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ABSTRACT

Iterative phase formulations allow for the generalization of many
oscillatory sound synthesis methods from circles to general para-
metrizable loops, with or without explicit geometric contexts. This
paper describes this approach, leading to the ability to perform
modulation, feedback and chaotic oscillations over deformed cir-
cles that can include ill-behaved geometries, while allowing mod-
ulations or feedback to be deformed as well.

1. INTRODUCTION

One of the intuitions behind topological formulations is their gen-
erality and flexibility. A topological circle captures a closed path,
even if the specifics of the path in some substrate space might vary
drastically. Everyday intuition already captures topological ideas.
For example, we understand that closed loop racing tracks have
different shapes, thus providing differing challenges to the driver,
but they all allow for the definition of laps, which count the num-
ber of times a driver has completed the closed path in one direction.
We understand that a less than round tire will still be able to rotate,
even though driving on a flat surface may be uneven. Topology
captures these intuitions abstractly, and allows for us to formally
use them constructively.

In this paper we propose a way to generalize oscillations over
the standard metric circle in the plane to oscillations over any
parametrizable topological loop. This in turn allows us to use
parametric formulations of oscillatory synthesis methods such as
iterative phase functions [1] to generate modulation and feedback
type oscillatory synthesis methods using these more general loop
spaces and their projections. This method, in its full generality
does not require a geometric representation, by which we mean
that it does not have to be embedded, immersed, or otherwise con-
tinuously mapped into some substrate geometric space. However,
thinking of the approach geometrically helps strengthen intuition.
In particular, in a geometric setting one can think of the recon-
figurations of topological loops under varied parametrizations and
varied maps into a substrate geometric space as deformations. In
this sense one can think of race tracks or flat tires as deformed
circles. More abstractly, this work provides a sound general set-
ting in which existing modulation and feedback techniques can be
applied, and new ones can be formulated.
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2. RELATED WORK

Oscillators are essential objects in sound synthesis and hence are
widely taught [2]. Historically, oscillators are often defined by
algorithms of certain functional forms, such as time-indexed com-
putations, though it can be convenient to take alternative formula-
tions. For example, in the context of digital signal processing the
description of behavior on the circle via complex numbers called
phasors can simplify description and elucidate interesting behav-
ior of oscillatory phenomena [3]. Formulating oscillators as itera-
tions of the phase on the circle [1] provides a further description of
oscillations with additional insights. In particular this formulation
makes clear the relationship of topology of the space, dynamics,
and output projections. It allows us to bring a large class of oscilla-
tors under one description, including non-linear and chaotic oscil-
lators. This particular formulation of oscillatory synthesis methods
provide the foundation of the current paper.

Topological methods have been variably employed in sound
synthesis and signal processing. Recently, sheaf-theoretic meth-
ods were proposed to attach linear time-invariant filters [4, 5] and
non-linear oscillators to a topological space defined by a line-like
simplicial complex. This allowed the method to employ paths over
a standard torus as well as a parametrization of frequency modu-
lation (FM) to be used as the underlying closed path geometry [6].
The current method can be described without the use of sheaf con-
structions, and leans closer to existing intuitions of oscillators.

Geometric oscillatory descriptions have long been of interest
in sound synthesis. Putnam’s thesis proposes harmonic patterns
as one possible description of path-like geometric shapes in con-
junction with sound synthesis [7, 8, 9]. Furthermore, his disserta-
tion provides an expansive review of path parametrized methods
in geometric sound synthesis [7]. Given that the proposed method
works for any parametrized closed path, this body of work pro-
vides many examples and application possibilities. We will em-
ploy splines which have already been proposed for smooth trans-
formations of additive synthesis [10], waveform generation and
interpolation [11] as well as for control parameter transitions [12].

Sound synthesis based on comb filters also have an inherent
loop character. In this context, Trautmann proposed synthesis
based on analogous constructions to the Möbius strip [13]. Closed
path trajectories form an important aspect of understanding waves
on path trajectories for physical models based on waveguides [14].

More broadly, one can view the current work in the context
of developments of computational and applied topology [15, 16],
a field that seeks to develop computational topological techniques
for applied problems. This body of work tends to focus on the
analysis of data [17] and methods for analysis of time-series have
been developed [18, 19].
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3. FROM SINUSOIDAL OSCILLATIONS TO
PARAMETRIZED TOPOLOGICAL LOOP

The conventional understanding of a circle is that of a closed curve
in the Euclidean plane R2 with coordinates (x, y). For our pur-
poses, the most convenient formulation is given by familiar com-
plex exponential oscillator under time parametrization t:

(x, iy) = e2πit t ∈ [0, 1) (1)

Circles play an important role in many parts of digital audio pro-
cessing and sound synthesis as they capture harmonic oscilla-
tion under projection. Taking an orthogonal projection with a
given angle ϕ one gets the undamped harmonic oscillator y =
sin(2πt + ϕ). Furthermore, there are perceptual reasons to privi-
lege circular oscillations as our hearing seems to be performing a
kind of spectral analysis, of which sinusoids are elementary build-
ing blocks. Perhaps relatedly, sinusoids are the basis functions of
Fourier analysis. For all of these reasons, it is no surprise that a
large body of work has developed in which sinusoidal oscillators
are used, or have served as starting points for developing enriched
oscillatory phenomena which are not purely sinusoidal, such as
modulation techniques or wave shaping.

3.1. Discrete Dynamics and Circle Maps

Under the time-parametrization t one can interpret the oscillator as
a dynamical process. Dynamics refers to a time-dependent change
or evolution. If the dynamics consists of discrete steps, then it
is a discrete dynamical process. Furthermore, one can think of the
dynamics to be performed on a given domain. In this paper we will
use only discrete dynamical descriptions and we will use the index
n to identify a notion of discrete time, phase, or position of this
discrete dynamics. The circle S1 is one such possible domain and
its unit parametrization [0, 1) with identification of 1 and 0 allows
one to define a position xn ∈ [0, 1) on the parametrization. Then
discrete iterations on the circle can be written in the following form
[1]:

yn︸︷︷︸
Time Series

= p︸︷︷︸
Projection

(xn = f(xn−1)

Circle Topology︷ ︸︸ ︷
mod 1︸ ︷︷ ︸

Iterative Phase Function

) (2)

The current position on the parametrization xn is computed from
the previous position xn−1 via a given map f . The discrete-time
output of the oscillator yn is the result of a projection function
p, which converts the position in the parametrization into sample
amplitudes.

This formulation forms the basis for connecting the sound syn-
thesis literature with the existing literature in discrete dynamical
systems. Maps from one location on the circle to another are usu-
ally called circle maps [20, 21] in the dynamical systems literature
[22]. More interestingly, this connection led to the discovery [1]
that the sine circle map as studied in the 1960s by Arnold [23]
and onward is nothing but feedback frequency modulation [24].
This means that a wealth of results in dynamical systems for dis-
crete dynamics on the circle apply to sound synthesis methods and
characterizations such as Arnold tongues [23] apply and can be
expanded for auditory use [1].

There are additional benefits to using this particular formula-
tion of discrete oscillators. Projection p and iterative phase func-
tions f are independent of each other. The iterative phase function

f can be fruitfully be interpreted as merely living on some cyclic
parametrication in the interval of [0, 1) which one can also think of
as the quotient R/Z, which is the integer repetition of the interval
in R and this in turn has the connectivity of a topological circle
S1. Hence the iterative phase function really lives on a topological
space. A geometric interpretation in some ambient space is sug-
gested by the projection function p. The flexibility of some map
into a substrate geometric space and a suitable projection map p is
of central interest of this paper. Given that these choices leave the
topology of the loop parametrization and discrete iterative maps on
them undisturbed, these two aspects can be treated independently.
For this reason, we will emphasize maps with nonlinear chaotic
feedback in examples in this paper as they serve to illustrate that
indeed the construction is robust under all the variations of the
given geometric and projection constructions. At the same time,
we will also discuss sinusoidal oscillation and its underlying lin-
ear dynamics to provide simple base cases for comparisons. These
examples constitute an illustrative subset, and, in fact, any iterative
phase function, or cascades thereof, can be used and have the same
structural stability and independence as the examples given.

3.2. Sinusoidal Oscillation (or Bare Circle Map)

A discrete sinusoidal oscillator can be written in this form with
the following choices of iterative phase function f and projection
p [1]:

xn = xn−1 +Ω mod 1 (3)
yn = sin(2πxn) (4)

The constant Ω is a discrete step taken and can be related to the
frequency ω of an complex exponential oscillator of equation (1)
Ω = ω/ωs with a given sampling frequency ωs.

A conventional interpretation of this dynamical process is that
of a discrete sinusoidal oscillator as a discrete dynamical process
that moves around a Euclidean circle with constant steps Ω. In
the dynamical systems literature this equation is also sometimes
known as the bare circle map [22] and it will be helpful for our
purposes to refer to the discrete sinusoidal oscillator requiring the
particular projection equation 4 while we think of the bare circle
map not requiring this particular projection.

3.3. Feedback FM (or Sine Circle Map)

The iterative formulation of feedback frequency modulation (feed-
back FM) or equivalently the sine circle map under a sinusoidal
projection is defined as follows [24, 20, 1]:

xn = xn−1 +Ω+
k

2π
sin(2πxn−1) mod 1 (5)

yn = sin(2πxn) (6)

We observe, that this equation is a perturbation of the sinusoidal
oscillator (3). The strength of the perturbation is given by the con-
stant k (k is normalized such that k = 1 corresponds to the point
of invertibility [23, 20]. This constitutes the main difference to
typical modulation formulations in the sound synthesis literature,
where the corresponding modulation strength parameter is usually
not normalized (compare [1]). The perturbation itself is sinusoidal
and could be interpreted as the projection of another oscillator onto
the phase of the perturbed one. Just as with the sinusoidal oscil-
lator, it is useful to make a distinction between feedback FM as
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defined with the specific projection equation (6) and the sine circle
map as not requiring it.

3.4. Projection from Coordinates

So far our projection function is a map from [0, 1) → [−1, 1] as-
suming peak normalized audio samples. While the geometry of
a circle in the plane may be suggestive for equations (3-4), tech-
nically this equation does not specify a continuous map into the
plane. The standard circle is a continuous map into the plane ac-
cording to equation (1). This equation gives two coordinates in
the plane and a projection would be a reduction of dimensionality
π : R2 → R. In more generality, we can have an continuous map
from a parametric loop into Rn with n ≥ 2. Moreover a planar
representation of any higher dimensional continuous maps can be
achieved by a projection down onto the plane π2 : Rn → R2.

We call a map f(t) parametric if it consists of a set of n co-
ordinate maps f0, f1, . . . , fn−1 in each component of Rn that are
each parametrized by t on the interval [0, 1). It is a parametric
map of the circle S1 if parameters 0 and 1 are identified. We call
the map f a parametric embedding if it is an injection (the map is
one-to-one). This implies that the map does not self-intersect in
Rn. With this we arrive at the following diagrammatic relation-
ship between the parametric embedding f(t), direct projection p,
embedding projection π and planar projection π2:

S1 ∼= R/Z Rn R2

[− 1, 1]

f(t)

p
π

π2

(7)

3.5. Properties of Projections

Many different continuous maps into a substrate space can yield
the same output under projection. This is captured in the diagram
(7) by the following composition:

p = π(f(t)) (8)

In general, projection maps will lose information because dis-
tinct higher dimensional or parametric information will often be
mapped to multiple instances of the same coordinate point in the
lower dimensional image of the projection. This includes the direct
projection p. Consider the example of the sine projection. Ranges
[0, π/2) and [π/2, π) both map to [0, 1] and ranges [π, 3π/4) and
[3π/4, 2π) map to [−1, 0], hence the map maps to distinct coor-
dinates only at two isolated points and maps to a multiplicity of 2
at all points except an additional exception of 0 which maps to a
multiplicity of 4. Geometrically, this phenomenon corresponds to
intersections or overlap between stretches of a parametrized path
under the projection. We call this degenerate and its existence a
degeneracy. A map into a substrate space is an embedding if the
map is injective (one-to-one) and therefore does not contain any
degeneracies. We call a map an immersion if it is injective except
at isolated crossing points. Finally, maps can fail to be embed-
dings or immersions, but still be the image of a continuous map
from a parametrization into the substrate space. In figure 1 we see
examples (left) embeddings (without degeneracies), (middle) im-
mersions (only isolated degeneracies,) and (right) long stretches
of overlap, hence degeneracies being typical, these are neither em-
beddings nor immersions, yet they still can be a continuous image

Embeddings
Simple, Closed

Injective

Immersions
Non-simple, closed
Injective except at

isolated crossing points

Continuous
Map

Not injective

g : R/Z ! R2g : R/Z ! R2

Figure 1: Examples of images of continuous maps g from topo-
logical circle into the plane: (left) an embedding, (middle) an im-
mersion, or (right) neither an embedding or an immersion. The top
right example shows an isolated point.

of a map from a loop parametrization. An example that is not
an image of a continuous map from the parametric circle into the
plane are two non-touching points. We will call any continuous
map g of a topological space into a geometric space its geometric
realization.

3.6. Equivalent Projections

It is useful to consider equivalent projections. These are the pro-
jections, which are the set of all possible projections from the
parametrization or any geometric realization which create the same
sample outputs. This can be used to either identify simple cases
for convenient implementation, or flexibility in higher dimensional
representation for the purpose of visualization [25] or to define
control parameters that are convenient [12].

As an example, consider the projection π : R2 → [ − 1, 1],
π(x, y) = x. Take x = sin(2πt). Clearly there is substantial
freedom on the y coordinate under this projection. The constant
function y = c but also any continuous function y = cos(2πkt)
where k ∈ N are permissible. The constant case is of further inter-
est as it illustrates the important property that higher dimensional
space or even the notion of embedding is not a requirement for
the correct outcome. The constant case is equivalent to the "side-
ways" projection in R3 and it contains the topological connectivity
of the circle oscillation even under the projection. While the side-
projection itself no longer captures a circle topology, the underly-
ing parametrization of the sine function does. This is the key to
the utility of separating parametrized paths from projections. The
parametrization disambiguates the multiplicities in the geometric
realization in the substrate space. Hence we are only concerned if
a circle-like closed path is parametrizable, and not if the path can
be properly embedded in some higher dimensional space.

However, embeddings and immersions can be desirable re-
stricted classes of geometric realizations for visualization. Embed-
dings into the plane allow us to uniquely identify each position on
the parametrization visually. Immersions can offer a good compro-
mise as the points of intersection are isolated. Hence it is helpful
for visualizations and control parameter constructions.

4. DEFORMATION

The class of possible continuous maps permissible in this setup is
vast. Hence it is helpful to restrict the case of maps to an inuitively
more accessible subclass of maps. In sound synthesis the ability
to gradually vary parameters is considered attractive [12], hence
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we will adopt a deformation perspective. Concretely we will dis-
cuss the case of a time-parametric piecewise spline construction.
We chose a spline type that allows a one-parameter variation of
spline shape. Hence we arrive at two distinct forms of deforma-
tion: one is geometric from changed placements of control points
of the spline, and the other stems from varying the spline shape
between control points through parametric control.

4.1. Parametrized Loops via Tensioned Catmull-Rom Splines

As an exemplar of a parametrized closed curve construction, we
use the tensioned version of the Catmull-Rom spline [26] — also
known as cardinal splines [27, 28, 29] — in a closed curve config-
uration.

Catmull-Rom splines have some practical advantages as they
can be specified merely by control points, and the effect of mov-
ing a control point is localized. This makes the curve construction
straightforward to use in practice as well as easy to implement. For
our purpose it is also desirable that tensioned Catmull-Rom splines
do not have "nice" guarantees such as differentiability and that they
can be made equivalent to piecewise linear construction by chos-
ing the tension parameter τ to be 1. This helps demonstrate that
these good properties are not at all necessary for parametrized loop
construction to be sensible. At the same time, tensioned Catmull-
Rom splines have good relationships to our signal processing un-
derstanding of interpolation [29] including converging to sinc in-
terpolation in the limit [30].

The tensioned Catmull-Rom spline is computed from an or-
dered set of four local control points. The temporal parameter ti
describes the location of interpolation between the spline control
point positions i and i + 1 (the second and third control point) as
follows [27]:

Pi(ti) =
[
1 ti t2i t3i

] 0 1 0 0
−s 0 s 0
2s s− 3 3− 2s −s
−s 2− s s− 2 s


Pi−1

Pi

Pi+1

Pi+2


We will refer to this equation as (9). Any variable named P

is a point in Rn and above equation holds independently in each
coordinate of the point coordinates, hence each coordinate can be
independently and equivalently computed allowing for the inter-
polation to be applied in any number of dimensions. We will con-
fine ourselves to n = 2. Pi(ti) is the interpolated coordinate of
the path between control points Pi and Pi+1 at parameter position
ti ∈ [0, 1). This path will be referred to as segment. These re-
lationships of control points in an ordered set to computed spline
segment are illustrated in Figure 2. For the remainder of the pa-
per we will simply say spline and spline interpolation, taking it to
mean tensioned Catmull-Rom splines and their interpolation if the
discussion refers to concrete computations.

It is customary to use a rescaled variation of the s parameter
for control. This new parameter τ = 1− 2s is called tension. The
classical Catmull-Rom spline [26] is recovered for a tension τ = 0
[27] and piecewise linear interpolation is achieved at τ = 1. We
will use1 τ in the range of [−1, 5] ∈ R.

1All our rendered computations use Processing’s tensioned Catmull-
Rom implementation via their curvePoint interface. https://
processing.org/reference/curvePoint_.html

Pi�1Pi�1

PiPi Pi+1Pi+1Segment
Pi+2Pi+2

ti 2 [0, 1)ti 2 [0, 1)

Figure 2: Catmull-Rom splines use four control points
Pi−1, · · · , Pi+2 to compute a spline segment parametrized by
t1 ∈ [0, 1) between the second and third control points.

4.2. Indexing and Parametrization of Spline Segments

All our splines will be closed. This means that if we choose a
configuration of N points, point N − 1 is connected to point 0.
Hence the indices of all points are in the quotient Z/ZN (usually
referred to as Z mod N ). Hence all index computations will be
computed mod N . The index i always refers to the second of
the four points needed to compute a spline interpolation, consis-
tent with equation (9). For example, assume the index position
is i = 0 and N = 4. To compute the interpolation between P0

and P1 the two additional control points are computed to be P−1

mod 4 = P3 and P2. Computing spline segments for each index
i ∈ [0, · · · , N − 1) will hence compute a closed spline. The to-
tal parametrization of the whole closed loop is t = [0, 1) which
is divided evenly between each control point pair. Hence the cur-
rently addressed control pair index i is computed from t as follows:
i = ⌊N · t⌋ mod N . The time parameter ti used for each pair
is computed from the loop parameter as ti = t ·N mod 1. This
implies that all ti ∈ [0, 1). Points in a given spline shape will be
identified with a given superscript P ◦

i . If we refer to a complete
sequence of points the index subscript will be omitted.

4.3. Examples 1: Four Point Diamond

The first concrete example of a closed spline loop is defined by the
following control point coordinate notated as pair of coordinates
in an ordered sequence:

P □ = [(0, 1), (1, 0), (0,−1), (−1, 0)] (10)

The total number of control points in this cycle is N = 4. The
location of the control points correspond to a square in a diamond
configuration as can be seen in center of Figure 3. Henceforth
we will simply refer to this configuration as diamond. The figure
shows additional spline interpolations for different tension param-
eters τ . While the linear realization and deformation under tension
for some parameters remain convex, convexity does break down
for tension greater than 1. The shape however retains a high de-
gree of symmetry and hence presents as rather regular.

4.4. Example 2: Four Point Irregular Concave L-shaped

The second concrete example of a spline captures a substantial
reconfiguration of the diamond four point loop defined in the pre-
vious section. It is defined by the following ordered sequence of
N = 4 control point coordinates:

PL = [(0.65, 0.65), (0.75,−0.7),

(−0.8,−0.85), (0.6,−0.6)]
(11)

The piecewise linear rendering of the control point configura-
tion for this shape can be seen in center of Figure 4. Due to its
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Figure 3: Closed loop tensioned Catmull-Rom splines with four
points in a diamond arrangement. τ = −1, 0, 1, 2, 5 from left to
right. The center configuration corresponds to a linear connection
between control point positions.

shape we will referred to this configuration as L-shaped. None
of the coordinates align and the configuration shape is concave to
begin with. Under the same tension variations as in the previous
section all configurations are concave and exhibit no obvious sym-
metries in the Euclidean plane.

5. PROJECTION OF SPLINE LOOPS

Our given examples are closed spline loops in the Euclidean plane
R2. All our examples are bounded within the interval [−1, 1] ∈ R
for each coordinate. The general requirement of a projection π
for our purposes is to be a map from R2 → [−1, 1]. Hence we
can use an orthogonal projection along the Cartesian coordinates
and satisfy the domain requirements of this map. Throughout all
examples we will project onto the second Cartesian coordinate
(x, y) → y matching the y axis in depictions of figures if they
display either loop geometries or sample amplitudes. The general
case of all possible orthogonal projections can be derived by ap-
plying a rotation in the plane and normalizing the maxima along
projection direction.

6. AUDIO OUTPUT USING SPLINE LOOPS

Given that we have discrete iterative phase functions, geometric
path constructions via splines, and suitable projections, we are
ready to compute audio samples. All computations were per-
formed at a rate of 44100 Hz. Each computed iteration provides
one sample. All samples are equally spaced.

For all computations involving the fast Fourier transform
(FFT) a length of 4096 bins was used. The signal was weighted
using a Blackman window function. For all parameter plane com-
putations over nonlinear feedback maps (the sine circle map and
its spline variations), the first 1000 iterations were computed but
skipped to eliminate short-lived non-linear transients, such as rapid
fixed point convergences [31]. Fourier spectra are normalized to
sampling frequency (SR) and plotted to Nyquist frequency (SR/2)
and amplitudes are normalized.

6.1. Bare Circle Map

The simplest example of an interactive phase function is the bare
circle map of equation (3). For a sinusoidal projection function we
would call this oscillator sinusoidal. With the spline construction
we can now replace the base sinusoidal projection with dynamics
on spline loops. Hence, this case constitutes a deformed general-
ization of the sinusoidal oscillator to other loop shapes.

Figures 6 shows the Fourier spectrum of the diamond spline
of equation (10) under orthogonal projection for tension parame-
ters τ = −1, 1 and 5 (compare Figure 3 for the respective spline
shape). The same tension parameters were also rendered for the

Figure 4: Closed loop tensioned Catmull-Rom splines with four
points in an irregular non-convex L-shaped arrangement. τ =
−1, 0, 1, 2, 5 from left to right. The center configuration corre-
sponds to a linear connection between control point positions.

L-shaped spline of equation (11) (see Figure 4 for its shapes).
The resulting Fourier spectrum is depicted in Figure 7. As was
to be expected, none of the spectra shows a sinusoidal oscillator.
Rather we see rich yet discrete spectra of varying regularity and
strength corresponding to the underlying spline deformations. The
rightmost spectra for each shape show aliasing peaks as no anti-
aliasing2 has been applied.

6.2. Sine Circle Map

As with with standard sinusoidal oscillation, the canonical form of
feedback FM uses sinusoidal projections. We can however use the
underlying dynamics of the sine circle map to generalize feedback
FM to use deformed circles as "carriers".

Figure 5 shows a comparison of various deformation of a
closed loops from the circle with the discrete dynamics of the sine
circle map after equation (5). The figure uses parameter planes
with perceptual measures [31]. Each pixel color represents the
value of an aggregate measure of spectral content of the audio sig-
nal at a given parameter pair. We employ the PeakSparsity mea-
sure, which is defined as follows [31]:

arean =
n∑

m=1

sortm(f) sortn(f) are sorted FFT bins

cn =

{
1 if

∑n
m=1 aream ≤ mean

0 otherwise

DPS =
N∑

n=1

cn (12)

The PeakSparsity measure is designed to characterize how peak-
dominated a spectrum is and it leans on an integration notion of
the spectral information. The core idea is to compute the area un-
derneath the spectrum, which captures the mean of the spectrum.
Peaks will contribute more to the overall area than a flat spectrum
or valley areas between peaks. Hence sorting the spectrum by peak
heights and counting the number of peak bins that are required to
reach the mean will differentiate spectra with strong peaks that
dominate the integral. A flat spectrum will have a count of half
the bins. A single peak in an otherwise zero spectrum will count
1 bin. Hence we normalize the range between 1 and the number
of bins over two to get the dynamic range of the measure which
is mapped onto a color palette as can be seen on the right in Fig-
ures 5 and 8. Blue corresponds to a single dominant peak, while
red corresponds to a flat spectrum. We expect simple oscillatory
and mode locking regions to show near blue and regions captured

2Anti-aliasing strategies for this setting are beyond the scope of the this
paper.
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(a) Circle (b) Diamond
τ = −1 τ = 5

(c) L-Shaped
τ = −1 τ = 5

Figure 5: Parameter planes using the PeakSparsity measure computed from 4096 point FFT over parameter ranges Ω = [0, 1) and k =
[0, 1.5) for the sine circle map for (a) circle, (b) diamond shaped spline (c) L-shaped spline. Tensions shown are τ = −1 and τ = 5 if
applicable.

Figure 6: Spectra for the diamond shaped spline for τ = −1, τ =
1 and τ = 5 with Ω = 0.03141593 (corresponding to 1385.4Hz
at 44 100Hz sampling rate.).

by fixed points to show in near red. Loosely, more peaks mean a
richer spectrum, so the transition from blue to red corresponds to
an increasingly rich spectrum. Near red this interpretation can fail
due to the potential of silence from fixed points, which would also
produce a flat spectrum, but for values between light blue and yel-
low this ambiguity between flat and silent spectrum does not exist
and therefore the intuition is sensible and allows us to characterize
spectral changes in visualization.

The parameter plane is filed by sweeping over two parameters
to be studied. The two parameters of interest for the sine circle map
are Ω, the frequency of the carrier — in the language of feedback
FM — and k, the modulation strength, which also can be thought
of as the strength of the feedback nonlinearity. For k > 1 the
dynamics transitions into chaotic behavior and emerging triangular
"tongues" correspond to regions of mode locking [23, 20].

Figure 5 shows feedback FM on the left. Each spline shape
(diamond, and L-shaped) is displayed for two tension parameter
choices (τ = −1 and τ = 5). The picture shows that the general
structure of the sine circle map is preserved but modified under
different loop geometries. For the circle case, one sees that for
low nonlinear feedback (k << 1) this case shows low spectral
richness (blue). For other loop geometries, we observe an increase
in spectral richness (green to yellow). The degree to which the
spectrum is enriched as a function of τ mirrors that of the bare
circle map depicted in Figures 6 and 7.

Figure 7: Spectra for the L-shaped spline for τ = −1, τ = 1
and τ = 5 with with with Ω = 0.03141593 (corresponding to
1385.4Hz at 44 100Hz sampling rate.).

7. PROJECTION OF FEEDBACK OR MODULATION
ONTO AN INTERATIVE PHASE

Modifications of the sine circle map have previously been studied
by changing the nonlinear perturbations function to piecewise lin-
ear, or Fourier-series functions instead of the sine function [21].
In the spirit of our geometrizing loops and projections instead of
functions, we can repeat the process we just employed to change
the base or "carrier" loop geometry for the non-linear perturba-
tion function in the iterative phase function that either is used for
feedback, as in the case of the sine circle map, or for modulation.
To illustrate this process we rewrite the sine circle map equations
(5-6) to replace the sine projection with a general one:

xn = xn−1 +Ω+Hp1(xn−1) mod 1 (13)
yn = p0(xn) (14)

We have now two projections related to a parametrized loop. The
case studied before is now label p0(·) and the new projection is
called p1(·). This p1 can then be computed by the same processes
already discussed. With reference to typical nomenclature in the
signal modulation literature, we will refer to topological circles
geometrically realized and projected by map p0 as base or carrier.
And we will refer to the same for p1 as modulation.

Taking the example of close spline curves, we are now able
to take one arbitrary closed spline as carrier and another arbitrary
closed spline as a modulation, hence allowing for both their defor-
mation from the circle simultaneously.

The results of deformations of both base and modulation os-
cillations are collected in Figure 8. All examples for splines are
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(a) Circle

Diamond L-Shaped

(b) Diamond

Diamond L-Shaped

(c) L-Shaped

Diamond L-Shaped

Figure 8: Parameter planes using the PeakSparsity measure computed from 4096 point FFT over parameter ranges Ω = [0, 1) and k =
[0, 1.5) for the general circle map for (a) circle, (b) diamond shaped spline at tension τ = 5, and (c) L-shaped spline at tension τ = 5. For
each the figure shows the effect of using a (left) Diamond and (right) L-shaped spline for the feedback projection.

rendered for a tension parameter of τ = 5. Case (a) captures the
case were the base is still the Euclidean circle but with modula-
tion by both diamond and L-shaped splines. This case constitutes
a τ = 5 deformation of the modulation for the case for the circle
depicted in Figure 5 (a). Additionally, the figure shows the case
where the base space and the modulation oscillation is deformed.
We observe that across all cases the deformation of the modula-
tion oscillation leads to substantial changes in the pattern of the
Arnold tongues. If the modulation spline loop is diamond, then
the Arnold pattern stays symmetrical. For the L-shaped loop the
pattern becomes asymmetrically skewed, a phenomenon also ob-
served for non-symmetric nonlinear functions [1]. Furthermore we
observe that deformations of the base oscillation does again show
corresponding changes in spectral richness in the low nonlinearity
range (k << 1). However, additionally, the deformation of the os-
cillator accelerates the transition into high richness spectra as can
be seen comparing Figure 5 (a) and Figure 8.

7.1. Cascading Projections onto Multiple Iterative Phase
Functions

The process discussed in the previous section can be continued for
cascading modulations or feedback:

xi
n =xi

n−1+Ω+Hipi+1(fi(x
i
n−1, x

i+1
n−1, ω

i
m)) mod 1

∀i ∈ 0, .., N ∈ N
(15)

yn = p0(x
0
n) (16)

where fi is an iterative phase function composed of feedback,
modulation by another iterative phase function3 xi+1 and a po-
tential "modulation frequency" constant ωi

m. There are N itera-
tive phase functions for each modulation cascade and associated
constants Hi, ωi

m and projection on the previous iterative phase
function pi+1. The first iterative phase function can be thought of
as the carrier and it projects audio data via p0. All these projec-
tions can be replaced by the geometric path construction following
equation (8).

3All superscript notations here are indices and not exponents.

8. CONCLUSIONS

Recently oscillatory sound synthesis methods have been reformu-
lated as discrete dynamical systems over a circle topology. In this
paper we illustrate the flexibility in terms of geometric realization
enabled by this formulation. In particular, many classical modu-
lation and feedback oscillatory techniques can be generalized to
use a wide range of closed path constructions in lieu of the classic
circular oscillator. Hence, we provide a general context in which
many known oscillatory synthesis techniques can be applied. In
particular we discuss the role of mapping a path parametrization
into a potentially high-dimensional substrate space, and the pro-
jection down to audio samples. This yields a clear criterion of
which aspects of the geometry are relevant for audio outcomes,
and which are free to be used for visual expression. We illustrate
the robustness of the construction by demonstrating chaotic oscil-
lations using feedback modulations over non-circular loops in the
plane.

In this paper we have ignored aliasing as a topic, though of
course, for any practical use, it is relevant. Particularly the sharp
edges of linear interpolations as achieved with a tension parameter
of τ = 1 will alias. However, over the last decade, a body of
research has developed uses spline interpolation for anti-aliasing
[32, 33, 34]. Specifically the piecewise linear case in the plane
has been investigated already [35]. The full development of this
question is future work.

This paper used splines to illustrate constructive examples but
did not offer a full theory of the relationship to embedded spline
loops under projection to audio outcomes and specifically precise
predictions of spectral properties. Such an endeavor is beyond the
scope of this paper. This topic is technically rich and should offer
a wealth of potential future research avenues.

Ultimately the main aim of this paper is to show that topologi-
cal constructions can give clarity to synthesis methods and circum-
scribe proper generalizations of known techniques.
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