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ABSTRACT

The process of creating drum sounds has seen significant evolution
in the past decades. The development of analogue drum synthesiz-
ers, such as the TR-808, and modern sound design tools in Digital
Audio Workstations led to a variety of drum timbres that defined
entire musical genres. Recently, drum synthesis research has been
revived with a new focus on training generative neural networks
to create drum sounds. Different interfaces have previously been
proposed to control the generative process, from low-level latent
space navigation to high-level semantic feature parameterisation,
but no comprehensive analysis has been presented to evaluate how
each approach relates to the creative process. We aim to evaluate
how different interfaces support creative control over drum gen-
eration by conducting a user study based on the Creative Support
Index. We experiment with both a supervised method that decodes
semantic latent space directions and an unsupervised Closed-Form
Factorization approach from computer vision literature to parame-
terise the generation process and demonstrate that the latter is the
preferred means to control a drum synthesizer based on the Style-
GAN2 network architecture.

1. INTRODUCTION

Sound synthesis techniques for percussion sounds have evolved
significantly throughout the last decades, with many techniques
being associated with and even defining entire Electronic Music
genres. In early times, timbral characteristics of percussion were
obtained by modifying the acoustic properties of the instruments
themselves – for instance, the use of different shell configurations
or materials for constructing drums, or different shapes and alloys
for cymbals. Analogue synthesis paved the way for creating and
designing percussive sounds electronically. Drum machines such
as the Roland TR-808 generated sounds by combining synthesised
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tones with white noise, which provided novel drum timbres [1].
These drum machines became a staple in a variety of music genres
including Hip Hop, House and Techno. More recently, with the
development of music-making software such as Kick21, SubLab2

and the default drum synthesizers available in Digital Audio Work-
stations, digital drum sound creation became common practice for
music makers of all backgrounds, enabling advanced digital signal
processing techniques to be applied to drum sound design.

Recent advances in Deep Learning introduced novel method-
ologies for synthesising data. Instead of relying on experts for de-
signing systems to generate specific kinds of data, these method-
ologies are data-driven: the algorithms learn how to represent the
distribution of data on which they are trained. Architectures such
as Autoregressive Networks [2, 3, 4], Variational Autoencoders
(VAEs) [5], and Generative Adversarial Networks (GANs) [6]
have all been proven to generate high-quality results in a variety
of domains, from images of human faces to musical audio. Be-
sides achieving the best synthesis quality in several domains, re-
cent work has shown that GANs can even capture high-level se-
mantic concepts [7] in the latent space dimensions driving the net-
works. Nevertheless, determining the correct latent space feature
to manipulate to achieve a specific variation in the data space can
be cumbersome – especially when dealing with high-dimensional
latent spaces. To overcome this issue, new techniques have been
proposed to find directions in the latent space that correspond to
semantic concepts, either in a supervised [8] or unsupervised man-
ner [9].

Recently, research into percussive sound creation using gener-
ative deep learning models has been receiving increased attention.
Both DrumGAN [10] and Adversarial Synthesis of Drum Sounds
(ASDS) [11, 12] employed the GAN training paradigm for this
task. Each proposed its own methodology for controlling the syn-
thesis, conditioning on timbral features, and the drum class respec-
tively. However, neither of these studies evaluated user preference
between their respective approaches to controlling the generation
process.

The main goal of our research is to evaluate 3 different
methodologies for navigating the latent space of a GAN trained to
generate drum sounds. To this end, we adapted StyleGANv2 [13]

1sonicacademy.com/products/kick-2
2futureaudioworkshop.com/product/sublab/
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to accommodate the dimensionality of the time-frequency rep-
resentation of musical audio and trained the network on a pri-
vate dataset of drum sounds. Both a supervised [8] and unsu-
pervised [9] method were applied to the trained network to find
perceptually salient directions in the latent space. Finally, a user
study based on the Creativity Support Index [14] was employed to
compare these two latent navigation approaches against a simplis-
tic approach to latent space vector manipulation.

2. GENERATIVE MODELS FOR DRUM SOUND
SYNTHESIS

The earliest work on drum sound synthesis using Deep Learning is
the Neural Drum Machine [15]. It coupled a Conditional Wasser-
stein Auto Encoder [16] trained on the magnitude component of
the spectrogram of percussive sounds together with a Multi-Head
Convolutional Neural Network for reconstructing the audio from
the spectral representation. Principal Component Analysis (PCA)
was used on the low-dimensional representation learned by the au-
toencoder to select the 3 most influential of the 64 embedding di-
mensions. These were provided to the user as a control interface.
However, these user-controllable parameters are abstract and were
not shown to be perceptually or semantically meaningful to the
goal of parameterising the generation process. The data used for
training this network was a proprietary dataset of drum sounds,
which could not be shared, making the work non-reproducible. In
Neurodrum [17], a feed-forward neural network using a Wave-U-
Net architecture [18] was conditioned on the AudioCommons tim-
bral characteristics3 to synthesize drum sounds. These features
were identified from the 7 most relevant search queries used in
Freesound[19] and were calculated by combining existing high-
level features. Some of these features are brightness, boominess
and sharpness. The conditioning features allowed for reliable and
intuitive control of the sound generation process for music makers
while taking advantage of the fast generation characteristic of the
Wave-U-Net. The main shortcoming of this approach was the au-
dio quality of the generated data – which was far from the quality
found in professional drum samples. A different control method-
ology for generating drums was presented in CRASH [20]. In
this work, diffusion models and a conditional U-NET are used to
enable interpolation on the noise of the latent space to produce
sounds “in between” drum classes.

Two approaches based on GANs have been recently proposed:
DrumGAN [10] and ASDS [11]. In ASDS, the authors trained a
conditional Wasserstein GAN that learns to generate waveforms
of drum sounds in high-resolution (44.1kHz). A label of the de-
sired drum sound was used as a conditioning signal (for example
‘kick’, ‘snare’, or ‘cymbal’), and generation control was based on
the corresponding 3-dimensional embedding space learned by the
network. Despite the network’s high-resolution output, some au-
dio artefacts were still present in the generated audio. DrumGAN,
on the other end, employed the same conditioning scheme as Neu-
rodrum – high-level timbral features, but on a Progressive Grow-
ing GAN [21]. This network was trained on the spectrograms and
was able to generate both the real and the imaginary components
of this representation. This permitted the use of the Inverse Short
Term Fourier Transform to return output spectrogram data to the
audio domain. The resulting sounds were of very high quality, de-
spite the use of a 16kHz sampling rate. However, the coherence

3github.com/AudioCommons/timbral_models

between the input values in the control signal and the resulting
analysis of the output was lower than that achieved by the Wave-
U-Net approach.

Despite the significant research effort in this area, no studies
have yet compared the various approaches made to controlling the
synthesis process itself. In this work, we compare an unsuper-
vised approach – where synthesis control is determined based on
the learned weights of the network itself, against a supervised ap-
proach – where features determined from data generated by the
trained network are used to infer synthesis control. Since existing
pre-trained GAN networks rely on private data and are trained with
conditioning features, we train a new StyleGAN2-based model for
this study.

3. STYLEGAN2

As its name implies, StyleGAN2 is a flavour of GAN – a neural
network architecture that exploits adversarially training indepen-
dent generator (G) and discriminator (D) networks. The input to
the former are one-dimensional vectors z from a latent space Z -
an i.i.d. Gaussian probability distribution, while the latter is input
with one-, or multi-dimensional, vectors of data x from the data
space X , which represents all real data instances. The generator is
tasked with learning a mapping between pz(z), and pdata(x), the
probability distribution of all training data samples. The discrimi-
nator is a classifier that ideally scores real data examples (training
data) with a score of D(X) = 1, and generated data examples
with a score of D(G(Z)) = 0. Thus, the discriminator wishes
to maximize the probability of assigning the correct label to both
training data and generated data. For training data, it is trained to
maximise the expected value over all instances in X:

EX∼pdata [logD(X)] (1)

Likewise for generated data, the discriminator is trained to max-
imise the expected value over all generated fake instances G(Z):

EZ∼pz [log(1−D(G(Z))] (2)

while the generator works to minimize Equation 2. Adversarial
training amounts to a two-player minimax game between the gen-
erator and discriminator networks:

min
G

max
D

V (D,G) := EX∼pdata [logD(X)] +

EZ∼pz [log(1−D(G(Z))]
(3)

StyleGAN2 is part of a lineage of generative models devel-
oped by the NVIDIA research team. Initially motivated by stabilis-
ing the training process for GANs, Karras et al. proposed ProGAN
– a new model architecture and corresponding training procedure
that ‘progressivly’ trained layers of a deep convolutional GAN
against different downsampled resolutions of its training data [21].

StyleGAN radically revised the deep convolutional GAN ar-
chitecture, by redefining the functional relationship between latent
space vectors and the generator network. [22]: (i) As a means to
disentangle possible non-linear subspaces within the normally dis-
tributed latent space z ∈ Z, a learned intermediate latent space,
or style space, w ∈ W , was introduced. Connected to the la-
tent space by a non-linear mapping, f : Z → W , the style space
doesn’t have to support sampling according to any fixed distribu-
tion; (ii) Instead of feeding the latent vector directly to the gen-
erator network like in ProGAN, StyleGAN fed the generator with
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a fixed seed and applied the style vectors in w across each layer
of the generator through an affine transformation. This effectively
applied the affine-transformed style to each level of resolution in
the network, influencing coarse features at lower resolution layers,
and fine-grained features at higher resolution layers.

Improving on ProGAN’s unsatisfactory performance in gen-
erating stochastic image features (hair, background foliage, pores,
etc.), StyleGAN further introduced noise to each resolution layer
of the generator, scaled by a learned weight. While the network
generated state-of-the-art images, artefacts from the training pro-
cedure – notably shift-invariance, were left as open questions for
future work.

StyleGAN2 introduces several improvements on the original
StyleGAN architecture [13]. To address ‘blob’-like artefacts that
were common in generated StyleGAN images, StyleGAN2 re-
places inter-layer normalisation (Adaptive Instance Normalisation
(AdaIN), which independently normalises both the mean and vari-
ance between adjacent convolution layers) with what Karras et al.
refer to as weight demodulation. In general, the goal of inter-layer
normalisation is to remove the statistics of the applied style vector,
w, from the output feature map. However, by normalising both
the mean and variance between layers, information discovered by
the network about the magnitudes of the features relative to each
other is potentially destroyed – which is speculated as a culprit for
the ‘blob’-like artefacts. Weight demodulation is proposed as a
‘weaker’ means to normalise than AdaIN (and respectively Pixel-
wise normalisation in ProGAN), since it is based on statistical as-
sumptions of the signal passing through the layer rather than the
actual contents of the feature map – which thus preserves relative
magnitude information between layers.

Furthermore, the StyleGAN2 network is no longer trained pro-
gressively: it was shown that with a large enough training dataset,
the gradient updates applied to the network during training are
roughly in line with how ProGAN trains – ie. early training
focuses on lower resolution layers, and progressively fine-tunes
higher resolution layers; and without the risk of shift-invariant im-
age generation.

The many innovations of StyleGAN2 led us to believe that
it would be a well-suited architecture to synthesize drum sounds.
Notably, given the many different drum classes present in our
dataset, the disentangled nature of the network architecture’s style
space presents the potential for latent conditioning suitable for co-
herent interpolation between drum classes. Furthermore, the train-
able stochastic noise components fed to each network layer are
well suited for the task of generating the noise components com-
mon to drum sounds – from kick drum transients to sustained hi-
hats and cymbals.

4. CONTROLLING THE GENERATION

To allow a degree of control over the synthesis process in genera-
tive models, several approaches have been proposed. Previous re-
search on percussive sound generation used conditioning features
which, based on an external conditional signal c, force the model
to learn the conditional probability p(x|c). The chosen condition-
ing signal c can vary in terms of how much information it contains,
from low information signals like class labels (e.g. kick, snare or
cymbal), to very rich conditioning signals like the envelope of the
drum sound.

In this paper we compare supervised and unsupervised ap-
proaches for finding latent directions in the learned latent space

of GANs. While conditioning can be used as a control for the
generation process, we want to create a fair comparison between
approaches. We therefore focus on approaches that do not require
constraining the network during training and can be applied di-
rectly to a pre-trained model. Our goal is to find latent direc-
tions n ∈ Rd, with some interpretable meaning, which allow the
modification of a sound G(z) with latent code z to a new sound
G(z′) = G(z + αn) where α represents the amount of modifica-
tion.

Unsupervised methods rely on applying dimensionality reduc-
tion to the trained latent space to find the directions n that corre-
spond to the most significant change in the output. Early experi-
ments [23] relied on generating data from points in the latent space
and posterior application of PCA to discover the directions. In this
work, we use SeFa [9], a closed-form factorization method that
does not require sampling and can learn directions directly from
the weights of the trained model. The paper shows that given any
latent code z, and the weight matrix A, the edit operation G(z′)
can be achieved by adding the term αAn on the projected code.
Therefore, A contains all information related to the output varia-
tion. The basis for finding the latent directions in SeFa is to solve
the optimization problem:

n = argmax
n∈Rd:nTn=1

||An||22 (4)

where ||.||2 denotes the l2 norm. The solutions for this problem
are shown to be the eigenvectors of ATA with the largest eigenval-
ues. This method showed remarkable performance when applied
to the pre-trained StyleGAN [22] model for generating faces, be-
ing able to identify the directions corresponding to pose, presence
of glasses, gender and amount of smiling, in a more disentangled
manner than PCA.

Supervised methods for discovering latent space directions re-
quire an annotation procedure on synthesised data to train clas-
sifiers in the latent space. In InterfaceGAN [8], it is assumed
that, for binary characteristics, there is a hyperplane in the la-
tent space which separates positive and negative examples. To
find the hyperplane, a large amount of data needs to be gener-
ated from the trained network to be later classified using classi-
fication algorithms. The authors experimented with classifiers for
the pose, smile, age, gender and eyeglasses to get positive and
negative labels for the generated data and used Support Vector Ma-
chines (SVMs) to then find the dividing latent space hyperplane for
each characteristic. The direction n that encodes a characteristic to
modify is therefore a normal vector of the discovered hyperplane,
which passes by, z, the latent code we want to modify. It is also
shown that the larger the magnitude of the modification α is, the
more affected the sample is according to the encoded direction –
despite n being found through a binary classification hyperplane.
This algorithm also has shown remarkable performance when edit-
ing faces in terms of pose, smile and age.

5. METHODOLOGY

5.1. Dataset

The network was trained on the entire corpus of one-shot drum
samples included with Native Instrument Maschine Expansion re-
leases. Table 1 shows the distribution of sample counts for each
drum class in the dataset. These samples were all created by the
Native Instruments sound design department throughout the last
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Figure 1: StylGAN2 Generator (left) and Discriminator (right) architectures.

decade. As a result, there is an inherent consistency across the
dataset in terms of quality, onset locations, and pre-normalised
sample volumes.

Drum Class Count Drum Class Count
Claps 1547 Combo 91

Cymbal 1270 Hand Drum 99
HiHat 4645 Kick 4025

Mallet Drum 5 Metallic 73
Percussion 3365 Shaker 1122

Snare 3332 Tambourine 3
Tom 1017 Wooden 36
Total 20630

Table 1: Distribution of drum classes in the training dataset.

5.2. Data Pre-processing

As our network was trained on a two-dimensional spectrogram
representation of our audio data sampled at 16kHz, data pre-
processing was implemented as follows. (i) Audio samples were
resampled to 16kHz and zero-padded to 16k samples, representing
one second of audio data. (ii) A logarithmic ‘fade-out’ was added
to the last 30% of each audio vector. (iii) Audio vectors were nor-
malised to a floating-point range of [-1.0, 1.0]. (iv) Audio vectors
were converted to complex spectrograms, using the following pa-
rameters: hop size of 512 samples, window size of 2048 samples,
and an FFT size of 2048 samples. (v) Complex valued spectro-
gram reshaped into a 2 channel feature map of real and imaginary
components per channel. (vi) Finally, the DC component of the 2
channel spectrogram representation was removed.

5.3. Model and Training

The default implementation of StyleGAN2 provided by NVIDIA
was used, with some adaptations made to it to work with spectro-
grams of shape 1024×32: (i) The network was modified to handle
rectangular shapes instead of only square data. (ii) The resolution
of the smaller feature map in the generator was set to 64×2, which

is doubled every layer. (iii) The network was adapted to handle
only 2 channels, instead of the 1 or 3 channels commonly used
for image generation. We use 5 synthesis blocks in the generator
comprising a Modulated Convolutional and an Upsampling layer.
On the discriminator 5 blocks comprising of a Convolutional and a
Downsample layer are used. An overview of the complete network
is presented in Figure 1.

The network was trained on a virtual Google Cloud Platform
machine, using PyTorch’s GPU library Distributed Data Paral-
lel to train across 4 NVIDIA Tesla T4 GPUs. The latent space
and style space dimensions were both set to 512, and the learning
rate was set to 2e−3. A batch size of 8 examples was used. Al-
though the stated GAN training objective is to arrive at an equilib-
rium point, where the discriminator outputs similar scores for real
and generated data, in practice, the quality of data output from the
network is typically maximised before the equilibrium is reached.
A Frechet Audio Distance analysis was used to determine which
training epoch corresponds to the highest quality and most diverse
audio output [24]. Epoch 243, which corresponds to the network
being exposed to 5,012,000 spectrograms, generated a minimum
FAD score of 2.689. The code used to train and create the model,
as well as audio examples for the reader to assess the audio quality
are available on the accompanying website.4

5.4. User Interface

We want to evaluate how our drum generation model can help
foster creativity when assisting music makers in creating drum
sounds. To this end, we created a graphical user interface that
allows generating random sounds, navigating the Z latent space,
and also modifying sounds according to the directions learned by
the SeFa and InterfaceGAN algorithms. The interface can be seen
in Figures 2 and 3.

The first panel on the left of the user interface in Figure 2 rep-
resents the Z latent space. This is the first interface we evaluate.
The user can set the value for each of the 512 dimensions by either
drawing the vector with the computer mouse, or randomly seed-
ing each latent dimension, and generate the corresponding audio
output.

4aframires.github.io/stylegan2-ada-pytorch/
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Feature Boominess Brightness Depth Hardness Roughness Sharpness Warmth
Val. Acc. 100% 99.2% 99.2% 97.5% 100% 100% 100%
Test Acc. 70.9% 67.6% 72.7% 72.0% 52.3% 66.5% 81.8%

Table 2: SVM accuracy when separating positive and negative examples in InterfaceGAN.

Generate Random Seed

Generate Drum Sample

Save Drum Sample to Disk

Z-Space Seed SEFA Directions
0: 0.1

1: - 0.5

2: 0.0

3: 0.4

4: - 0.2

5: - 0.8

6: 0.7

Figure 2: Graphical User Interface with SeFa directions.

The second interface and control methodology we want to
evaluate are the 7 most significant directions returned by the unsu-
pervised SeFa algorithm when applied to our trained model. The
choice of 7 as the number of directions was to have the same num-
ber of control parameters as the timbral features used for Interface-
GAN. Similarly to the best-performing approach in the original
SeFa paper [9], we use the latent semantic factorization algorithm
on the W space. These parameters are exposed as 7 horizontal
faders, as shown in Figure 2, and are labelled and displayed in
decreasing order of importance.

The last interface to evaluate is the supervised directions pro-
duced by InterfaceGAN, shown in Figure 3. InterfaceGAN re-
quires the generation of examples from the trained network, as
well as posterior manual or automatic annotation. To this end,
we generate 10000 percussion sounds from our network and an-
notate them with the descriptors computed from AudioCommons
timbral models [25]. This set of 7 descriptors were obtained from
analysing recurrent query terms related to timbral characteristics
used for searching Freesound [19]. These features are hardness,
depth, brightness, roughness, boominess, warmth and sharpness,
and are calculated through regression models implemented in the
AudioCommmons Extractor5. These exact descriptors have been
previously used as conditioning features for controlling drum syn-
thesis in previous work [17, 10].

To obtain the desired directions in InterfaceGAN, we use the
latent embeddings in the W space, as these show higher classifica-
tion accuracy in the SVM training stage [26]. For the SVM train-
ing, we used 280 training examples, 120 for validation, and the

5https://github.com/AudioCommons/
ac-audio-extractor

Generate Random Seed

Generate Drum Sample

Save Drum Sample to Disk

Z-Space Seed Interface Directions
Hardness: 0.1

Depth: - 0.5

Brightness: 0.0

Roughness: 0.4

Warmth: - 0.2

Sharpness: - 0.8

Boominess: 0.7

Figure 3: Graphical User Interface with InterfaceGAN directions.

test set comprised the remaining 9600 samples. With this amount
of data, the supervised algorithm was able to achieve a separation
boundary which was able to separate negative and positive ele-
ments with decent accuracy as shown in Table 2. The parameters
for the training, validation and test split were the ones used in the
original InterfaceGAN article [26]. The high validation accuracy,
accompanied with lower values for test accuracy might indicate
that this split might not be the best, as there are a lot of test exam-
ples and the training data is fairly limited.

We provide examples of manipulating each of the 7 features
from SeFa and InterfaceGAN in the accompanying website4.

5.5. Evaluation

Ultimately, evaluating user control over the generation of drum
sounds focuses on the extent to which a user can express cre-
ativity. While designing a user study for evaluating the different
approaches to parameterising the StyleGAN2-based drum synthe-
siser, we determined that the Creative Support Index (CSI) is the
most relevant tool. The CSI is a psychometric survey designed to
evaluate the extent to which a ‘creative support system’ can assist
a user engaged in creative work – in this case synthesising drums.
The CSI measures six dimensions of creativity support: Explo-
ration, Expressiveness, Immersion, Enjoyment, Results Worth Ef-
fort, and Collaboration. It allows researchers to evaluate how
well a tool supports creative work overall and can pinpoint weak-
nesses in the various dimensions listed above. Table 3 provides an
overview of example statements with which the test subjects are
asked to rate from ‘Highly Agree’ (10) to ‘Highly Disagree’ (0),
while they evaluate each of the three approaches to parameterisa-
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Dimension Statement Example
Exploration "It was easy for me to explore many different ideas, options, designs, or outcomes, using this system or tool."
Immersion "My attention was fully tuned to the activity, and I forgot about the system or tool that I was using."

Results Worth Effort "What I was able to produce was worth the effort I had to exert to produce it."

Table 3: CSI example statements for 3 creativity support dimensions.

tion explored in the study: directly manipulating Z-Space, SeFA
latent directions, and InterfaceGAN latent directions.

As a final step in the evaluation, test subjects are asked to com-
plete a ‘paired-dimension comparison’, which assesses how each
subject values (or weights) each of the dimensions of creativity
support already evaluated in the rating scale section. With these
weights, the CSI score is determined by:

CSIscore =

(CollaborationRating × CollaborationWeigh +

EnjoymentRating × EnjoymentWeight +
ExplorationRating × ExplorationWeight +
ExpressivenessRating × ExpressivenessWeight +
ImmersionRating × ImmersionWeight +
ResultsWorthEffortRating ×

ResultsWorthEffortWeight) / 3.0

6. RESULTS AND DISCUSSION

The evaluation was completed by 14 participants with various de-
grees of music production knowledge, from no music experience
to professional music producer.

The results for the CSI evaluation are presented in Table 4.
SeFa was the preferred interface by the participants, followed by
the Z-space and the InterfaceGAN. SeFa has a clear preference
with a margin of 4.14 in relation to the second best performing
method. The results for InterfaceGAN and Z-Space are fairly sim-
ilar, with a difference between the two of just 0.67. The low
preference for InterfaceGAN could also be due to the low test-
score obtained when finding the directions. However, when ex-
ploring this parameter space, the directions seemed to correspond
to the desired attributes. Generally, participants reported having
fun and were positively surprised by the ease of generating per-
cussion sounds with each of the three techniques. Participants also
commented on having enjoyed the exploratory process.

Z-Space SeFa InterfaceGAN
62.85 ± 11.91 66.99 ± 11.38 62.18 ± 11.40

Table 4: CSI scores for the 3 latent space navigation schemes un-
der test.

Given the limited number of participants and their diverse
backgrounds, the CSI scores unfortunately bear large confidence
intervals and, therefore, these results cannot be said to be statisti-
cally significant. However, the trend towards favoring Sefa param-
eterisation in this exploratory study was further echoed in anec-
dotes from participants during the debrief.

By interacting with the SeFa latent directions, it was reported
that they were clearly related to specific concepts in the data space.
While the first two parameters controlled the drum class and the
amount of noise content respectively, the following controls con-
trolled finer characteristics such as the decay time, depth, and
boominess. The last controls labelled 5 and 6 did not impart
any consistent variation in sounds generated across different latent
samples.

Furthermore, participants reported an interesting user expe-
rience while interacting with the SeFa controls: If they wished
to create kick drums, they could simply tweak the SeFA sliders
(likely the first two sliders influencing drum class characteristics)
to produce a kick sample for the currently chosen latent vector
in the Z-Space. Then, subsequent randomly seeded latent vectors
generated kick drums with different timbral characteristics. The
same was found for hi-hats, toms, and snares, but less easily for
other percussion types. This is likely attributed to the former hav-
ing the highest representation in the training dataset.

On the other hand, a few participants characterised some In-
terfaceGAN parameters as redundant and not orthogonal to each
other. Some participants reported issues regarding a lack of consis-
tency from one seed to the next and not understanding the semantic
concepts behind the parameters. Although having labelled direc-
tions could be desired for some experienced participants, testers
valued the potential for exploring new timbres using SeFa with-
out the need for music production knowledge – for example, the
terminology employed by the InterfaceGAN UI.

In Table 5, we present the accumulated participant weights re-
sulting from the ‘paired-dimension comparison’ in the CSI study.

CSI Weight Value
Collaboration 0.64

Enjoyment 2.43
Exploration 3.64

Expressiveness 3.36
Immersion 2.00

Results Worth Effort 3.21

Table 5: CSI weights for each dimension.

From these results, it can be seen that the participants men-
tioned Exploration, Expressiveness and Results Worth Effort as
the most important dimensions of creativity support for generat-
ing drum sounds. The high importance for Exploration could be
the reason as to why SeFa scores highly in the CSI scale, as this
system allows a controllable but serendipitous exploration of the
latent space. Enjoyment and Immersion were still important but
not as significant as the previously mentioned ones. Collaboration
was the least significant dimension with a weight of almost 0.
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7. CONCLUSIONS

In this work, we evaluated three methodologies for designing and
editing drum sounds using Generative Adversarial Networks. To
this end, a StyleGAN2 network was adapted to work with audio
data and trained on a large private collection of drum sounds. We
adapted two methodologies that showed promising results in con-
trolling the generation of images – SeFa and InterfaceGAN – to our
use case. We compared these approaches against the unconstrained
navigation of the latent space of the network through a user test
based on the Creativity Support Index. Our user study found that
the unsupervised approach SeFa performed better for creative en-
gagement with the StyleGAN2 network and we described the ad-
vantages and disadvantages of each interface.

Avenues for future work include the research and development
of characteristics and classifiers better suited for the task of drum
synthesis, to further improve the supervised approach Interface-
GAN. Redoing the experiment in a more specific scenario (e.g.
replicating a drum sound or exploring drum sounds to fit a compo-
sition) could lead to a more confident result. Furthermore, creative
possibilities of the StyleGAN2 network such as style mixing and
adjusting magnitudes of noise at each resolution layer of the net-
work could be included in the latent direction analyses explored in
this paper, to further enrich the quality of the resulting parameter-
isation.
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