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ABSTRACT

Continuous State Markovian Spectral Modeling is a novel ap-
proach for parametric synthesis of spectral modeling parameters,
based on the sines plus noise paradigm. The method aims specif-
ically at capturing shimmer and jitter - micro-fluctuations in the
partials’ frequency and amplitude trajectories, which are essential
for the timbre of musical instruments. It allows for parametric
control over the timbral qualities, while removing the need for the
more computationally expensive and restrictive process of the dis-
crete state space modeling method. A qualitative comparison be-
tween an original violin sound and a re-synthesis shows the ability
of the algorithm to reproduce the micro-fluctuations, considering
their stochastic and spectral properties.

1. INTRODUCTION

1.1. Spectral Modeling

Sounds of musical instruments can be modeled as a combination
of sinusoidal and noise-like components. Spectral modeling meth-
ods generally perform an analysis of the spectrum of an input sig-
nal in order to separate the deterministic, tonal content from the
stochastic, while in some cases transients are also considered sep-
arately [1]. On the basis of the spectral examination, an output
signal can be re-synthesized, with additional means for manip-
ulations. While early methods modeled the tonal as well as the
stochastic components using additive synthesis, later models used
a different approach for noise-like signal content. The Determinis-
tic plus Stochastic Model [2] expresses any sound as a sum of sinu-
soids with individual time-varying amplitudes Ar(t) plus a resid-
ual noise component e(t), which is modeled by a time-varying
filtering of white noise.

s(t) =
R∑

r=1

Ar(t) cos (θt) + e(t) (1)

The Deterministic plus Stochastic Model can be simplified for
modeling harmonic sounds, for which each sinusoid is derived
from integer multiples of the fundamental frequency. These can
be referred to as partials.

sharm(t) =
R∑

r=1

Ar(t) cos (2πrf0t+ ϕr) + e(t) (2)
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Within the proposed method, the harmonic synthesis of the
deterministic content constitutes the basis for modeling the tonal
content. The modeling of the stochastic spectral content is outside
the scope of this paper.

The original sines plus noise model can re-synthesize musical
sounds with high quality and offers extensive means of manipu-
lation. However, spectral models rely on a large set of parame-
ters, making it it challenging to apply them in settings with few
control parameters, for example in expressive performance. On-
going research thus deals with approaches which allow a more di-
rect control or parameter management. An extended source-filter
model, presented by Hahn et al. [3], models a database of instru-
ment sounds with different pitches and intensities. The determin-
istic part is based on a non-white source and a resonator filter. Pa-
rameters are modeled by tensor product B-splines (basic-splines),
covering the sounds’ temporal evolution. The DDSP approach [4]
combines classic signal processing with deep learning methods.
The end-to-end learning approach enables independent control of
loudness and pitch, dereverberation and timbre transfer [5].

The method presented in this work aims at capturing a data
set of instrument recordings, based on a statistical analysis of the
spectral modeling parameters. Resulting models can be used for
expressive real-time synthesis, allowing an interpolation between
the data set’s samples and different timbres. Statistical spectral
modeling grants direct control over the micro-fluctuations.

Irregularities of the amplitude trajectory are generally referred
to as shimmer, while irregularities within the frequency trajectory
are denoted as jitter. These fluctuations contribute to the individual
timbre of an instrument and are essential for the perceived sound
quality of synthesis results [6].

1.2. Stateless Modeling

Statistical spectral modeling aims at capturing the timbre of mu-
sical sounds by means of measuring the distribution of spectral
modeling parameters. A first implementation [7] captured the dis-
tribution functions of amplitude and frequency trajectories for sin-
gle partials, as shown in Figure 1 for a partial’s amplitude. New
trajectories could be synthesized with this distribution using the in-
verse transform sampling method [8], followed by a low-pass filter
smoothing.

1.3. Discrete State Modeling

An extended version of the stateless approach models parameter
trajectories as Markov processes [9]. It hence captures the distri-
bution properties and spectral properties, without the smoothing
needed in the stateless approach. Instead of capturing a single dis-
tribution for a parameter, transition probabilities are calculated for
a parameter trajectory with length L, quantized with i = j steps:
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Figure 1: Distribution of a partial’s amplitude [9].

PMF(i, j) =
1

L
|{x[n] | x[n+ 1] = xj }|, n = 1 . . . L

i = 1 . . . 21
(3)

This procedure results in a transition probability matrix
PMF (i, j), as shown in Figure 2. These matrices can be used for
generating a stochastic process with the properties of the original
trajectory. Both the stateless and the discrete state modeling allow
to interpolate between samples from the analysis data set [7].

2. CONTINUOUS STATE MODELLING

Although the discrete state model presented in the previous chap-
ter is well suited for modeling and synthesizing musical instru-
ment sounds, it has several drawbacks. While it is able to create
means of expressive sound synthesis utilizing the intensity dimen-
sion of the timbral plane, it lacks the means of altering the micro-
structure of frequency and amplitude trajectories. The proposed
method however allows for a parametric control of shimmer and
jitter.

Parameter trajectories can be modeled as sequences governed
by Markov processes. This interpretation could potentially yield
more natural sounding synthesis results compared to low-pass fil-
tered white noise disturbed parameter trajectories.

Another potential benefit of this method are the real time mor-
phing capabilities that emerge from the possibility of parametric
control over the distribution of events.

Central to this model is the algorithm to for the parametric
generation of frequency and amplitude trajectories. Currently, there
are two different modes used to mimic the stable trajectory be-
haviour of real sound sources. These, the Scaled Normal and the
Skew Normal model, are both explained in detail later on. Within
the Scaled Normal method, the parameter mean is parametrized
using Markov chains, while for the Skew Normal method the skew
of the distributions is parametrized this way.

To create a waveform from the trajectories it is necessary to
interpolate between the support points. Here a cubic interpolation
is used in order to avoid rapid changes in the phase trajectories. In
this manner waveforms for each partial can be created.

At this point, it is possible to multiply each partial waveform
with a constant partial amplitude in order to preserve an original
partial amplitude relationship of a source sound. These individual
waveforms can now be added together.

Based on the Markovian approach for spectral modeling syn-
thesis, a parametric algorithm is developed. This evolution has

Figure 2: Transition probability matrix for a partial amplitude tra-
jectory [9].

several benefits. The parametric nature allows changes to the
sounds properties during run-time and it consumes less memory
for storing a model.

2.1. Parametrization of Mean

In this model, every support point is drawn from a normal distri-
bution with the parameters µ and σ. While σ is freely adjustable,
the mean µ of any following support points is dependent on a lin-
ear combination of the overall mean xmean and the value of the last
support point xi, with the parameters α and β scaling the influence
of each component.

µi+1 = α · xmean + β · xi

α+ β = 1

xi+1 ∼ N (µi+1, σ),

µ0 = xmean

(4)

For α = 1, the resulting trajectory will be a normally dis-
tributed trajectory around the overall mean xmean, for β = 1 the
algorithm will produce an unstable trajectory; a random walk.

2.2. Parametrization of Skewness

For this model, the value of every support point is drawn from a
Skew Normal distribution with parameters µ, σ and θ. The pa-
rameter µ of the following states distribution is solely dependent
on the last state of the sequence. The skew θ of any following sup-
port point is dependent on the difference between the overall mean
(target value) and the value of the last support point. In this model,
the parameter gamma is used to scale the influence of the devia-
tion of the last state xi from the target value xmean. The further the
last state is away from the target state (and the higher the value of
gamma), the more skewed will the one-step transition density be
in the direction of the target value, resulting in a likely transition
of states towards the center. Both the parameter γ and σ are freely
controllable in this algorithm, although σf0 will be multiplied by
a factor corresponding to the partial order, so as to maintain a con-
stant partial frequency to standard deviation ratio.

µ = xi,

θi+1 = −γ ∗ (xi − xmean) , γ ∈ [0,∞]
(5)
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(a) Histogram of amplitude trajectory of 1st partial of the source sound. (b) Histogram of frequency trajectory of 1st partial of the source sound.

Figure 3: Original distributions of source material.

For γ = 0 the distribution of the following value will be a
normal distribution without skew, also resulting in an unstable tra-
jectory.

The method to produce Skew Normal distributed random vari-
ables is based on a procedure by Henze [10]. Here, two uniformly
distributed random numbers U and V suffice to generate a random
variable Zθ , which has the Skew Normal distribution.

Zθ =
θ√

1 + θ2
|U |+ 1√

1 + θ2
V ∼ SN (µ, σ, θ) (6)

3. ANALYSIS

For the analysis phase, the TU-Note Violin Sample Library [11] is
used as source material. The library contains 336 single sound
items and 344 two-note sequences. Within the scope of this
project, only the single sound items are used, which consists of 84
pitches in four different dynamics. While the material is provided
at a sampling frequency of 96 kHz with a resolution of 24 bit, the
sampling frequency has been altered to 44.1 kHz in order to use
the Spectral Modeling Synthesis Tools (SMS-Tools) [12]. The
SMS-Tools are a set of software tools for sound analysis, trans-
formation and resynthesis written in Python and C.

Before the sound items are analyzed, they need to be pre-
processed. TU violin single sound items are provided with man-
ually annotated segmentation documentation, which contain the
time stamps for on- and offsets of attack, sustain and release seg-
ments via four points A, B, C and D. The sustain part of each sound
item is contained with in the space bounded by points C and D. All
sound items are prior to the following analysis stages segmented to
the sustain part. Modeling attack and release segments is outside
the scope of this paper.

The SMS-Tools are employed at this point to extract the fre-
quency and amplitude trajectories of each partial per sound item.
To this end, the segmented sustain parts of the single sound items
are analysed using the harmonicModelAnal-function of the
SMS-Tools, utilizing the sinusoidal harmonic model with a fast
Fourier Transform (FFT) size of 2048 samples and a hop size of
128 samples. The harmonic analysis yields the frequency, ampli-
tude and phase trajectory for each partial. As the original phases
of each partial are not relevant to the synthesis algorithm, they are

discarded at this step. Since the amplitude trajectory is returned in
decibels, it becomes necessary to convert it.

To further investigate the trajectories, both the amplitude and
the frequency trajectories are subjected to an outlier removal elim-
inating all trajectory values twice the standard deviation in order to
account for errors within the peak continuation. From the remain-
ing trajectory values the mean and the standard deviation as well as
the trajectory histograms are calculated. Subsequently, the mean
value is subtracted from the trajectories to remove the impact of the
0Hz bin, which eases the calculation of relevant spectral features.
Now, spectral centroid, spectral flatness, as well as the lower and
upper spectral roll-off frequency (at 15% and 85%) can be cal-
culated for trajectories of each partial of every sound item. For
these spectral features the absolute error between each partial of
the original material and the synthesized sound can be calculated.

For the spectral analysis, both trajectories are subject to a high-
pass FIR filter using the window method with the cutoff frequency
at 5Hz. The employed window is a Blackman window. Since the
analysis and the synthesis stage are separated, real-time analysis is
not needed. This permits the use of filters of higher order, which
is why the filter order used here is 801. As the trajectories were
created using a hopsize of 128 samples, the sampling frequency of
the parameter trajectories can be calculated as

fs,t =
fs,x
nhop

=
44 100Hz

128
= 344.531 25Hz. (7)

Within the scope of this paper sound item 60 will be used as
the single source sound, against which the two generated sound
items will be compared. This corresponds to a 443.00Hz tone
with the fortissimo dynamic.

The stochastic analysis provides the mean µ and the standard
deviation σ for both trajectories for each partial for each sound
item. The mean of the frequency trajectory is discarded at this
point due to the harmonic nature of the synthesis algorithm. The
amplitude mean as well as both standard deviations are stored for
later use in the synthesis process, but only the amplitude mean
will be used. This is for the reason that at the time of writing
no reasonable way of transforming the standard deviations from a
statistical measure of the whole sound parameter trajectory into a
Markovian model parameter has been identified.

Within Figure 3b an approximately normal distribution of
states of the frequency trajectory can be seen. The amplitude tra-
jectory states however seem to follow a more irregular distribu-
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(a) Normalized amplitude trajectory FFT of the source material. (b) Normalized frequency trajectory FFT of the source material.

Figure 4: Original Spectra of source material.

tion with multiple peaks, as can be seen in Figure 3a. The mean
frequency for the source sound is 443.64Hz rounded to two deci-
mal places, which is slightly above the assigned note frequency of
443.00Hz.

Fourier transformations of both amplitude and frequency tra-
jectories are calculated and subsequently peak-normalised. The
FFT of the amplitude trajectory in Figure 4a has its highest peak
at around 12.6Hz and continues to decrease until it approaches 0
at around 100Hz. The FFT of the frequency trajectory in Figure
4b has its highest peak at around 14Hz. Afterwards, it falls ap-
proaching 0 at around 125Hz, with a small but prominent peak at
around 145Hz.

4. RESYNTHESIS

4.1. Method

Analyzed sounds can be re-synthesized using the parameter trajec-
tories derived from the continuous space Markovian spectral mod-
eling. For each partial r a unique frequency trajectory ftraj, r(t) and
a unique amplitude trajectory Atraj, r(t) are generated.

The unique partial frequency trajectory and amplitude trajec-
tory are produced by the aforementioned methods of parametriza-
tion of mean and parametrization of the skewness.

For the parametrization of mean, each new trajectory support
point is drawn from a normal distribution, with the mean parame-
ter being calculated by weighting the last state and the target state
with the weights α and β, with a second model parameter being the
standard deviation. Regarding the frequency trajectory, the start-
ing value for the values drawn from the last state is substituted
by the target state, which is the frequency of the current partial.
The standard deviation for each partial is an integer multiple of
the standard deviation of the fundamental frequency referring to
the partial order. For the amplitude trajectory, the starting value
for the values drawn from the last state as well as the target state
is simply 1 and the standard deviation stays the same for all par-
tial amplitudes. The parameters for the Scaled Normal Markovian
model can be found in Table 1.

For the parametrization of skewness, every new support point
is drawn from a Skew Normal distribution, where the mean param-
eter serves as the last state, and the skew parameter is governed by
the distance of the last state to the target state, multiplied by a

Table 1: Parameters for the Scaled Normal Markovian model.

Parameter Value
µf0 αf0 · flast state + βf0 · ftarget state

µamp αamp ·Alast state + βamp ·Atarget state

σf0 0.004
σamp 0.02
αf0 0.0001
αamp 0.001

weight γ. Concerning the frequency trajectory, the standard de-
viation is again an integer multiple of the fundamental frequency
standard deviation equal to the partial order, the target state being
the partial frequency. For the amplitude trajectory, it is again the
same standard deviation for all partials, with the target state being
1. The starting value of the values drawn from the last state is again
substituted by the target state for both trajectories. The parameters
for the Skew Normal Markovian model can be found in Table 2.

Table 2: Parameters for Skew Normal Markovian model.

Parameter Value
µf0 flast state

µamp Alast state

σf0 0.004
σamp 0.03
γf0 1
γamp 0.8

Since the amplitude trajectory starting point for each partial
is 1, it is imperative to scale the resulting waveform by the mean
amplitude of the partial Aconst,r extracted in the earlier analysis
step.

Another important variable in the synthesis process is the dis-
tance between support points. A smaller distances will lead to
more rapid changes within the trajectories. The distance used in
this synthesis context is 512 samples.

After interpolating between the support points, we can syn-
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(a) Histogram of amplitude trajectory of 1st partial of the synthesized
sound (Scaled Normal).

(b) Histogram of frequency trajectory of 1st partial of the synthesized
sound (Scaled Normal).

Figure 5: Distributions of synthesis result (Scaled Normal).

(a) Normalized amplitude trajectory FFT of the Scaled Normal synthe-
sized material.

(b) Normalized frequency trajectory FFT of the Scaled Normal synthe-
sized material.

Figure 6: Spectra of synthesis result (Scaled Normal).

thesize the sound by creating and summing the waveforms for all
partials using the following equation:

ssynth(t) =
R∑

r=1

Aconst,rAtraj,r(t) cos (2πftraj,r(t) · t) (8)

Synthesis is performed in the time-domain, not frame-by-
frame but rather array-wise: The trajectories themselves are cre-
ated frame-by-frame, resulting in a frequency and an amplitude
trajectory.

4.2. Resynthesis Properties

In this section parameters of the synthesized violin sounds are an-
alyzed in the same manner as the original sound item. The pre-
processing of the synthesized violin sounds is identical to the pre-
processing of the TU-Note violin sound items.

The Figures 5b and 7b both show an approximate normal dis-
tribution of the frequency trajectory of the synthesized sounds.
The mean frequency across both synthesis methods is 443.00Hz
rounded to two decimal places. Visible in the histogram of the am-
plitude trajectory of Scaled Normal (Figure 7a) and of the Scaled

Normal synthesized sounds (Figure 5a) are different distributions:
In the graph for the Skew Normal method a bimodal distribution
becomes apparent, in the graph for the Scaled Normal method a
more irregular, multimodal distribution can be seen.

Figure 6a shows the fast Fourier transformation of the trajec-
tory of the amplitude of the sound material synthesized using the
Scaled Normal Markovian modeling. Here the highest peak is vis-
ible at around 5.7Hz, after which the spectrum falls until it ap-
proaches 0 at around 75Hz.

The frequency trajectory FFT in Figure 6b of that method fol-
lows a similar pattern, however with several peaks between 5Hz
- 25Hz, with the highest peak at 18.63Hz, after which it decays
until it approaches 0 at around 75Hz. However, two small but
notable peaks at around 95Hz and 145Hz can be identified.

Regarding the sound material of the Skew Normal synthesis,
the FFT of the amplitude trajectory in Figure 8a behaves similarly
to the one of the Scaled Normal synthesis: its highest peak rests
at around 10.6Hz. It shows a decline thereafter, approaching 0 at
around 75Hz.

The frequency trajectory FFT of the Skew Normal synthesis
in Figure 8b also follows the frequency trajectory FFT of the scale
Normal synthesis closely: A region of high peaks between 6Hz
- 25Hz, with the highest peak at around 7.2Hz. After that, it
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(a) Histogram of amplitude trajectory of 1st partial of the synthesized
sound (Skew Normal).

(b) Histogram of frequency trajectory of 1st partial of the synthesized
sound (Skew Normal).

Figure 7: Distributions of synthesis result (Skew Normal).

(a) Normalized amplitude trajectory FFT of the Skew Normal synthe-
sized material.

(b) Normalized frequency trajectory FFT of the Skew Normal synthe-
sized material.

Figure 8: Spectra of synthesis result (Skew Normal).

approaches 0 at around 80Hz with two notable peaks at around
95Hz and 145Hz.

5. COMPARISON

5.1. Single Item Comparison

When comparing the frequency distributions from the synthesized
sounds (Figures 5b and 7b) to the frequency distribution of the
source material (Figure 3b), we can see that although the mean
frequency is higher for the original material, all three trajectories
seem to follow a similar distribution. However, for the amplitude
trajectories the Figures 3a, 7a and 5a show that all three ampli-
tude trajectories follow a different distribution form. While all
have in common, that they do not follow a normal distribution,
the value ranges leave room for discussion. Since both the Scaled
Normal and the Skew Normal sound material were subject to a
normalization, the individual partial values differ considerably be-
tween the amplitude values of the original and the synthesized ma-
terial. However, when scaled up to a similar level of amplitude, the
standard deviation of the amplitude trajectory of the 1st partial of
the source material becomes 0.013, while the standard deviations
of the synthesized material are 0.022 for the Scaled Normal and

0.018 for the Skew Normal synthesis method. This means, that
the synthesized distributions are wider than the original distribu-
tion. The irregular distributions of the amplitude trajectories of the
synthesized material are most probably impacted by a Markovian
random walk. This is to be expected since the influence of the rel-
evant parameter on containg the effect of a random walk (α for the
Scaled Normal model and γ for the Skew Normal model) has been
decreased compared to the synthesis of the frequency trajectories.

In the previous section, similarities between the two synthe-
sized sound items have already been highlighted. Furthermore,
there are similarities with the FFTs of the source sound item, too:
All three share the highest peak within their respective amplitude
trajectory FFTs in the region between 5Hz - 25Hz, with a gener-
alised decline until they approach 0 at around 75Hz for the synthe-
sized sounds and 100Hz for the source sound. The frequency tra-
jectories also follow a similar makeup: A region of highest peaks
followed by a decline approaching 0 at around 90Hz for the syn-
thesized sound items and 125Hz for the source sound are included
in all three spectra. The difference in frequency at which the FFT
approaches 0 between the plateaus of source sound and the synthe-
sized sounds can perhaps be explained by a difference in nature:
since the source sound trajectory is based on a recording, it might
be susceptible to recording noise, in contrast to the digitally syn-
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thetic nature of the synthesized sound items.

Figure 9: Mean error of spectral centroid between source material
and synthesized material across sound items.

5.2. Comparison by Dynamic Level

In order to evaluate the capabilities of the analysis-synthesis ap-
proach for the complete sample library, the relationship between
dynamic level of the source material, partial order, synthesis mode
and deviations between the spectral features of the trajectories can
be investigated. The spectral centroid of the frequency trajectory
averaged across all sound items is shown in Figure 9. It becomes
apparent that for lower dynamics the deviations from the source
material are larger than for higher dynamics. It is also becomes
evident that within one dynamic group the differences between the
Skew Normal and Scaled Normal synthesis are negligible.

6. CONCLUSIONS

Continuous state Markovian spectral modelling has been proposed
as a novel approach for data-driven spectral synthesis. The method
aims at capturing the micro-fluctuations of sinusoidal parameters,
allowing the control of jitter and shimmer. Stochastic and spectral
similarities have been identified for a single instrument sound, po-
tentially validating the proposed method and showing the limits of
the heuristically tuned synthesis parameters. Notably for the mul-
tiplicative increase of the standard deviation across both synthesis
algorithms, it can be said that analytic deduction or evolutionary
tuning of this parameter could provide more realistic results. Since
at the time of writing there is no sensible transformation of the
analyzed standard deviations of the frequency and amplitude tra-
jectory into a standard deviation to be used within the Markovian
modelling, the next step would be to identify measures that would
result in a more truthful representation of the original sound. Pos-
sible actions for the future within the context of this project are
a more thorough numerical comparison between the source sound
and the synthesized sound items. In order to answer the question,
whether a a low-pass filtered white noise could potentially yield
more convincing results, a listening test can be employed. Artis-
tic and expressive use of the presented algorithms could further be
explored in a user study with real time synthesis control.
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