling of tension
modulation nonlinearity in plucked strings,” IEEE Trans. Speech Au-
dio Process., vol. 8, no. 3, pp. 300–310, 2000.

[33] A. Paszkeand et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Adv. Neural Inf. Process. Syst. 32, pp. 8024–
8035. 2019.

[34] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” 2017, https://arxiv.org/abs/1711.05101.

[35] L. N. Smith and N. Topin, “Super-convergence: Very fast training
of neural networks using large learning rates,” 2017, https://
arxiv.org/abs/1708.07120.

DAFx.8

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

145

https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/13174
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/13174
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
https://julian-parker.github.io/DAFX22_FNO/
https://julian-parker.github.io/DAFX22_FNO/
https://arxiv.org/abs/1801.01236
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/2108.08481
https://arxiv.org/abs/2106.06898
https://arxiv.org/abs/2106.06898
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/2007.10299
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120

	1 Introduction
	2 Modeling PDEs using NN structures
	2.1 Fast convolution layer
	2.2 FNO-derived RNN structures
	2.2.1 Fourier Recurrent Neural Network (FRNN)
	2.2.2 Fourier Gated Recurrent Unit (FGRU)
	2.2.3 Training procedure

	2.3 Relation between FNO structures and Kernel Methods
	2.3.1 Functional Transformation Method (FTM)
	2.3.2 Relation between FTM and FNO-derived RNN Structures

	3 Acoustic Systems
	3.1 Linear Lossy Dispersive String
	3.2 2D Wave Equation
	3.3 Non-linear Tension Modulated String

	4 Evaluation
	4.1 Training methodology
	4.2 Results
	4.2.1 Linear Lossy Dispersive String
	4.2.2 Non-linear Tension Modulated String
	4.2.3 2d Wave Equation

	5 Conclusions
	6 References

@inproceedings{DAFx20in22_paper_38,
 author = "Parker, Julian D. and Schlecht, Sebastian J. and Rabenstein, Rudolf and Schäfer, Maximilian",
 title = "{Physical Modeling Using Recurrent Neural Networks with Fast Convolutional Layers}",
 booktitle = "Proceedings of the 25-th Int. Conf. on Digital Audio Effects (DAFx20in22)",
 editor = "Evangelista, G. and Holighaus, N.",
 location = "Vienna, Austria",
 eventdate = "2022-09-06/2022-09-10",
 year = "2022",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "3",
 doi = "",
 pages = "138--145"
}

