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ABSTRACT

In this paper, we propose a new processor capable of directly chang-
ing the microdynamics of an audio signal primarily via a single
dedicated user-facing parameter. The novelty of our processor is
that it has built into it a measure of relative level, a short-term
signal strength measurement which is robust to changes in sig-
nal macrodynamics. Consequent dynamic range processing is sig-
nal level-independent in its nature, and attempts to directly alter
its observed relative level measurements. The inclusion of such
a meter within our proposed processor also gives rise to a natu-
ral solution to the dynamics matching problem, where we attempt
to transfer the microdynamic characteristics of one audio record-
ing to another by means of estimating appropriate settings for the
processor. We suggest a means of providing a reasonable initial
guess for processor settings, followed by an efficient iterative al-
gorithm to refine upon our estimates. Additionally, we implement
the processor as a differentiable recurrent layer and show its effec-
tiveness when wrapped around a gradient descent optimizer within
a deep learning framework. Moreover, we illustrate that the pro-
posed processor has more favorable gradient characteristics rela-
tive to a conventional dynamic range compressor. Throughout, we
consider extensions of the processor, matching algorithm, and dif-
ferentiable implementation for the multiband case.

1. INTRODUCTION

The concept of dynamic range in a musical recording refers to its
variation of loudness over time. Dynamic range can be divided into
macrodynamics and microdynamics [1]. Macrodynamics refers
to the variation of the loudness over a relatively long time scale,
such as between the chorus and verse in a song. Variations over
a shorter time scale— for example, the variation in loudness be-
tween notes in the same musical phrase, or between the attack and
sustain sections of the same note—are known as microdynam-
ics. We generally perceive macrodynamics and microdynamics
differently. Recordings with extremely high levels of macrody-
namics will prompt listeners to turn down the volume of loud pas-
sages and/or turn up the volume of soft passages in order to main-
tain a consistent listening level. Meanwhile, recordings with high
levels of microdynamics are sometimes described as “punchy” or
“snappy”’ [2], whereas passages with low levels of microdynamics
may be considered to be more “sustained,” and this phenomenon
is generally agnostic to a signal’s macrodynamics.
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Throughout the various stages of the recording and production
process, the microdynamics of a signal can be adjusted through
the use of audio processors. Many such dynamic range adjust-
ment processors are in use, including for example, the transient
shaper. However, arguably the most popular one is the dynamic
range compressor, which is commonly used to to reduce the dy-
namic range of a recording (alongside its complementary proces-
sor, the dynamic range expander, which can increase dynamic
range) [3]. Despite its ubiquitious utilization, the standard com-
pressor/expander paradigm leaves a lot to be desired. Its parame-
terization is fairly unintuitive, with complex interactions between
parameters. Its processing is signal-level dependent, and therefore,
the exact behavior of any given setting cannot be intuited until it
is placed in the context of the signal it is applying processing to.
Moreover, its operation can be affected by the macrodynamics over
the course of a piece of music, so that different musical passages
undergo different amounts of dynamic range adjustment in the ab-
sence of any parameter automation.

In addition to dynamics processing, there has been signifi-
cant research aimed at objectively characterizing and measuring
the amount of microdynamics contained in an audio signal, moti-
vated by a desire to provide actionable metering information to
music creators and recording engineers alike [2, 4, 5, 6]. The
most primitive of these measures include the well-known crest
factor [7], while more perceptually relevant metrics include the
Loudness Dynamic Range (LDR) measure [2]. With the advent
of intelligent audio systems that leverage computer-aided decision
making [8, 9]), matching a specific sonic quality of source mate-
rial to that of a reference is an increasingly prevalent trend [10].
This has proved to be more tractable for matching overall level (by
means of level-matching [5]) or tone (by means equalizer match-
ing [11, 12, 13]), and poses more challenges for non-linear effects
such as dynamics processing [14, 15, 16], distortion [17, 18], etc.
It seems only natural that such measures of microdynamics would
prove useful for creating relevant objectives for matching the mi-
crodynamics between source and reference signals, especially if
said measures were ingrained into the dynamic range adjusting
processors themselves.

In this paper, we propose a new dynamic range processor that
can directly alter signal microdynamics, primarily by a single ma-
nipulation parameter. Built into our processor, and crucial to its
formulation, is a robust measure of signal strength which we di-
rectly attempt to alter during processing. We also offer a natural
extension of the processor to the multiband case, in which case, the
processor contains not only independent processing controls, but
also independent meters for each sub-band on which it operates.
The formulation of such a processor naturally provides a solution
to the task of dynamics matching, in which case we are interested
in transferring the microdynamic characteristics of a reference sig-
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Figure 1: (a) Notional short- and long-term amplitude envelopes over the course of a musical arrangement and (b) corresponding relative
level, where horizontal lines for 0, log Los and o5 represent ajong[n], the LDR, and the standard deviation of log L[n), respectively.

nal to some source material via the automatic selection of proces-
sor parameters. To this end, we offer a solution to the problem
by means of an iterative algorithm. We also implement our pro-
posed processor as a differentiable recurrent layer, and highlight
the ability of such a layer to be wrapped around gradient descent
optimizers whilst exhibiting fruitful gradient characteristics.

The remainder of this paper is organized as follows: In Sec-
tion 2, we provide a brief overview of relevant measures of mi-
crodynamics and the conventional dynamic range compressor. In
Section 3, we describe the proposed dynamic range adjusting pro-
cessor. Section 4 describes an iterative solution to the dynamics
matching problem using the proposed processor, while Section 5
involves the differentiable realizations of dynamic range proces-
sors with illustrative experiments therein. Lastly, Section 6 draws
conclusions and alludes to future work.

2. BACKGROUND INFORMATION

2.1. Objective measures of microdynamics

While many objective measures of microdynamics have been pro-
posed, a measure called LDR correlated best with perceived mi-
crodynamics in a perceptual test by Skovenborg [2]. Here, we
highlight some of the key steps to its computation. Given a sam-
pled input signal z[n], the LDR begins by defining the ratio be-
tween a short-term amplitude envelope ashor¢[n] and a long-term
amplitude envelope aong[n] as

ashm‘t[n] _ frms(x[n]2§7—short)
Along[n] frms([n]2; Tiong)

Lin] = (1)
We will continue to refer to ratios of this form as “relative level”
measurements of a signal z[n]. The function fr.ms(z[n]?;7) im-
plements the running root mean square (RMS) computation

(@3]
where the smoothing parameter « for a given time constant 7 is
generically defined as

aims[n] = ozx[n]Q +(1- a)aims[n —1]

and f, is the audio sampling rate. The LDR uses a “fast” inte-
gration time Tspo.-¢ On the order of 50 ms, along with a “slow”
integration time 7;on4 on the order of 3 seconds.

The purpose of this relative level metric is to measure changes
in signal strength in such a way that it can compensate for the
overall level of a particular musical passage, as is notionally il-
lustrated in Figure 1. In this contrived example, the overall sig-
nal level (as captured by ajong[n]) changes from one section of
a musical arrangement to another, which can have the effect of
distorting a measure of microdynamics defined purely in terms of
ashort[n]. Meanwhile, the relative level can capture the ways in
which aspore [1] varies about ajong[n]. Finally, the LDR quantifies
microdynamics as the high percentile (typically 95" percentile) or
maximum value of all observed relative levels (in decibels) over an
analysis window. Note that throughout this paper we will use the
notion of the log scale and decibels interchangeably for notational
convenience, as they are equivalent to each other up to a scaling
factor. Accordingly, we denote the LDR as log Lgs, as annotated
in Figure 1b.

LDR is conceptually similar to an earlier Dynamic Spread
(DS) measure proposed in [5], in that both involve calculating
statistics on a time-varying measure of loudness. Specifically, DS
considers the standard deviation and/or mean absolute deviation of
its loudness measure instead of the order statistic used by the LDR.
An important distinction is that LDR introduces the notion of the
long-term level calculation which is absent from the DS measure.
The long-term envelope represents signal macrodynamics, thus di-
viding by this slow envelope causes the LDR to measure only the
microdynamics of the recording. In contrast, DS includes infor-
mation about the microdynamics, but it is “contaminated” by the
effect of signal macrodynamics.

2.2. Dynamic range compressor

We briefly describe the dynamic range compressor, noting that the
dynamic range expander is defined in a similar but complementary
way [3]. This leads us to colloquially conflate the two processors,
referring to them as simply “the compressor.”” The compressor is

a=1—exp[—1/(7fs)] 3) parameterized by its threshold 7', ratio r, and time-smoothing con-
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stants for attack and release (7q++ and Ty¢1, respectively). First, a
logarithmic signal level log asnort[n] is extracted using an anal-
ogous running RMS detector as in equation (2) with relatively
fast integration time (hence the connection to and the reuse of the
ashort[n] term). Then, the processor calculates an initial, "raw"
gain curve grqw 1] via

“

The gain curve grq.[n] is subjected to time-varying smoothing of
the form

if ashore[n] > T

otherwise

exp [1/7 (T — log ashort[n])]

1

graw([n]

gln] = asnort[n]grawln] + (1 = ashore[n))gln — 1] (5)
where
o [ﬂ_{l—mm U (auefo)l, if graw[n] > gln — 1]
short =01 - exp[—1/(rreifs)], otherwise

(6)
yielding the smoothed gain trace g[n]. The output signal is com-
puted as y[n] = ¢ - g[n] - z[n], where the additional “make-up”
gain parameter ¢ accommodates for the fact that applying com-
pression/expansion to an input signal tends to decrease/increase
the overall signal level. The smoothed gain trace can be shifted
backwards in time to better anticipate transients (a concept known
as lookahead). However, we will limit our attention to causal ap-
plications throughout the course of this paper.

When its parameters are set correctly, the dynamics range com-
pressor indeed reduces the dynamic range of a signal. However,
from a usability perspective, the dynamics range compressor has a
number of deficiencies.

1. While the processor as a whole affects the microdynamics
of a signal, there is no single parameter that directly af-
fects the microdynamics of the output signal - instead, the
parameters interact in a complex way to reduce the micro-
dynamics. For example, lowering the threshold 7" will have
a more dramatic effect on the dynamic range if the ratio
parameter 7 is higher. In this way the compressor fails to
provide direct control over the microdynamics of the signal.

Additionally, the compressor has a dead-zone: if the thresh-
old T exceeds the highest level the signal achieves, the pro-
cessor will have no effect and will always apply unity gain.
Changing any parameter other than the threshold in this sit-
uation will not have an effect on the output audio.

Finally, the processor is level-dependent in the sense that
applying a static gain to the input signal may cause the pro-
cessor to have a different effect on the dynamic range. For
example, the static gain may cause the input signal to fall
entirely beneath the threshold. The processor is addition-
ally sensitive to the macro-dynamics of the input signal.
There may not be a single value for the threshold 7" that
will have the desired effect for both the verse and chorus
sections of a song if each section has a different average
level.

In the next section, we propose a processor for microdynamics that
provides direct control, has no dead-zones, and is not affected by
level or the underlying macrodynamics of the signal.
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3. PROPOSED DYNAMIC RANGE PROCESSOR

Motivated by the LDR, the proposed dynamic range adjusting pro-
cessor begins by defining a more generalized measure of relative
level than in equation (1). This generalization is necessary con-
sidering that the resulting level meter will now also form the basis
for a microdynamics processor. The resulting measure effectively
allows us to utilize the useful properties of the ratio-based rela-
tive level definition in equation (1), while borrowing the notion of
separate attack and release ballistics from the compressor in equa-
tions (5) and (6). Accordingly, we define relative level for our
processor as

fsnort(|z[n]|P; 71, 71)
Jiong(|z[n]|P; s, 71,7 )

Ashort [n] _

Lt = o]

N

where p is a constant defining the order of the amplitude enve-
lope (common values include 1 or 2, and we keep to p = 2 in
this work). The short- and long-term window functions, fsnort
and fiong, respectively, are parameterized by user-facing ballistic
controls which will be discussed shortly. Ultimately, the proposed
processor takes the measured relative levels, as defined by the bal-
listic controls, and attempts to directly alter them in order to adjust
the dynamic range of the input signal. This definition of signal
strength will prove critical to ensuring that the behavior of its pro-
cessing is independent to input level.

The short-term amplitude envelope asnort[n] in equation (7)
is used to measure more rapid changes in the input signal. Unlike
existing measures of microdynamics, the short-term window func-
tion fsnort used here is parameterized by separate time constants
for attack and release, 7 and 7, respectively, in a similar man-
ner as in the compressor. It implements the time-varying filtering
operation

Qshort [n} = Qshort ['I’L] ‘.’E[TL] ‘p+ (1 —Qshort [nDashort [nf 1] (8)

(C)]

The separate attack and release controls allow us to define the
rise and fall behaviors of the processor in potentially asymmet-
rical ways. Figure 2 illustrates the different rise and fall behaviors
exhibited when computing aspor¢[n] with different attack and re-
lease times on a 125 ms long rectangular pulse.

Meanwhile, the long-term amplitude envelope a;on4[n] in equa-
tion (7) tracks slower changes in the signal envelope. Again, this
envelope normalizes the short-term amplitude envelope, which is
particularly crucial as we desire our processor to be input-level
independent in its behavior. Thus, the relative level metric effec-
tively measures short-term signal energy “in light of” its long-term
energy. The ballistics of the long-term window function fiong is
parameterized by a scale parameter s > 1, which ultimately deter-
mines a single long-term time constant 7jong = $ - max (74, 7).
This conveniently mandates that the long-term window time con-
stant be strictly greater than those used by the short-term window.
Accordingly, the long-term window function implements the fil-
tering operation

where

1 —exp[=1/(71f5)],
1= exp[=1/(7,.f5)],

if |z[n]|? > ashort[n — 1]

otherwise

Oshort [’I’L}

@iong[n] = ong|[n]|” + (1 = iong)aiong[n — 1] (10)

with smoothing parameter ajong = 1 — exp[—1/(Tiong fs)]-
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Figure 2: Short-term amplitude envelopes computed with various
attack and release times (with no lookahead).

The processor attempts to directly alter the observed relative
levels of the input signal. We consider manipulations of the form

an

where m is a controllable parameter and L’ is the altered relative
level. This linear change on a decibel scale is similar to a typical
compressor or expander transfer curve, except that we are not us-
ing any threshold. The normalization feature of our relative levels
metric on which we apply this processing to allows us to use such
a simple processing model. A gain term is then computed on a

per-sample basis, given by
1/p
(Z1)

L[n](mfl)/p

log L'[n] = mlog L[n]

(LI

gln] =

= 12)
The output signal is given by y[n] = ¢ - g[n] - z[n], where again,
c is a user-facing make-up gain control. Void of any learning-
based approach, we have empirically found that c can be “inversely
linked” to m to provide some notion of automatic level-matching
to the input signal.

Withm > 1, the processor accentuates microdynamics, work-
ing as an expander, whereas with 0 < m < 1, microdynamics
are neutralized and the processor works as a compressor. Accord-
ingly, we consider m to function as an “amount” control for the
processor, allowing us to dial in the nature of the dynamic range
adjustment with a single amount control parameter. Moreover,
processing reverts to an identity operation by setting parameters
m = c¢ = 1. This is illustrated in Figure 3, where we apply the
proposed processing on a pulse-like signal with various settings
for m. Note that in general, unlike a transient shaper, the processor
adjusts the dynamic range of signals without the need to explicitly
detect and independently treat transient and sustained signal com-
ponents. Lastly, the use of the log representation in equation (11)
will become more clear when we consider the dynamics matching
paradigm in the following section.

The extension of the processor to the multiband case is rela-
tively straightforward, and is motivated by similar extensions of
microdynamics measures for multiband analysis and consequent
perceptual evaluations [4]. Given a K-band filter bank, the k"
crossover extracts a signal sub-band zx[n] from x[n]. The user-
facing parametric controls for the processor considered here are
the manipulation controls {mg, cx} and the short-term ballistic
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Figure 3: Processing of an impulse-like signal as a function of m
using the proposed processor.

controls {74 k, 7k } at each sub-band k, alongside a single long-
term scale control s, leading to sub-band specific long-term win-
dow time constants Tjong,x = $-max(7+,k, 74,k ). Accordingly, we
define relative level measures at each sub-band Ly [n], each with
their own ballistics, and altered measures L,[n] determined per
their independent sub-band manipulation controls. These, in turn,
naturally give rise to sub-band specific gain traces gx[n]. The out-
put sub-band is given by yx[n] = cx - gx[n] - zx[n], and sub-bands
are summed to form the output y[n] = >, yx[n]. In a musi-
cal context, we can imagine the multiband processor to not only
allow for independent processing of potentially different musical
elements occupying different ranges of the spectrum, but also to
deliver more transparent processing considering that each band is
now equipped with its own relative level meter. We refer readers to
our demo site at https://sites.google.com/izotope.com/dafx20in22-
audio-demo/home.

4. DYNAMICS MATCHING PARADIGM

Given source and target signals x[n] and z[n], respectively, we
extend the processor formulation in order to provide a solution to
the dynamics matching problem. In this case, we are interested in
automatically setting the parameters of the proposed processor so
that the microdynamic characteristics of z are transferred to y, the
processed version of x. Once again, we begin with the single-band
formulation and extend it to the multiband case thereafter. To this
end, we assume that the ballistic controls 7, 7}, and s are set a
priori to some notionally reasonable values (we consider means of
relaxing this constraint in the following section). The matching
task then involves inference of the m and c parameters.

4.1. Matching criteria

We consider the task of dynamics matching to be one of finding
processor parameters whose resulting processed signal y[n] has
the same dynamic range as that of the target z[n], as measured by
an objective microdynamics measure. As such, we must first de-
fine the measure of microdynamics that we will use for our match-
ing criteria. In this work, we opt to use the standard deviation of
the logarithm of the relative level log L[n] as a measure of mi-
crodynamics (as indicated by o, in Figure 1b). Compared to the
LDR, we note that, under a zero-mean Gaussian assumption, or-
der statistics and standard deviations are effectively equivalent to
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Figure 4: Output dynamic range o, as a function of processing
parameter m computed for various musical input signals.

each other up to a scaling factor. Compared to the DS measure, a
key distinction is that we consider not the standard deviations of
the short-term amplitude envelope, but rather that of the relative
level. We compute standard deviations in an online fashion using
Welford’s algorithm [19], accommodating learning to take place
in either offline or streaming contexts. We informally note that we
have also successfully utilized an LDR-like microdynamics mea-
surement (i.e. log Los or similar maximum statistic) for dynamics
matching using this very same algorithm. However, we feel that
the use of the standard deviation makes for a clearer presentation of
the method, considering Gaussian assumptions for microdynamics
distribution that we will make in the following subsection.

4.2. Matching algorithm

We begin by assuming that the logarithms of source and target rel-
ative levels are normally distributed with log L [n] ~ N(0,02)
and log L. [n] ~ N(0, 02), respectively. The zero-mean assump-
tion used here is reasonable when we consider that short-term am-
plitude envelopes, though momentarily higher or lower than the
long-term envelope, tend to deviate around the long-term enve-
lope, and thus, the logarithm of their ratio can be assumed to center
around 0. Under the Gaussian assumption, the transformation of
random variables described by equation (11) would seemingly re-
sult in processed output relative levels log Ly [n] ~ N (0, m?-c2).
Our goal then becomes to match the distribution of log Ly [n] to
that of log L [n], which amounts to matching their standard devi-
ations (conveniently matching our definition of microdynamics).
This would appear to be possible by setting m = o, /o, (in fact,
this was the impetus for developing the proposed processor in the
first place). It is evident, however, that when we reanalyze a pro-
cessed result y[n] that is generated with this setting, this does not
exactly hold true in practice. This is to be expected when we con-
sider that both the input signal relative level and the processor out-
put gains are updated at each sample, and that the output gain is not
expressed explicitly in terms of the input sample «, but rather in
terms of its time-filtered versions. The intuition gained here is still
useful, and forms the initial conditions for the dynamics matching
routine. Moreover, we note that the resulting output signal micro-
dynamics as a function of m is indeed monotonically increasing,
and often appears to be somewhat linear. This is illustrated in Fig-
ure 4, where we plot observed standard deviations o, as a function
of m over a few different input signals.

The behavior illustrated in Figure 4 suggests an efficient search
algorithm for m based on an “empirical gradient” technique, as
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Algorithm 1 Dynamics matching algorithm (single-band case)
(=1)

oy — Oy
mY 1
i+ 0
while [0 ™" — .| > e do
if 7 = 0 then
m® O'Z/O'?YL71>
else

m® — m=D L. (az — O'qgiil))
end if
yW[n] « D(z[n];m?,1) > Process with current amount
ol \[Var(log L)
1 1+1
end while
m 4+ m

¢ /S, 22 nl/ Y, (y )

y[n] < D(z[n];m,c)

> Analyze processed result

> Dynamics-matched audio

highlighted in Algorithm 1. The resulting method shares some el-
ements to that in [5], with the important distinctions that we are ap-
plying the approach to a processor that is better aligned to its (more
perceptually relevant) microdynamics measure used as a matching
criteria, thus making the nature of our iteration slightly different
(and actually more straightforward). We begin by analyzing the
microdynamics o, and o of z[n] and z[n], respectively. Our ini-
tial guess for the amount parameter is effectively m® « o, /0.
We denote the processing of z[n] using our proposed processor
with pre-determined ballistics and variable manipulation parame-
ters as y[n] = D(z[n];m,c). If we allow ourselves to generate
the processed signal ¥ [n] = D(z[n];m®,1), and to reana-
lyze the dynamic range O'LO) of its result y(* [n], we can derive an
estimate of do,,/Om|,,_, (), considering that we already know
o, and that it corresponds to the “zeroed-state” of our processor
with m = 1. The resulting slope can be used to suggest a Am by
which we should perturb our current estimate m(®, effectively ap-
plying a linear extrapolation considering we desire to produce an
output y[n] having microdynamics oy, = o.. We can iterate this
scheme until we achieve the desired target microdynamics (within
some small tolerance €). Additional constraints can be trivially
added in order to limit the number of iterations and/or constrain
the range of values that m can take on. Upon inferring a suitable
value for m, we measure the RMS of the processed output from
the final iteration, and derive a make-up gain amount c such that
we match the RMS of x. We process the signal one final time
y[n] = D(x[n]; m, ¢) (with inferred values of m and c¢), which in
this case, is more readily implemented by simply scaling the final
iteration’s output by the newly inferred value for c. Note that this
scaling does not impact the microdynamics measure of the output.

We exemplify the effectiveness of this approach with a simple
illustrative example. Specifically, we consider a short musical pas-
sage as our input signal x[n], and set the ballistic parameters for
our processor/meter to 7 = 1 ms, 7y = 10 ms, and s = 10. We
create two synthetic target signals z by rendering the input using
amounts Mep: = 2.0 (causing expansion) and m,p: = 0.25 (caus-
ing compression). Note that in general, the algorithm makes no as-
sumptions about the nature of the source and target signals (i.e. the
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Figure 5: Illlustrative example of the iterative dynamics matching
algorithm.

target signal need not be a rendering of the source signal using our
processor). However, this form of target generation gives us access
to its underlying ground truth processing parameters. We run our
optimization for 5 iterations on each pair of source and target sig-
nals, as illustrated in Figure 5. After just a few iterations, we are
able to match the microdynamics of both signals, with the inferred
amount parameters converging to their respective ground truth val-
ues. We observe how the mean absolute difference between pro-
cessed and target microdynamics approaches zero. Lastly, we note
that when matching dissimilar clips to one another, the observed
microdynamics will be a function of not only the applied dynamic
range processing, but also of performance aspects of the respec-
tive recordings. Accordingly, it is possible that these factors get
conflated when carrying out the matching algorithm.

Extending the matching algorithm to the multiband case is
again straightforward. We found that so long as crossover filters
are made steep enough, the core algorithm for determining my, can
be run independently on each sub-band k. We also considered a
“simultaneous update” strategy, in which case we consider the vec-
tor of sub-band amount controls m € R and update its elements
jointly. This is effective, but requires the additional computations
of combining/filtering into sub-bands at each iteration. Upon de-
termining m, for each sub-band, we process the signal with the
inferred amount controls and unity make-up gain. We compare the
RMS values of input and processed sub-bands, and use this to ap-
propriately set c. Level-matching each sub-band via the setting of
¢ performs a crude version of equalizer matching, which ensures
that the resulting multiband processing does not color the signal.

5. DIFFERENTIABLE IMPLEMENTATION

The matching approach outlined in the previous section describes
a sound means of determining appropriate processor settings given
fixed ballistic conditions known a priori. In order to expand upon
this to additionally infer ballistic control parameters, we would
need to leverage and/or bootstrap black-box optimization meth-
ods (such as the Nelder-Mead [20, 16] or particle swarm opti-
mization algorithms [21, 22]) around the current approach, or con-
struct differentiable versions of dynamic range processors as lay-
ers in a deep learning framework, which readily allow gradient
flow through them during backpropogation. We consider imple-
mentations of the latter, noting the increasingly well-known fact
that most any processor which can be expressed as a for-loop of
differentiable operations over present inputs and stored states can
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be constructed exactly in a differentiable framework using recur-
rent layers [23, 24, 11, 25]. The differentiable extension of such a
processor to the multiband case involves several instantiations of
the differentiable single-band processor, alongside an implemen-
tation of a differentiable crossover network, for which we can use
a standard infinite impulse response (IIR) design of Butterworth
filters and leverage an efficient implementation for training using
the frequency domain sampling method we proposed in [25].

Accordingly, we implement the proposed dynamic range pro-
cessor, as well as the conventional dynamic range compressor per
its definition in Section 2 and [3], as recurrent layers, and use
them to create gradient descent optimizers for a matching task. For
demonstrative purposes, we simply exemplify the ability to solve
the inverse problem of backing out the parameters which were used
to process a known input signal. We compare the mean squared er-
ror (MSE) between target and inferred waveforms, from which the
resulting processing parameters for each respective processor are
readily available (and are in fact the only trainable parameters of
our "model"). We found that the use of an absolute value activa-
tion function was sufficient for enforcing non-negativity of time
constants and relevant dynamic range adjusting controls (ratios,
amounts, etc.). We use the activation function s < (1+107°)+|s|
to enforce Tiong,k to be strictly larger than 74 5 and 7 V k.

We run similar experiments for the differentiable realizations
of both the proposed processor and the conventional dynamic range
compressor, operating on the same input signal x[n]. We process
z[n] with both processors, using the same numerical values for
its attack and release parameters (10 ms and 50 ms, respectively),
as well as the same value of 2 for the compressor ratio r and di-
rect amount control m, acknowledging that these parameters re-
sult in different output signal behaviors between processors. We
do this to acknowledge and verify that the results of optimization
are not obscured by considerations around numerical parameter
values/ranges between the two processors. Additionally, the stan-
dard compressor output was generated using a threshold 7" of -30
dB, whereas the proposed processor output was generated using
s = 10, amounting to a long-term integration time Tong of 0.5
seconds. Lastly, make-up gains c are set to unity for both pro-
cessors, such that no static gain is applied to either signal. The
resulting processed outputs serve as the target signals z for each
respective processor. We aim to minimize the MSE between the in-
ferred signal y and the target signal z for each processor, whereby
y could match z when the underlying processing parameters ef-
fectively correspond those used to generate z. Training uses the
Adam optimizer for 500 steps with a 10~ learning rate.

The results of our optimizations are illustrated in Figures 6
and 7. The plots in Figures 6a and 7a show that the outputs of
the differentiable realizations of the processors match their non-
differentiable counterparts. Moreover, the optimization routine,
when beginning from random initializations of processing param-
eters, can be successful for both processors, with optimized solu-
tions matching their intended targets. We also consider running
the optimization routines, initializing them from each processor’s
bypassed state/“zeroed-state.” This involves setting compressor
threshold 7" and ratio r and proposed processor amount 7 to unity.
The optimization results for this case are shown in Figures 6b and
7b. While the proposed processor has no problems with this ini-
tialization, the compressor optimization fails entirely. This signals
that the gradient of the compressor has dead-zones which, as one
would imagine, could complicate its use in various optimization
tasks. This is verified by Figure 8, which computes the change
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in the signal caused by perturbing select parameters from their by-
passed state. Indeed, so long as the threshold 7" is not set below the
maximum level of the input z[n] (—20 dB in this case), the output
of the compressor does not change, while the proposed processor
has a healthy derivative when deviating the value of m from 1.

6. CONCLUSIONS

We proposed a new method for intuitively adjusting the micro-
dynamics of an audio recording. Key to its effectiveness is the
inclusion of a relative level measure, whose values we attempt to
directly alter during processing. The dynamic range of a signal can
be easily increased/decreased primarily via a single amount con-
trol. The formulation of the processor is linked to a corresponding
microdynamics measure, and we described an iterative dynamics
matching algorithm based on this measure. We implemented the
processor as a differentiable recurrent layer, and illustrated how
it had better implications for gradient flow relative to a similarly
constructed compressor. Future work involves developing more ef-
ficient differentiable implementations of the processor, noting that
the backpropogation of recurrent layers at audio rate can lead to
computational bottlenecks. We are also interested in constructing
custom objective functions for dynamics matching within a deep
learning framework, extending the deep learning-based optimizer
to compare microdynamics of dissimilar signals.

7. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their
invaluable comments while preparing this paper.

8. REFERENCES

[1] B. Katz, Ed., Mastering Audio: The Art and the Science,
Focal Press, Oxford, 2002.

E. Skovenborg, “Measures of microdynamics,” J. Audio Eng.
Soc., Oct. 2014.

U. Zolzer, Ed., DAFX: Digital Audio Effects, Wiley, New
York, NY, USA, second edition, 2011.

S. Fenton and H. Lee, “A perceptual model of “punch” based
on weighted transient loudness,” J. Audio Eng. Soc., vol. 67,
no. 6, pp. 429—439, June 2019.

E. Vickers, “Automatic long-term loudness and dynamics
matching,” J. Audio Eng. Soc., Nov. 2001.

I. Shepherd, E. Grimm, P. Tapper, M. Kahsnitz, and I. Kerr,
“Measuring micro-dynamics—a first step: standardizing
PSR, the peak to short-term loudness ratio,” J. Audio Eng.
Soc., Oct. 2017.

W. M. Hartmann, Ed., Signals, Sound, and Sensation,
Springer, New York, NY, USA, 1998.

C.J. Steinmetz, J. Pons, S. Pascual, and J. Serra, “Automatic
multitrack mixing with a differentiable mixing console of
neural audio effects,” in Proc. IEEE Int. Conf. on Acoustics,
Speech and Sig. Proc. (ICASSP), 2021, pp. 71-75.

M.A. Martinez Ramirez and J.D. Reiss, “Modeling nonlin-
ear audio effects with end-to-end deep neural networks,” in
Proc. IEEE Int. Conf. on Acoustics, Speech and Sig. Proc.
(ICASSP), 2019, pp. 171-175.

(2]
(3]

(4]

(5]

(6]

(7]

8]

(9]

+ _\ienna

S
DBEx

254

[10] A. Sarroff and R. Michaels, “Blind arbitrary reverb match-
ing,” in Proc. Digital Audio Effects (DAFx2020), Vienna,
Austria, Sept. 2020, pp. 24-30.

S. Nercessian, ‘“Neural parametric equalizer matching us-
ing differentiable biquads,” in Proc. Digital Audio Effects
(DAFx2020), Vienna, Austria, Sept. 2020, pp. 265-272.

S.I. Mimilakis, N.J. Bryan, and P. Smaragdis, “One-shot
parametric audio production style transfer with application to
frequency equalization,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech and Sig. Proc. (ICASSP), 2020, pp. 256-260.

P. Bhattacharya, P. Nowak, and U. Zolzer, “Optimiza-
tion of cascaded parametric peak and shelving filter with
backpropagation algorithm,” in Proc. Digital Audio Effects
(DAFx2020), Vienna, Austria, Sept. 2020, pp. 101-108.

D. Sheng and G. Fazekas, “Automatic control of the dynamic
range compressor using a regression model and a reference
sound,” in Proc. Digital Audio Effects (DAFx2017), Edin-
burgh, Scotland, Sept. 5-9, 2017, pp. 160-167.

D. Giannoulis, M. Massberg, and J.D. Reiss, ‘Parameter
automation in a dynamic range compressor,” J. Audio Eng.
Soc., vol. 61, no. 10, pp. 716-726, Oct. 2013.

J. Bitzer, D. Schmidt, and U. Simmer, ‘“Parameter estimation
of dynamic range compressors: models, procedures and test
signals,” J. Audio Eng. Soc., May 2006.

M. Comunita, D. Stowell, and J.D. Reiss, “Guitar ef-
fects recognition and parameter estimation with convolu-
tional neural networks,” J. Audio Eng. Soc., vol. 69, no. 7/8,
pp. 594-604, July 2021.

H. Jirgens, R. Hinrichs, and J. Ostermann, ‘“Recognizing
guitar effects and their parameter settings,” in Proc. Digi-
tal Audio Effects (DAFx2020), Vienna, Austria, Sept. 8-10,
2021, pp. 310-316.

B. Welford, “Note on a method for calculating corrected
sums of squares and products,” Technometrics, vol. 4, no. 3,
pp. 419-420, 1962.

J.A. Nelder and R. Mead, “A simplex method for function
minimization,” J. Comput., vol. 7, pp. 308-313, Oct. 1965.

[11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

(19]

(20]

[21] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proc. of the Int. Conf. on Neural Networks, 1995, vol. 4,

pp. 1942-1948.

D. Moftat, “Objective evaluations of synthesised environ-
mental sounds,” in Proc. Digital Audio Effects (DAFx2018),
Aviero, Portugal, Sept. 4-8, 2018, pp. 221-228.

F. Esqueda, B. Kuznetsov, and J.D. Parker, “Differentiable
white-box virtual analog modeling,” in Proc. Digital Audio
Effects (DAFx2020in21), Vienna, Austria, Sept. 8-10, 2021,
pp. 41-48.

B. Kuznetsov, J.D. Parker, and F. Esqueda, ‘“Differentiable
IIR filters for machine learning applications,” in Proc. Dig-
ital Audio Effects (DAFx2020), Vienna, Austria, Sept. 2020,
pp- 297-203.

S. Nercessian, A. Sarroff, and K.J. Werner, “Lightweight and
interpretable neural modeling of an audio distortion effect us-
ing hyperconditioned differentiable biquads,” in Proc. IEEE
Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP),
2021, pp. 890-894.

(22]

(23]
(24]

[25]

222
DBEX



Proceedings of the 25™ International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

—20 - —20 A
_25 4
_30 4
N
N
r~ \\ —_ _30 .
o N o
2 40 N =
§ \\\\ i \\J/f s /f ‘GSJ —351
1 ~
= S ] i ~~o £
ooy | i 20
< ] : I <
— Input : 1 : —45 4 —— Input
=601 — Target H ____: H — Target
-=-- Initial I-==" ! - —504 === Initial
_70] = Optimized L= --- Optimized
. . . . -55 . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time (s) Time (s)
(@ (b)
Figure 6: Optimization of a differentiable compressor using (a) random initialization and (b) initialization from its “zeroed-state.”
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Figure 7: Optimization of a differentiable realization of the proposed dynamic range adjusting processor using (a) random initialization
and (b) initialization from its “zeroed-state.”
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