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ABSTRACT

Disc jockeys (DJs) use audio effects to make a smooth transition
from one song to another. There have been attempts to compu-
tationally analyze the creative process of seamless mixing. How-
ever, only a few studies estimated fader or equalizer (EQ) gains
controlled by DJs. In this study, we propose a method that jointly
estimates time-varying fader and EQ gains so as to reproduce the
mix from individual source tracks. The method approximates the
equalizer filters with a linear combination of a fixed equalizer fil-
ter and a constant gain to convert the joint estimation into a convex
optimization problem. For the experiment, we collected a new DJ
mix dataset that consists of 5,040 real-world DJ mixes with 50,742
transitions, and evaluated the proposed method with a mix recon-
struction error. The result shows that the proposed method esti-
mates the time-varying fader and equalizer gains more accurately
than existing methods and simple baselines.

1. INTRODUCTION

DJs select musical tracks and play them without stopping music
to enhance listening experiences. To make music flow continu-
ous, DJs make a seamless transition from one track to another us-
ing various mixing techniques. The techniques can be summarized
as three steps: 1) beat matching that synchronizes tempo in BPM
(beats per minute) and beat positions of the previous track and the
next track, 2) cueing that decides the positions to stop the previous
track and start the next track, and 3) applying audio effects such as
crossfader or equalizer.

Analyzing the creative process using computational methods
has drawn research interests. For example, mix-to-track alignment
is a task that temporally synchronizes original tracks with the
DJ mix. This enabled to find various features controlled by DJs
such as cue points, transition length, tempo change, and key trans-
pose [1]. In mix-to-track alignment, beat tracking was used as
a crucial preprocessing step to summarize audio features in beat
unit [2]. The cue points were also estimated with different meth-
ods and audio features [3, 4]. However, analyzing how DJs utilize
audio effects has not yet been explored much.

There are a number of audio effects in DJ mixers such as
fader, crossfader, equalizer, delay, and reverberation. DJs usually
use multiple audio effects simultaneously to make seamless tran-
sitions. For example, they can increase the fader gain of one track
while decreasing the low shelving filter (or low EQ) for the next
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track at the same time. Therefore, analysis of DJ mixer control
requires estimating multiple audio effect gains simultaneously.
While different brands of DJ mixers have different combinations
of audio effects, they have faders and equalizers in common as
they are the primary audio effects for DJing.

There are a few prior works that estimated the fader or EQ
gains when a DJ mix and two source tracks are given. The two
source tracks are the original tracks without any modification by
the audio effects. One group of the study focused on estimating the
fader gains in the track transition region [5, 6]. However, they used
artificially generated datasets and did not consider EQ gains. In our
previous work [7], we attempted to estimate the EQ gain curves us-
ing convex optimization using a real-world DJ mix dataset. How-
ever, we did not consider the simulatenous control of fader and
EQ gain and the frequency responses of EQ filters in the EQ gain
estimation. Nercessian [8] recently tackled EQ parameter estima-
tion using a differentiable biquad filter in the EQ matching prob-
lem. They showed that the neural network approach outperforms
a convex relaxation of the problem. However, they focused on es-
timating the fixed coefficients of the biquad EQ filters and did not
consider time-varying control of the parameters. Furthermore, it
makes the estimation more challenging when two input sources are
involved as in the DJ mix. Recently, a method that generates fader
and EQ gains has been proposed [9]. It uses differentiable faders
and EQs with generative adversarial networks but the purpose is
automatic mixing, not analyzing existing DJ mixes. Smooth transi-
tion between music tracks was also studied in the context of spatial
audio effect using Head Related Transfer Function (HRTF) [10].
However, it was not for DJ mixing but for headphone listening.

In this study, we propose a method that can jointly estimate the
fader and EQ gains of DJ mixers. The proposed method is designed
to consider the frequency response of EQs and relax the joint es-
timation into a convex optimization problem. Although deep neu-
ral networks have become increasingly popular, we chose convex
optimization instead of deep neural networks for its advantages
such as better interpretability, flexibility to strong constraints, and
optimization speed. For the experiment on a larger dataset, we
collected a new DJ mix dataset that consists of 5,040 real-world
DJ mixes with 50,742 transitions. We optimized and evaluated
the proposed method with a mix reconstruction error. The result
shows that our proposed method estimates the time-varying fader
and equalizer gains more accurately than baselines and previous
work. The code and dataset will be available at this link.1

1https://github.com/mir-aidj/djmixer-estimation
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Figure 1: A procedure that makes a EQ-Fader channel convex optimizable. Components involving parameters to be optimized are colored:
cyan for EQ gains and magenta for fader gains.

2. DJ MIXER DESIGN

In this section, we define a transfer function for each channel of
three types of DJ mixers. Then, we define the final mixed output
of DJ mixers which have two input channels.

2.1. Fader

A transfer function of a fader channel Hfd parameterized by a gain
α is defined as:

Hfd(n, k;α) = α(n) (1)

where n is the time (or frame) index and k is the frequency bin
index. Then, the output signal of the fader is written as:

Cfd(n, k;α) = α(n)X(n, k) (2)

where X is the spectrogram of an audio track.

2.2. Equalizer (EQ)

An EQ channel consists of M cascaded peak and shelving filters
implemented using biquad filters [11]. The transfer function of i-th
biquad filter attenuating i-th subband is given as

Hi(n, k; gi) =
bi0(n) + bi1(n)z

−1 + bi2(n)z
−2

ai
0(n) + ai

1(n)z
−1 + ai

2(n)z
−2

(3)

where i = 1, . . . ,M . Note that the filters coefficients are con-
trolled by a time-varying gain gi in decibel (dB). Accordingly, Hi

also has a time-varying equalizing curve which is parameterized
by gi. The number and parameters of filters such as cutoff/center
frequency and quality factor (Q) are different depending on the
specification of DJ mixers. However, we assume that the DJ mix-
ers used in our experiment have the same fixed settings except the
gains to focus on estimating the gain parameter. Finally, the trans-
fer function of the equalizer channel can be written as:

Heq(n, k; g) =
M∏
i=1

Hi(n, k; gi) (4)

where g = {g1, . . . , gM} and the channel output is defined as:

Ceq(n, k; g) = Heq(n, k; g)X(n, k). (5)

2.3. EQ-Fader

An EQ-fader channel is simply a series of equalizers and faders as
shown in Figure 1(a). The transfer function is a multiplication of
the equalizer and fader transfer functions:

Hef(n, k;α, g) = Hfd(n, k)Heq(n, k) (6)

= α(n)
M∏
i=1

Hi(n, k; gi). (7)

Then, the channel output of an EQ-fader mixer is written as:

Cef(n, k;α, g) = Hef(n, k)X(n, k). (8)

2.4. Mixer

The output signal of a DJ mixer Y in a transition region is simply
a summation of two channels:

Y (n, k) = Cprev(n, k) + Cnext(n, k) (9)

where Cprev is a channel that plays the previous track in a transition
region which fades away over time and Cnext is a channel of the
next track.

3. DJ MIXER GAIN ESTIMATION

DJ mixer gain estimation algorithms take three audio clips in a
transition region as inputs: a previous track, a next track and a DJ
mix. All the three input clips are aligned and time-scale modifica-
tion is applied to them beforehand so that beats and time offsets
between the tracks and the mix are exactly synchronized. Given
the three clips, gain estimation algorithms derive the time-varying
gain curves of faders and equalizers.

An objective function for the DJ mixer gain estimation can be
defined using mean absolute errors (MAEs) as below:

1

N

N∑
n=1

1

K

K∑
k=1

∣∣∣Ŷ (n, k; θ)− Y (n, k)
∣∣∣ . (10)

where Y is a spectrogram of the ground-truth DJ mix, Ŷ is an
estimated spectrogram, θ is any parameters to be optimized and
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Figure 2: Gain differences in frequency responses between the actual EQ filters and the linearly approximated filters.

used for estimating Ŷ , N is the number of time frames, and K is
the total number of frequency bins.

We could have used spectrograms in the decibel (dB) scale
to emphasize small signal differences and to make it closer to the
human perception of the intensity of sound. However, if we take
the log on both sides of Eq. (9) to obtain dB-scaled spectrograms,
the objective function becomes non-convex. We also considered
the Log-Sum-Exp (LSE) trick, but the objective function based on
LSE is still non-convex when MAE is used (it is non-convex even
if mean squared error is used).

It is straightforward to apply this objective function to estimate
gains of a mixer with two fader channels using convex optimiza-
tion. However, the objective function cannot be used for mixers in-
cluding equalizers because their transfer functions are not convex.
The later part of this section explains a procedure that converts the
transfer functions of EQ and EQ-Fader mixers to a convex form as
illustrated in Figure 1.

3.1. Subband objective functions for EQ gain estimation

If we assume that an EQ filter does not affect other subbands, an
EQ channel (Eq. (5)) for a specific i-th subband can be approxi-
mated as shown in Figure 1(b):

Ceq(n, k; gi)|k∈Ki
≈ Hi(n, k; gi)X(n, k) (11)

where Ki is a set of frequency bin indices of i-th subband. It re-
moves the products of the EQ transfer functions in Eq. (4). Then,
the MAEs can be computed for each subband and summed:

L(θ; Ŷ , Y ) (12)

=
1

N

N∑
n=1

M∑
i=1

1

|Ki|
∑

ki∈Ki

∣∣∣Ŷ (n, ki; θ)− Y (n, ki)
∣∣∣ (13)

where ki is a frequency bin index in Ki. However, due to Hi

(Eq. (3)), it is still not a convex function.

3.2. Linear approximation of EQ filters

To relax the subband objective function into a convex form, we
approximate the EQ transfer function Hi in a linear form which is
parameterized by βi ∈ [0, 1]. βi is a parameter that controls the

ratio between the original signal and a fully filtered by an EQ filter
as shown in Figure 1(c). It is formally written as:

Hi(n, k; gi) ≈ H̃i(n, k;βi) (14)
= βi(n) + (1− βi(n))H

∗
i (k) (15)

where H∗
i is a fixed transfer function when Hi has a minimum

gain g∗i :

H∗
i (k) = Hi(n, k)|g(n)=g∗i

. (16)

A setting of a minimum gain for an EQ filter is different depending
on DJ mixers but we assume all DJ mixers have the same g∗i . βi is
related with gi by:

βi(n) = 10g(n)/20 − 10g
∗
i /20 (17)

Figure 2 illustrates H∗
i and compares the gain differences in fre-

quency response between the actual biquad EQ filters and approx-
imated filters. The left subplot shows the differences in low and
high shelving filters, and the right subplot shows the differences
in mid-peak filter. The three filters are used for our experiments.
There are gaps between the actual and the approximated filters.
Especially, the gaps are larger in mid-peak filters. To minimize op-
timization errors from the gaps, we limit the subband frequency
range to the region colored in yellow. In other words, we choose a
smaller number of frequency bins for Ki.

3.3. Parameter substitutions for EQ-Fader channel

With the subband objective function and the linear approxima-
tion, convex optimization can be performed on a mixer with two
EQ channels. However, the transfer function of EQ-Fader channel,
Hef, is approximated as:

H̃ef(n, ki;α, βi) = α(n)H̃i(n, k;βi) (18)
= α(n)(βi(n) + (1− βi(n))H

∗
i (k)) (19)

= α(n)H∗
i (k) + α(n)β(n)(1−H∗

i (k)) (20)

which is illustrated in Figure 1(c). However, it is impossible to
apply convex optimization directly on the EQ-Fader channel due to
the multiplication of α and βi in Eq. (20). Therefore, we substitute
α(n)βi(n) as:

γi(n) = α(n)βi(n) (21)
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The number of mixes 5,040
The number of transitions 50,742
The number of unique tracks 52,910
The number of played tracks 67,514
The total length of mixes (in hours) 6,672

Table 1: Summary statistics of the MixesDB dataset.

Then, H̃ef becomes

H̃ef(n, ki;α, γi) = α(n)H∗
i (k) + γ(n)(1−H∗

i (k)) (22)

which is optimizable as a convex form and parameterized by α and
γi.

3.4. Constraints

In most cases, DJs make a previous track fade out and a next track
fade in in a transition region. From this observation, we assume
that any fader or EQ gains of a previous track always decrease and
gains of a next track always increase. This assumption is first in-
troduced at [7] and gives the following constraints to optimization
problems:

∆αprev(n) ≤ 0 ∆αnext(n) ≥ 0 (23)

∆βprev
i (n) ≤ 0 ∆βnext

i (n) ≥ 0 (24)

where ∆ is a finite difference, i.e. ∆f(n) = f(n+1)−f(n). Also,
we assume that a fader can amplify an input signal upto twice and
set βi to have a range of [0, 1] by adding constraints below:

0 ≤ α(n) ≤ 2 0 ≤ βi(n) ≤ 1 (25)

3.5. Convex optimization problem

It is straightforward to establish a convex optimization problem
for the fader and EQ mixers using the objective functions and the
constraints. However, in case of EQ-Fader mixers, the constraints
should be transformed into a domain of α and γi which gives

minimize
α,γ

L(α, γ; Ŷ , Y ) (26)

subject to 0 ≤ α(n) ≤ 2 (27)
0 ≤ γi(n) ≤ α(n) (28)
∆αprev(n) ≤ 0 (29)

∆αnext(n) ≥ 0 (30)
∆γprev

i (n) ≤ ∆αprev(n) (31)

∆γnext
i (n) ≥ ∆αnext(n) (32)

where γ = {γ1, . . . , γM}. The detail of deriving the constraints is
provided in the Appendix section.

4. EXPERIMENTAL SETUPS

4.1. Implementation Details

Input previous/next tracks and DJ mixes are aligned using mix-to-
track subsequence alignment [1]2 that uses dynamic time warping

2https://github.com/mir-aidj/djmix-analysis
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Figure 3: An example of generated gain curves for the synthesized
dataset. (Top) Curves for a previous track. (Bottom) Curves for a
next track.

(DTW) on audio features. After the alignment, time scale mod-
ification is applied to previous and next tracks. We used an im-
plementation of waveform-similarity overlap-add (WSOLA) [12]
in PyTSMod [13]3 for the time scaled modification. To efficiently
run optimization, audio signals are clipped so that they only in-
clude parts where overlapping beats between the previous and the
next tracks exist. We used CVXPY [14] and ECOS [15] to imple-
ment convex optimization.

All audio signals have a sampling rate of 44,100Hz. For X
and Y , we used constant-Q transform (CQT) and mel spectro-
grams and computed them using Librosa [16]. Note that a direct
STFT cannot be used for the optimization since it has too many
frequency bins which may lead to failure of the optimization. Set-
tings of mel spectrograms and CQT are chosen such that they are
fairly compared. The hop size is set to be 4,096 samples (93 ms)
and the frequency ranges are limited to [50, 15000] Hz for both
of mel spectrogram and CQT. We computed STFT with an 8,192-
point FFT for mel spectrogram and the lengths of constant-Q filters
are set to double for a better frequency resolution. The number of
bins per octave of CQT is fixed to 12 which yields 100 frequency
bins and thus the number of bins of mel spectrograms is set to be
100 as well.

We set the parameters of equalizers following the specifica-
tion of a DJ mixer, Xone:96 by Allen & Heath. 4 The EQs consist
of three subband filters: low shelving, mid-peak and high shelving
filters. We implemented the EQ filters following the formulae in
the link5 with SciPy [17]. The low and high shelving filters have
a quality factor (Q) of 1/

√
2 and cutoff frequencies of 180 and

3,000 Hz, respectively. The mid-peak filter has a Q of 3 and a cen-
ter frequency of 1,000 Hz. The minimum gain g∗i is set to be -80,
-27 and -80 dB for low, mid and high, respectively. The optimiza-

3https://pytsmod.readthedocs.io
4Xone:96 has four EQs but we use three of them for simplicity. We

selected Xone:96 because it was the only mixer that we could find the EQ
frequency responses from the product manual. Some other mixer manuals
have EQ cutoff/center frequencies, but they do not have frequency response
curves, which makes it difficult to set EQ coefficients other than gains.

5https://webaudio.github.io/Audio-EQ-Cookbook/
audio-eq-cookbook.html
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tion frequency ranges for low, mid and high subbands are set to
be [50, 180], [800, 1400] and [3000, 15000] Hz, respectively, as
shown in Figure 2.

4.2. Dataset

We collected the dataset from MixesDB6. The website is a database
for DJ mixes that are added by users, and contains metadata and
links to audios of DJ mixes and links to tracks played in the mixes.
We processed the data so that they can be used for research pur-
poses. Table 1 shows summary statistics of the dataset used for ex-
periments. Note that the numbers of played and unique tracks are
different because a track can be played in multiple mixes. How-
ever, the metadata of MixesDB dataset contain incorrectly anno-
tated data by its nature. For example, a wrong track different from
a track that a DJ actually played can be listed in tracklists. Also,
since a single track often has various versions in dance music, for
example, short or long versions and a remix, an annotated track in
a mix can be a different version of a track that a DJ played. We fil-
tered out the incorrect tracks based on the method in our previous
work [1] but still some errors remain.

Therefore, we evaluate the models on a synthesized dataset
as well to remove errors coming from the incorrect metadata. A
thousand of transitions with the length of 64 beats (about 30–32
seconds) are randomly generated using tracks in MixesDB. A tran-
sition is a mix of two tracks: randomly selected previous and next
tracks. Randomly generated gain curves for fader and EQ are ap-
plied to the tracks. Figure 3 shows an example of a set of gen-
erated random curves for a transition. Considering the practice in
real-world DJing, we set that only a single audio effect gain can
be changed in four seconds for each channel with two hands. EQ
settings are the same as those in the proposed method. The gain
curves of previous/next tracks monotonically decrease or increase.

4.3. Evaluation Metrics

We evaluated the models quantitatively from two perspectives.
Each of them was motivated by the following questions: 1) How
much does the reconstructed audio sound similar to the DJ mix?
2) How much are the extracted gain curves similar to the actual
curves? Spectrogram reconstruction errors and gain estimation er-
rors are used for the first and the second questions, respectively. All
the errors are computed using MAE. As MixesDB does not have
ground truth of gain curves that represent how DJs controlled the
DJ mixers on performances, we report gain estimation errors only
on the synthesized dataset. We computed the MAEs for 50,742
transitions in MixesDB and 1,000 synthesized transitions.

MAEs between a DJ mix and a reconstructed mix are used for
the spectrogram reconstruction errors. The detailed procedure of
the measuring is as follows:

1. Run a DJ mixer gain estimation algorithm and obtain gain
curves.

2. Reconstruct a mix of two tracks applying extracted fader
and EQ gains on time domain.

3. Extract two spectrograms of the reconstructed signal and a
DJ mix.

4. Compute a mean absolute error (MAE) between the two
spectrograms.

6https://www.mixesdb.com

Settings of spectrograms for evaluation are the same as those for
optimization explained in subsection 4.1. As a low frequency band
tends to have higher magnitudes than mid and high frequency
bands, we also compute MAEs for the three subbands separately.
Frequency ranges for the subbands are set to [50, 180], [180, 3000]
and [3000, 15000] Hz for low, mid and high subbands, respec-
tively.

To measure the gain estimation errors, we computed absolute
differences between the ground truth curves and the estimated gain
curves and averaged them over time. We report the MAEs for EQ
low, EQ mid, EQ high, and fader individually, and for all as well.
However, when the errors are reported all together on faders and
EQs, we used a weighted sum to give equal importance between
faders and EQs. More specifically, we used weights of 1/6, 1/6,
1/6, and 1/2 to the errors of EQ low, EQ mid, EQ high, and fader,
respectively. If a model estimates only a subset among the four
audio effects, we assume that the model does not use other audio
effects at all. Thus, gain curve MAEs are computed between the
ground truth gain curves and a constant gain of one. For example,
if a model only estimates fader gains, then the errors for three EQs
are computed using a fixed gain of one because the model has an
assumption that EQs are never used.

4.4. Models

We evaluate the proposed method using quantitative results com-
pared to two simple baselines and two previous methods. The two
baselines do not involve any optimization; they mix a previous
track and a next track using the following simple rules:

• Sum: simply adds two tracks.

• Crossfade: applies a constant power crossfade linearly
from the previous to the next track.

The models of the previous methods are as below:

• Fader [5]: runs convex optimization on a mixer that con-
sists of two fader channels in Eq. (2) using the objective
function in Eq. (10).

• Subband-Fader [7]: runs convex optimization on a mixer
that has a fader for each subband using the subband ob-
jective function in Eq. (13). It also has three subbands and
ranges of the subbands are same with the proposed meth-
ods.

Finally, the proposed methods include:

• EQ3: runs convex optimization on a mixer that consists of
two EQ channels in Eq. (5) using the subband objective
function in Eq. (13). The EQ channel has three EQ filters:
low shelving, mid-peak and high shelving filters.

• EQ3-Fader: runs convex optimization on a mixer that con-
sists of two EQ-Fader channels in Eq. (8) using the subband
objective function in Eq. (13). The number and settings of
EQ filters are same with EQ3.

All the methods involving convex optimization have constraints
described in subsection 3.4. To find the best performing input rep-
resentation for the models, we also compare CQT and mel spectro-
grams performances when they used as X(n, k). For a fair com-
parison for the both of spectrograms, we report MAEs using both
of the spectrograms. In other words, both of CQT and mel spec-
trograms are used as inputs for the estimation and also used for
computing MAEs.
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CQT MAE Mel MAE

X(n, k) Model All Low Mid High All Low Mid High

MixesDB

– Sum 8.33 8.22 8.25 8.54 5.91 5.61 5.71 6.47
– Crossfade 8.14 7.90 8.12 8.38 5.76 5.46 5.58 6.31

CQT

Fader [5] 7.68 6.57 7.94 8.14 5.70 5.29 5.57 6.23
Subband-Fader [7] 7.53 7.07 7.56 7.85 5.04 4.70 4.68 5.92
EQ3 7.46 7.03 7.38 7.93 5.13 4.53 4.46 6.73
EQ3-Fader 7.21 6.65 7.22 7.63 4.83 4.39 4.40 5.90

Mel

Fader [5] 7.45 7.09 7.15 7.84 5.14 4.71 4.95 5.41
Subband-Fader [7] 7.56 7.27 7.37 7.80 4.83 4.96 4.70 4.96
EQ3 7.40 7.15 7.22 7.64 4.62 4.86 4.41 4.84
EQ3-Fader 7.12 6.88 6.91 7.39 4.24 4.55 4.14 4.33

Synthesized Dataset

– Sum 6.60 7.58 6.19 6.51 5.87 5.40 5.53 6.79
– Crossfade 5.64 6.48 5.49 5.23 4.79 4.66 4.52 5.36

CQT

Fader [5] 3.38 2.10 3.58 4.06 3.35 2.79 3.07 4.24
Subband-Fader [7] 1.61 2.06 1.27 1.81 1.17 1.01 0.87 1.81
EQ3 2.81 3.67 2.43 2.74 2.10 2.08 1.77 2.67
EQ3-Fader 1.26 1.44 1.07 1.43 0.98 0.84 0.80 1.36

Mel

Fader [5] 2.71 4.60 2.53 2.76 2.14 2.22 1.53 2.84
Subband-Fader [7] 1.86 3.16 1.84 1.76 1.30 1.80 0.88 1.76
EQ3 3.02 4.15 3.07 2.86 2.28 3.07 1.72 2.87
EQ3-Fader 1.58 2.33 1.52 1.58 1.21 1.32 0.95 1.50

Table 2: Comparison of DJ mixer gain estimation methods: mean absolute errors (MAEs) on CQT and mel spectrogram.

5. EXPERIMENTAL RESULTS

5.1. Spectrogram Reconstruction Errors

Table 2 reports the spectrogram reconstruction errors of the six
estimation models. In general, the proposed model EQ3-Fader
shows the best performance regardless of input type, metrics, and
datasets. The Fader model shows competitive results for low band
MAEs in some cases, however, it tends to show inferior results on
mid and high MAEs. We interpret this that the Fader model focuses
on optimizing errors from the low band because the low band tends
to have higher magnitudes. There are higher performance gaps be-
tween the baselines and the optimization involved methods in the
synthesized dataset because the synthesized transitions have lower
energy in the middle of transitions whereas real-world DJ mixes
have relatively constant energy through transitions.

The overall errors are lower in the synthesized dataset than
MixesDB because there are no errors from incorrect mix-to-track
alignment, beat tracking errors, wrong annotations of tracks, and
importantly, different settings of EQs. The synthesized dataset was
generated using the same EQ parameters such as Q, cutoff or cen-
ter frequency, and gain range, whereas MixesDB includes mix
tracks rendered with a wide variety of DJ mixer models with dif-
ferent settings of EQ parameters. The proposed method has a lim-
itation in that it assumes a fixed set of EQ parameters without con-
sidering the diversity. However, it would be possible to find the
best-matching EQ parameters among a set of known EQ parame-
ters from DJ mixer models.

5.2. Gain Estimation Errors

The gain estimation MAEs on the synthesized dataset are sum-
marized in Table 3. The proposed EQ3-Fader model is the best-
performing model in all metrics. Subband-Fader and EQ3 models
show inferior results generally. They focus on EQ gain estimation
but they even show degraded performances for EQ low, EQ mid,
and EQ high gains. This is because they try to estimate EQ gains
even though only a fader gain is changed and EQ gains are not
changed. For example, if a fader gain decreases, the models will
estimate that three EQ gains are decreased.

5.3. Visualization of DJ mixer gain estimation

Figure 4 visualizes an example of estimated gain curves extracted
using an EQ3-Fader model with CQT on MixesDB. The mel spec-
trograms show better quatitative results, however, CQT is used
for visualization as they show three subbands evenly whereas mel
spectrograms allocate many frequency bins for the mid subband.
From top to bottom, the spectrograms represent 1) an original pre-
vious track (without any audio effects), 2) a previous track filtered
with estimated gains, 3) an original DJ mix, 4) a mix reconstructed
using estimated gains, 5) an original next track and 6) a next track
filtered with estimated gains. The DJ mix and the estimated mix
show similar spectrograms. The estimated next track at the bottom
shows that the algorithm estimates that the DJ increased the low
shelving filter gain around at 1 min and 33 secs.
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X(n, k) Model All Fader EQ Low EQ Mid EQ High

– Sum 0.230 0.237 0.253 0.182 0.231
– Crossfade 0.270 0.318 0.253 0.182 0.231

CQT

Fader [5] 0.229 0.236 0.253 0.182 0.231
Subband-Fader [7] 0.261 0.237 0.279 0.275 0.303
EQ3 0.288 0.237 0.349 0.293 0.377
EQ3-Fader 0.141 0.104 0.177 0.160 0.199

Mel

Fader [5] 0.221 0.220 0.253 0.182 0.231
Subband-Fader [7] 0.275 0.237 0.314 0.298 0.326
EQ3 0.302 0.237 0.364 0.321 0.412
EQ3-Fader 0.161 0.137 0.175 0.169 0.212

Table 3: Mean absolute errors (MAEs) between the ground truth and estimated gain curves on the synthesized dataset.
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Figure 4: A example visualization of DJ mixer gain estimation using EQ3-Fader model with CQT from the MixesDB dataset.

6. CONCLUSIONS

We proposed an estimation algorithm that can estimate time-
varying fader and EQ gains jointly in DJ music. To make a series of
EQ filters and the fader optimizable in a convex form, we linearly
approximated the transfer functions of EQ, introduced the subband
objective function and substituted the parameters. We evaluated
the proposed method on a real-world DJ music dataset and showed
that the proposed method estimates the fader and EQ gains more
precisely than compared methods.

There are a few limitations in this work: 1) the optimization is
insensitive to signals with small magnitudes since it is optimized
in a linear domain instead of a log domain and 2) the biquad coef-
ficients are fixed except for gains, which can lead to degraded per-
formance if the coefficients are too different from the actual ones.
As future work, we plan to use neural networks with differentiable
audio effects. For example, we might be able to translate the con-
straints in our formulation into regularization terms in training a

neural network.
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İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen,
E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

9. APPENDIX: PROOFS FOR THE CONSTRAINTS

Before the substitution of the problem in subsection 3.5, the origi-
nal convex optimization problem is given as

minimize
α,β

L(α, β; Ŷ , Y ) (33)

subject to 0 ≤ α(n) ≤ 2 (34)
0 ≤ βi(n) ≤ 1 (35)
∆αprev(n) ≤ 0 (36)

∆αnext(n) ≥ 0 (37)
∆βprev

i (n) ≤ 0 (38)

∆βnext
i (n) ≥ 0 (39)

where β = {β1, . . . , βM}. It is straightforward to transform the
four constraints from the top into a domain of γi so we only pro-
vide a induction of the last two constraints. Only the induction of
parameters of a previous track is provided since it is same for a
next track. Due to the substitution,

βi =
γi
α

(40)

is true. An intuitive way of understanding Eq. (31) is that βprev
i will

always decrease if a decreasing speed of γprev
i is slower than αprev.

Formally speaking, ∆βprev
i (n) ≤ 0 is transformed into

∆γprev
i (n)

γprev
i (n)

≤ ∆αprev(n)

αprev(n)
(41)

by differentiation. However, it violates convex programming rules.
But from γi(n) ≤ α(n), we get

1

γprev
i (n)

≥ 1

αprev(n)
(42)

∆αprev(n)

γprev
i (n)

≤ ∆αprev(n)

αprev(n)
. (43)

Adding the constraint in Eq. (31), we can ensure that Eq. (41) is
always satisfied since

∆γprev
i (n)

γprev
i (n)

≤ ∆αprev(n)

γprev
i (n)

≤ ∆αprev(n)

αprev(n)
. (44)

However, there is a limitation that this approach restricts parameter
spaces.
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