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ABSTRACT

In this paper, we approach the problem of atomic decomposition
of audio at the symbolic level of atom parameters through the lens
of hyperdimensional computing (HDC) – a non-traditional com-
puting paradigm. Existing atomic decomposition algorithms of-
ten operate using waveforms from a redundant dictionary of atoms
causing them to become increasingly memory/computationally in-
tensive as the signal length grows and/or the atoms become more
complicated. We systematically build an atom encoding using vec-
tor function architecture (VFA), a field of HDC. We train a neural
network encoder on synthetic audio signals to generate these en-
codings and observe that the network can generalize to real record-
ings. This system, we call Hyperdimensional Atomic Decomposi-
tion (HD-AD), avoids time-domain correlations all together. Be-
cause HD-AD scales with the sparsity of the signal, rather than its
length in time, atomic decompositions are often produced much
faster than real-time.

1. INTRODUCTION

Atomic decomposition is a powerful tool for audio analysis/synth-
esis [1], coding [2], and transformation [3]. The atomic decompo-
sition model assumes a linear relationship between a signal y ∈
CN and a set of M atoms D – the dictionary – in matrix form
Φ ∈ CN×M , expressed as

y = Φx+ ϵ (1)

where x ∈ CM is a vector of weights describing the contribution
of each atom to y and ϵ is the noise/error term [1]. In audio, atoms
are waveforms typically parameterized by a prototype, such as a
damped sine wave for example. It is desirable to design such atoms
so that audio from a wide range of signals can be represented by
only a few of them, i.e. sparsely, such that x has only a few non-
zero elements.

In order to sparsely represent a wide variety of audio struc-
tures, atom prototypes with many parameters are required. Thus
sparsity promoting atoms require storing many different combi-
nations of parameters. Because these prototypes are typically of
infinite duration (e.g. damped sine wave), they cannot take advan-
tage of fast algorithms, such as the short time Fourier Transform
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(STFT). Furthermore, for longer signals the dictionary must be
updated with atoms which fully extend into the new time. Thus
D must be recomputed for each signal, and can require a large
amount of memory to store, as well as result in long wait times
for a decomposition to be computed [4]. Since each position of x
corresponds to an atom in the dictionary, as D grows, so does x.
This limits the use of certain tools which require fixed size data
structures, for example many deep neural networks (DNN).

An alternative to storing the atomic information in x, where
each coordinate corresponds to a set of parameters, is instead to
store the same information by distributing it across an entire vec-
tor of a different kind. Such types of data representation are the
basis of the field of hyperdimensional computing (HDC) – a brain-
inspired computing paradigm that encodes values equally across
high dimensional vectors [5]. By encoding an atom’s information
across an entire vector of high but fixed dimension NHD, the vector
encoding becomes highly redundant (since NHD ≫ 1). The high
redundancy introduced by HDC encodings allows multiple vectors
to be “superposed” (added) on top of each other, without obscuring
each individual encoding. The resulting representation maintains
a fixed size of NHD no matter how many encodings are added. En-
coding the atom parameters such that only the non-zero elements
of x are represented (i.e. a signal’s sparse representation) is the
basis of our approach to atomic decomposition of audio.

In this paper we present a fundamentally different approach to
atomic decomposition of audio – one which operates at the sym-
bolic level of atoms through the HDC encodings of their param-
eters. Properties of HDC encodings, such as a fixed size, along
with using time-shift frequency-shift invariant atoms – i.e. Weyl
Heisenberg (WH) atoms – overcome many of the difficulties en-
countered by approaching atomic decomposition using waveforms.
We show that our atomic decomposition system – called Hyperdi-
mensional Atomic Decomposition (HD-AD) – requires very little
memory to run and can often produce atomic decompositions in
much faster than real-time – a speed unknown to existing atomic
decomposition algorithms with complicated prototypes.

The paper is structured as follows. Section 2 gives an overview
of important audio atomic decomposition features and propereties.
Section 3 reviews the fundamentals of HDC, as well as HDC as-
pects particular to this project. The new atomic decomposition ap-
proach, HD-AD, is detailed in Section 4. Section 5 demonstrates
HD-AD in practice. Section 6 discusses how this work can fit into
existing atomic decomposition algorithms. Finally, in Section 7
we reflect on the project and give our thoughts on future work in
this area. Audio examples can be heard at the companion website.1

1https://htmlpreview.github.io/?https://github.
com/ChristianYost/HD-AD/blob/main/HDAD.html
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2. ATOMIC DECOMPOSITION OF AUDIO

In audio, we often use WH atoms [6] which have the general form

ϕ[n] = E[n]ei2πfcn (2)

where E is the envelope (windowing) function, 0 ≤ fc ≤ 1
2

is
the center frequency of the atom, and n is discrete time. The par-
ticular ϕ is referred to as the prototype, and is controlled by a set of
parameters λ, and denoted ϕλ. Designing ϕ is often informed by
which class of signals it is to decompose (e.g. plucked instrument,
voice, etc.) Decompositions with sparsity promoting atoms are
usually more meaningful, in that each atom reveals more about the
signal structure. The shape of E[n] has a large effect on ϕ and can
be broadly divided into two categories – symmetric and asymmet-
ric. In the case of audio, sound features are generally asymmetric,
therefore decomposition via asymmetric atoms is generally more
meaningful.

Asymmetric atoms are characterized by an asymmetric enve-
lope E, where, in general, the portion before the envelope’s max-
imum (the attack) is shorter than the portion after the envelope
maximum (the decay). The damped sinusoid (DS) is an essential
asymmetric atom in atomic modelling of audio given its relation-
ship to a vibrating mode of a resonant structure [7]. An envelope
damping parameter is introduced into the atom prototype which
allows control over its decay characteristics. The amplitude enve-
lope of a damped sine wave is

EDS[n] = e−αnu[n] (3)

where α ∈ R≥0 is the damping factor and u is the unit step func-
tion. Many asymmetric atoms are modulations of a DS, such as
a gammatone (GT) [8] and the formant-wave-function (FOF) [9],
however neither was designed specifically for the sparse decom-
position of audio.

The ramped exponentially damped sinusoid (REDS) is an asym-
metric atom designed specifically for sparse atomic decomposition
of audio [10]. A REDS atom can be seen as a DS modulated by an
attack envelope, AREDS, where

AREDS[β, p;n] = (1− e−βn)p (4)

The attack parameter β allows for precise control over its attack
characteristics. The polynomial order p smooths the onset of the
attack envelope and can be chosen to allow REDS to approximate
other asymmetric atoms – an advantage the REDS prototype has
over other atoms.

2.1. Selecting Atom Parameters

Many atomic decomposition algorithms rely on a dictionary of
waveforms, perhaps the most well-known method is Matching Pur-
suit (MP) [1]. Waveform dictionary approaches rely on comput-
ing many correlations between a time signal and the dictionary
of atoms. Since signals are generally of different length, when
decomposing with asymmetric atoms the waveform dictionaries
must be recomputed for each signal. For short, symmetric atoms,
the STFT can be used to save memory and computation [4]. How-
ever, for sparser decompositions requiring more complicated atom
prototypes, few solutions exist ([11]) which do not result in a large
memory footprint and a large amount of computation.

These observations inspired our investigation into encodings
which maintain a fixed size in order to overcome the burden of
long signals, and allow for decomposition with complicated atom
prototypes using a modest amount of memory.

3. HYPERDIMENSIONAL COMPUTING

Hyperdimensional computing (HDC) [5] is a computing paradigm
which maps (encodes) data (atom parameters in this paper) to high
dimensional vector space of size NHD, typically between 103 and
104, in the form of hypervectors. Because the HDC mappings
are of high dimension, hypervectors are seen to distribute their
encoding equally at each position, making them highly redundant.
High redundancy means highly robust to noise. HDC can be used
to encode non-numerical [12] or real values [13] into hypervectors.
Hypervectors can be combined to represent single or composite
entities. A field of HDC, vector symbolic architecture (VSA) [14],
pairs a vector representation space with a set of simple algebraic
operations to form a “ring-like” structure. Recently in [15], the
VSA framework is generalized to a vector function architecture
(VFA), where a similarity kernel is used as a “generator” of sorts
for the space. This allows for a systematic encoding where certain
relationships in the source domain are preserved in the encoding,
a property known as locality preserving encoding (LPE) [15].

Notably, the elements of the hypervectors belonging to a VFA
are chosen randomly from a distribution, and independently from
each other. Given this inherent randomness, VFA encodings are
structured around relationships between different states of the HD
space, rather than any particular state of the space itself.

3.1. Building VFA Data Structures

The basic operations for building data structures with hypervectors
are binding [5] and superposition [16]. Importantly, these opera-
tions can be chosen so that the size of the vectors being computed
does not change [14].

3.1.1. Binding

The binding operation (generically denoted ◦), analogous to multi-
plication, is used to associate two or more hypervectors with each
other. Binding can be used to generate a new hypervector by as-
sociating two others, such as u ◦ v = s, as well as encode real
numbers through fractional power encoding (FPE) [17]. Common
binding operations include the Hadamard product (⊙) [14] and
circular convolution (⊛) [18]:

(u⊙ v)j = uj · vj
(u⊛ v)j = F−1(F(u)⊙F(v)

)
j

(5)

where F denotes the Fourier Transform and uj is the j th element
of u. FPE starts with self-binding, which describes binding a hy-
pervector with itself k times as a way to encode integers.

u(k) = (u)(◦k) = u ◦...◦︸︷︷︸
k−1 times

u (6)

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

79



Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

The hypervector u is referred to as the base hypervector. For
Hadamard product and circular convolution binding these are

(u)
(⊙k)
j = (u ⊙...⊙︸ ︷︷ ︸

k−1 times

u)j = uk
j

(u)
(⊛k)
j = (u ⊛...⊛︸ ︷︷ ︸

k−1 times

u)j = F−1(F(u)(⊙k))
j

(7)

where F−1 denotes the inverse Fourier transform. In both cases,
k is encoded by raising the elements of base hypervector u (or
F(u) for ⊛) to the kth power. This is then generalized to encode
real numbers r:

(u)
(⊙r)
j = ur

j

(u)
(⊛r)
j = F−1(F(u)(⊙r))

j

(8)

Fractional Power Encoding (FPE) encodes real numbers r using a
base hypervector u and a binding operation ◦.

fFPE : r ∈ R → u(r) = (u)(◦r) ∈ CNHD (9)

Typically base hypervectors are generated for each field or
property which is being encoded. To generate base hypervectors,
a distribution is randomly sampled. For example, sampling a pha-
sor vector θ = [0, 2π)NHD and generating u via uj = eiθj is a
popular method for generating (base) hypervectors. The sampled
hypervectors are stored and used for encoding values for their cor-
responding property via equation (9).

Of note is the set of unitary hypervectors which are norm-
preserving: A◦ = {u : ∥u ◦ v∥2 = ∥v∥2 ∀u}. Unitary hy-
pervectors under the Hadamard product are {v : |vj | = 1 ∀j},
and under circular convolution are {v : |F(v)j | = 1 ∀j}.

3.1.2. Superposition

Superposition (+), analogous to addition, is used to “bundle” two
or more hypervectors together, such as

u+ v = s (10)

where si = ui + vi. Typically binding is used to associate values
of different fields for a single entity (e.g. shape and color of an ob-
ject); superposition is typically used to represent multiple entities
in a single hypervector.

3.1.3. Dot product

The set of VFA hypervectors with a conventional dot product (⟨·, ·⟩)
makes up a Hilbert space. Thus the distance between two hyper-
vectors belonging to the space can be computed, which is used
as a way to compare two hypervectors. Combining hypervectors
via binding or superposition has a different effect on the simi-
larity (distance) between the input and output hypervectors [5].
Bundling two hypervectors creates a new hypervector which is
similar (close) to both input hypervectors. On the other hand,
binding two hypervectors creates a new hypervector which is dis-
similar (far) to (from) either hypervector that went into the binding
[5].

This similarity destroying nature of binding applies even when
a hypervector is bound with itself. This situation arises for encod-
ing integers, as was discussed in section 3.1.1 in equation (6). Thus

when two hypervectors are maximally similar (identical) binding
them together still produces a completely dissimilar hypervector.
However, for non-integer encodings (i.e. FPE shown in equa-
tion (9)), fractional binding produces a hypervector whose simi-
larity with the base hypervector is defined by a similarity kernel,
K. Similarity kernels have many interesting properties relating to
functional analysis [15]. For our purposes, it is important to note
that the similarity between the hypervector encodings for two real
numbers r1 and r2 is translation invariant and given by

⟨u(r1),u(r2)⟩ = K(r1 − r2) (11)

To reiterate the integer encoding behavior mentioned earlier, when
r1 − r2 ∈ Z, then K(r1 − r2) = 0 when r1 ̸= r2. We will see
how this affects our decisions in section 5.

Finally, because binding destroys the similarity between in-
put and output hypervectors, two bound hypervectors which share
many but not all of the same inputs will appear distinct from one
another. And because superposition preserves the similarity of in-
put and output hypervectors, those two bound hypervectors can
be added without obscuring either constituent hypervector in the
summed output. The similarity destroying nature of binding means
that retrieving the original hypervectors, in other words decoding,
is typically a hard combinatorial search problem [12].

4. HYPERDIMENSIONAL ATOMIC DECOMPOSITION

Using the VFA concepts from the previous section, we create atom
encodings which are the basis of our atomic decomposition system
called Hyperdimensional Atomic Decomposition (HD-AD). HD-
AD replaces waveform atomic decomposition algorithms by se-
lecting atoms at the symbolic level of the parameters themselves,
whose HD encodings are of fixed length NHD. HD-AD, to the best
of our knowledge, is the first audio atomic decomposition system
which operates at the symbolic level of the atomic parameters.

4.1. Encoding Atoms

For an atom prototype ϕλ, who is defined by a vector λ of Q
parameters, we generate a unitary base hypervector uλq for each
parameter λq ∈ λ. The vector λ̇ specifies the particular values for
parameters λ. To encode a specific ϕλ̇ we encode each λ̇q ∈ λ̇
using the corresponding base hypervector for parameter λq , uλq ,
via the FPE from Eq. (9). The HD vector which encodes the pa-
rameters of ϕλ̇ is built by binding together all uλq (λ̇q):

Λ◦(λ̇) = uλ1(λ̇1) ◦ uλ2(λ̇2) ◦ ... ◦ uλQ(λ̇Q) (12)

In order to scale the atoms by their gain coefficient x (from equa-
tion (1)), we bind the atom parameter encoding Λ◦(λ̇) with a hy-
pervector encoding of x, x⃗HD. We define the function

γ◦(x) : x ∈ C 7→ x⃗HD ∈ CNHD (13)

which maps an atom’s gain coefficient x to the corresponding HD
vector x⃗◦. For Hadamard product and circular convolution binding
these are

γ⊙(x) = x⃗⊙ ⇒ (x⃗⊙)j = x

γ⊛(x) = x⃗⊛ = F−1(x⃗⊙)
(14)

Thus, the HDC encoding of atom x · ϕλ̇ is a hypervector

s◦(x, λ̇) = γ◦(x) ◦Λ◦(λ̇) (15)
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A time-signal which is the linear combinations of time-frequency
atoms is encoded by the HD vector which is the superposition of
the HDC encodings of their parameters.

z =
∑
k

s◦(xk, λ̇k) (16)

For a variety of reasons, we choose a deep neural network
(DNN) to be the HDC encoder (see [19] for discussion). Our neu-
ral network structure includes 2D convolutional gated linear units
(convGLU) [20], max-pooling layers [21], ELU activation func-
tions [22], and fully-connected (FC) layers, all shown in Figure
1. Once encoded, retrieving the atom parameters is a non-trivial

Figure 1: HD-AD deep neural network encoder structure. The lo-
cal features (attack/decay shape) are identified by the CNN kernels
and translated into global encodings by the FC layers.

process because of the similarity destroying nature of binding, as
discussed in section 3.1.1. Inspired by the connection between sig-
nals and VFA hypervectors we sought to apply refinement methods
from the signal space to that of the hypervector encodings, namely
Newton’s method.

4.2. Decoding VFA Hypervectors

Once an atom x · ϕλ̇ is mapped to the HD vector space, x and λ̇

must be retrieved by decoding s◦(x, λ̇). Because only the atoms
with non-zero contribution are encoded, or alternatively atoms with
zero contribution do not affect the encoded HD atomic decompo-
sition, only non-zero contributing atoms need to be decoded. As
a result, HD-AD scales with the sparsity of a signal’s atomic de-
composition, and not necessarily the signal’s length in time.

The standard way to decode hypervector encodings is by com-
parison to set of hypervectors with known decoding. Because this

method relies on a discrete set encodings, when decoding real val-
ues only an approximation is returned. In [15] an iterative algo-
rithm based on gradient descent is presented to decode a single
real number. In [19] we present a similar algorithm which instead
relies on Newton’s Method, where the full discussion and details
of our decoding algorithm can be found. Using Newton’s Method
allows for the decoding of multiple encoded real values simultane-
ously. We refer to this algorithm as “HD Newton’s method”.

5. EXPERIMENTAL RESULTS

Here we discuss what must be considered when generating atomic
HDC encodings in practice, and present the results of perform-
ing atomic decomposition with HD-AD. As mentioned in section
3.1.3, the similarity between the encodings of two real numbers
r1 and r2 depends on r1 − r2. Because atom parameters have
vastly different ranges, encoding their synthesis values (λ̇) can
lead to sub-optimal similarity behavior in the encoding domain.
For example, consider the time parameter (λ = τ ) of an atom
prototype ϕλ, where τ is given in integer samples. The similar-
ity between the encodings of two time values τ̇1 and τ̇2 is zero,
since τ̇1 − τ̇2 ∈ Z. In the other extreme, consider the damping
parameter, λ = α, of a damped sinusoid. The dynamic range of
this parameter is often very small, on the order of 10−3. Thus for
two damping parameter values α̇1 and α̇2, since their difference
is always close to zero, the similarity of their encodings is always
close to one. Both of these situations are sub-optimal for training
a neural network. On the one hand, any τ̇ estimate by the network
has an encoding similarity of 0 with the ground truth unless it is
sample accurate. On the other, the worst the network can do for
predicting α̇ in any situation results in an encoding which is nearly
identical to the one it is trying to learn.

Because of this, the atom’s synthesis parameters λ̇ are mapped
to their encoded values λ̂ via a function ĝλ : λ̇ 7→ λ̂. ĝλ rescales
the variation of each parameter into a normalized range and allows
for better behavior in the encoding domain [19].Once λ̂ is retrieved
by HD Newton’s Method, the inverse function ĝ−1

λ : λ̂ 7→ λ̇
is used to generate the synthesis parameters to produce the time-
domain waveform. The details and full discussion of ĝλ for each
λ is given in [19].

We train a DNN on synthetic signals which are the mixture
of scaled atoms plus noise. Training time for the neural network
is typically between 1 − 2 days. The parameters for atoms in the
mixture are sampled randomly from a given range per parame-
ter. For time and frequency, this is the time-frequency support of
the signal. For the envelope parameters, ranges are specified to
encompass a range of audio structures, such as partials and tran-
sients. The timing results presented were recorded on a personal
computer with an Intel Core i5 2.9GHz CPU with 16 GB of RAM.

The inputs to the DNN encoder are time-frequency tiles from
a dual-resolution STFT [23] of 16 kHz audio. The high-frequency
resolution STFT has an FFT size of 1024; the high-time resolution
STFT has an FFT size of 256. Each STFT is upsampled by a factor
of 4 in the dimension they have low resolution, in order for points
to agree between the two resolutions. Once sub-sampled, the tiles
are 64 bins (1000 Hz) “tall” by 128 frames (2.096 s) “wide”. The
time and frequency parameters of the atoms are encoded relative
to the tile they occupy, and then shifted to the global position after
decoding. This is possible because of the Weyl Heisenberg nature
of atoms discussed in Section 2.
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Figure 2: HD-AD decomposition of a long kalimba recording. (left) Input signal of length 66.316 s. (right) HD-AD approximation of 288
DS atoms done in 16.656 s = 4.236×’s real-time.

The DNN encoder for these experiments has 7 CNN layers,
and 2 FC layers. For CNN layer i there are 2i+4 output channels.
The time and frequency dimensions are each down-sampled by a
factor of 2 at each layer, except the the 7th, where the time dimen-
sion is down-sampled by a factor of 2 and the frequency by 1 (no
change). The first FC layer outputs 2048 channels, and the final
FC layer outputs NHD = 1000 channels.

5.1. DS Atoms

For experiments with damped sinusoid atoms, we create encod-
ing base hypervectors for time, frequency, and damping parame-
ters. After being trained on only synthetic mixtures of atoms the
neural network can generate HDC atomic encodings for real audio
recordings. Figure 2 shows the HD-AD decomposition of a 66.316
second kalimba recording from freesound.org2. HD-AD decom-
poses the signal into 288 DS atoms in 16.656 seconds, which is
4.236× faster than real-time.

5.2. REDS Atoms

For experiments REDS atoms, we create encoding base hypervec-
tors for time, frequency, attack, and damping parameters. Because
HD-AD only returns a signal’s sparse decomposition, it scales with
a signal’s sparsity, rather than its length in time. In order to demon-
strate this, Figure 3 shows the HD-AD decomposition of a syn-
thesized toy-piano signal, as well as a decomposition of the same
signal but zero-padded on either end by 10 seconds. Because zero-
padding a signal does not change its sparsity, HD-AD decomposes
both signals (one over 4× longer than the other) in roughly the
same amount of time.

2“Kalimba" by user “dermotte” (https://freesound.org/s/
244025/) licensed under CCBYNC 3.0

5.3. Vibrato REDS Atoms

We extend REDS atoms to include vibrato behavior – called as vi-
brato REDS (vREDS) – by introducing parameters for frequency
modulation and vibrato amplitude. Being able to quickly decom-
pose signals with such a complicated prototype demonstrates the
full range of capabilities of our proposed method. The argument
to the complex exponential becomes

arg(n, τ, fc, s, fm) =

(n− τ)2πfc +
s

2πfm
sin

(
2πfm(n− τ)

) (17)

where s is the vibrato amplitude and fm is the frequency mod-
ulation, or vibrato rate. The full Vibrato REDS (vREDS) atom
prototype is

ϕ(n, τ, fc, α, β, p, s, fm) =

AREDS[β, p;n]EDS[α;n]e
i·arg(n,τ,fc,s,fm)

(18)

In Figure 4 we demonstrate that creating more complicated atom
prototypes, which naturally introduce more parameters, does not
prohibit HD-AD from generating a decomposition in a timely man-
ner. This is not the case with MP or many of its derivatives.
Table 1 compares the memory required to store the HD-AD dictio-
nary and a waveform dictionary for the examples shown in Figure
2 and Figure 4. HD-AD requires many orders of magnitude less
memory, and produces an atomic decomposition in less time than
the signal length.

5.4. Sound Processing Example

Audio processing is an attractive application of atomic decomposi-
tion, which allows for high quality filtering, prototype substitution,
and atom parameters’ manipulation amongst others. However, for
decompositions produced by certain prototypes, manipulation of

DAFx.5

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

82

https://freesound.org/s/244025/
https://freesound.org/s/244025/


Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Figure 3: (left) A synthesized toy-piano note. (middle) HD-AD decomposes the signal into 7 REDS atoms in 2.384 s = 2.518×’s real-time.
(right) HD-AD decomposition of zero-padding the signal in (left) by 10 seconds on each end. HD-AD decomposes the signal into 7 REDS
atoms in 6.904 s = 3.767×’s real-time. HD-AD scales with the signal’s sparsity, not its length in time.

Atom Signal Length HD-AD Time times real-time HD-AD dict. size waveform dict. size
(Figure) (s) (s) (faster) (GB) (GB)
DS (2) 66 15 4.236 0.016 4030

REDS (3middle) 6 2 2.518 0.113 238
REDS (3 right) 26 7 3.767 0.113 3520

vREDS (4) 8 4 1.860 0.405 3090

Table 1: Timing results and memory comparison between HD-AD and waveform dictionary approaches for a given atom prototype.

the parameters can result in less “natural” sounding transforma-
tions, as well as require additional processing to account for com-
plex relationships between atoms in the decomposition [3]. In par-
ticular, this can happen when decomposing asymmetric audio fea-
tures with symmetric atoms. Prototypes which better match the
audio structure, like the atoms we have discussed for asymmetric
sounds, can preserve the original qualities in the transformed au-
dio, as well as potentially avoid complex inter-atom relations and
thus the associated post-processing. However, accurate atomic de-
composition on these more elaborated prototypes requires robust
techniques such as the one presented in this paper.

Figure 5 shows the HD-AD decomposition using DS atoms
of a kalimba recording playing alternately notes C6 and C7, and
transforming that sound through the manipulation of the atom pa-
rameters. The original audio is successively pitched, shifted down
an octave, and then down three octaves by multiplying f by 1

2

and 1
8

, respectively. In addition, the character of the original notes
is transformed by decreasing the damping through multiplying α
by 1

4
and by 1

8
, causing them to ring longer than in the original

recording.

6. HYBRID APPROACH

In addition to HD-AD, in [19] we present a variation of HD-AD,
called neural network accelerated Matching Pursuit (NN-MP). NN-
MP is compromise between a fully HDC atomic decomposition,
and one which relies only on waveforms. The idea is that once
all of the s◦(xk, λ̇k) are identified via HD-AD, the xk can be dis-
carded and instead a dictionary of waveforms can be populated
with λ̇k. Then a standard MP can be run with this truncated dic-
tionary in order to compute the xk. In this algorithm, once a stop-
ping criteria is reached, the residual signal can be fed-back into

the neural network and the process can be repeated. The same
methodology can be applied to MP variants, such as orthogonal
Matching Pursuit (OMP) [24]. This method avoids storing a large
number of asymmetric waveforms since the dictionary of atoms is
customized to the signal being decomposed.

7. CONCLUSION

In this paper a new atomic decomposition approach was introduced
and explored. Rather than at the level of waveforms, we chose
to operates at the symbolic level of atom parameters by encod-
ing them into VFA hypervectors, and training a neural network to
generate these encodings. Through our experiments we showed
that this approach has many advantages over waveform dictionary
atomic decomposition algorithms with asymmetric atoms – mainly
time/memory savings. The new speeds we demonstrated for pro-
ducing atomic decompositions with asymmetric atom prototypes
has the potential to bring atomic decomposition into many new
hands, and perhaps as a consequence, further explore its potential
as a creative tool.
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