Proceedings of the 25™ International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

ON THE CHALLENGES OF EMBEDDED REAL-TIME MUSIC INFORMATION
RETRIEVAL

Domenico Stefani and Luca Turchet

Department of Information Engineering and Computer Science
University of Trento
Trento, Italy

domenico.stefani@unitn

ABSTRACT

Real-time applications of Music Information Retrieval (MIR)
have been gaining interest as of recently. However, as deep learn-
ing becomes more and more ubiquitous for music analysis tasks,
several challenges and limitations need to be overcome to deliver
accurate and quick real-time MIR systems. In addition, modern
embedded computers offer great potential for compact systems
that use MIR algorithms, such as digital musical instruments. How-
ever, embedded computing hardware is generally resource con-
strained, posing additional limitations. In this paper, we identify
and discuss the challenges and limitations of embedded real-time
MIR. Furthermore, we discuss potential solutions to these chal-
lenges, and demonstrate their validity by presenting an embed-
ded real-time classifier of expressive acoustic guitar techniques.
The classifier achieved 99.2% accuracy in distinguishing pitched
and percussive techniques and a 99.1% average accuracy in distin-
guishing four distinct percussive techniques with a fifth class for
pitched sounds. The full classification task is a considerably more
complex learning problem, with our preliminary results reaching
only 56.5% accuracy. The results were produced with an average
latency of 30.7 ms.

1. INTRODUCTION

Music Information Retrieval (MIR) is a field of research that fo-
cuses on the analysis and extraction of information from music.
Prominent examples of MIR tasks include beat-detection [1], on-
set detection [2], music transcription [3], and genre classification
[4]. To date, research in this area has mainly focused on offline
methods, which operate on large datasets and do not have tight
constraints on execution time. However, the sub-field of real-time
Music Information Retrieval (rt-MIR) has been gaining more in-
terest recently, since it can be used for the development of music
performance tools such as digital musical instruments [5] [6], in-
cluding smart musical instruments [7].

Rt-MIR offers a number of challenges and constraints that
are not present in the offline context, as real-time systems pose
strict requirements on the execution time of algorithms and the la-
tency of these systems [8]. These requirements are particularly
stressed by the complexity of deep learning, which can deliver
highly accurate results at the expense of computational resources.
Moreover, embedded devices and single-board computers have be-
come a powerful tool for compact learning and music systems [9]
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[10] [11], but their limited computational resources pose additional
challenges for rt-MIR.

In this paper, we identify and discuss the main challenges that
can be found when developing embedded rt-MIR systems dealing
with acoustic signals. We also propose various solutions to these
challenges. Finally, we demonstrate the validity of some of the
proposed solutions by implementing an embedded real-time ex-
pressive technique classifier for the acoustic guitar. In particular,
we focus on CPU-based embedded hardware such as single-board
computers, which can run an operating system. This excludes sim-
pler devices such as microcontrollers.

Our implementation of an expressive technique classifier can
be compared to the work of Reboursiere et al. [12], which con-
sisted of a series of algorithms to track in real-time a similar set of
expressive guitar techniques. However, despite the high accuracy
obtained by the authors on polyphonic performances, the different
techniques were tracked with separate algorithms and tested sepa-
rately because of processing power issues. Additionally, this work
did not address an embedded implementation of the system. An
earlier report by the authors [13] describes an embedded imple-
mentation with a Field Programmable Gate Array (FPGA), but it
was presented as an incomplete project and the algorithms were
tested separately and offline (not in real-time). Additionally, dif-
ferently from our implementation, these approaches do not address
percussive fingerstyle techniques on the acoustic guitar. Real-time
classification of two percussive techniques was tackled in a pre-
liminary manner by Martelloni et al. [14]. However, the authors
did not propose an implementation for embedded systems, nor did
they provide accuracy or latency measurements. Furthermore, the
authors reported that the accuracy was rather low, causing "dis-
comfort” when using the system to trigger audio samples.

The reminder of the paper is organized as follows. Section 2
describes the challenges and limitations of embedded rt-MIR. Sec-
tion 3 presents solutions to the aforementioned challenges. Then,
in Section 4 we present an embedded real-time classifier for ex-
pressive playing technique recognition on the acoustic guitar. Fi-
nally, we draw our conclusions in Section 5

2. CHALLENGES OF EMBEDDED REAL-TIME MUSIC
INFORMATION RETRIEVAL

This section describes the main challenges behind designing and
implementing an embedded rt-MIR system that use acoustic sig-
nals as input. Such challenges have been identified as a result of
our research in the field of smart musical instruments [7], a class of
digital musical instruments based on real-time embedded systems,
which can run rt-MIR algorithms for different purposes, such as
real-time expressive playing technique retrieval. MIR algorithms
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that operate on input data other than acoustic signals (e.g., sym-
bolic music representation) are outside of the scope of this study.
The identified challenges, described in detail below, are as follows:

1. Availability of only causal information;
. Tradeoff between accuracy and latency;

3. Audio processing deadlines and real-time-safe programming
rules;

. Embedded hardware and software limitations.

2.1. Availability of only causal information

The main difference between offline and rt-MIR systems is the
possibility of analyzing the entire input signal at any point in time.
For offline systems, this means that more information can often
be gathered by collecting large analysis windows around events
of interest in the input signal. Moreover, offline MIR algorithms
can move forward and backward along the entire input audio sig-
nal. On the contrary, rt-MIR systems can only process past and
current inputs. For example, the classification of musical proper-
ties of events in a signal (e.g., instrument detection) can only hap-
pen with a non-zero delay from such events (i.e., latency) which is
partly due to need of the classification algorithm to wait to collect
a signal window to analyze. Since more input information about
a musical event in the signal can potentially yield higher classifi-
cation accuracies, similar rt-MIR systems must be tuned to adjust
the tradeoff between their accuracy and the latency with which the
results are produced. The same holds for non-classification rt-MIR
systems (e.g., regression [15]) and more general audio tasks (e.g.,
environmental sound recognition [9]). This will be discussed in
detail in part of the next section.

Moreover, some methods or algorithms used in MIR can only
be applied to offline contexts, such as Bi-directional Recurrent
Neural Networks (BiRNNs). This class of neural networks has
been used successfully for tasks such as offline music-genre clas-
sification [16] and onset detection [17], but these are designed to
simultaneously use information from both the past and the future
to operate, which renders them unusable for rt-MIR.

In addition, some offline algorithms cannot be used in real-
time systems simply because they require the entire audio signal.
This is, for example, the case of the whitening process, which
consists in dividing the magnitude of each bin of the Short-time
Fourier transform by the all-time maximum value for that bin. De-
spite improving the performance of onset detectors in many cases
[18], whitening uses non-causal information and cannot be used
for real-time onset detectors. An overview of the real-time ca-
pabilities of some of the onset detection methods mentioned was
presented by Bock et al. [19].

2.2. Tradeoff between accuracy and latency

In rt-MIR systems, a tradeoff is established between the accuracy
of the results of any analysis and the latency with which these are
produced. This is due to two main reasons: the availability of
only past information (causal) and the relation between the accu-
racy and execution time of many analysis algorithms, especially
machine learning and deep learning techniques.

As introduced in the previous section, rt-MIR systems can
only process their past and current inputs. However, their com-
putation can be delayed in time to collect a wider signal window,
which could contain more information about the part of interest of
the input signal. For many tasks, this can directly translate to an
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increase in the accuracy of the results of the analysis. For exam-
ple, delaying the analysis of a sound in a pitch tracking or sound
event recognition system can allow a rt-MIR algorithm to consider
a larger part of the temporal envelope and spectral content of the
sound, thus increasing the quality of the features that can be ex-
tracted and helping to discard potential false positives. At the same
time, delaying the analysis of the signal introduces some latency
between the input and when the results are produced, which can
only be tolerated to a specific degree for different tasks and appli-
cations. For example, a system that reacts to a sound by producing
new sounds will require a latency that is about 30 ms or lower,
since complex tones that are separated by less than such a delay
may be perceived by the human hearing system as simultaneous
[20].

Apart from delays that can be introduced on purpose, the exe-
cution time of rt-MIR algorithms also affects the total latency with
which the results of a real-time system are produced. This is par-
ticularly critical with modern machine learning and deep learning
algorithms, which are often designed to achieve the best accuracy
in contexts where the execution time is not bounded (i.e., offline
MIR). For most of these algorithms, the execution time can be ef-
fectively reduced, but it will reduce the quality of the results. For
example, the execution time of inference with a K-nearest neigh-
bors (KNN) classifier can be high with a large number of training
samples, but it can be reduced by removing an arbitrary number of
samples [21]. However, this operation will effectively reduce the
amount of information that describes the output classes. On the
contrary, reducing training data for deep learning algorithms will
have no effect on inference time, but this can be reduced greatly by
either decreasing the width and depth of neural network models or
reducing the numeric precision of the weights of a network (weight
quantization). Any of these operations will necessarily reduce the
quality of the results.

2.3. Audio processing deadlines and real-time-safe program-
ming rules

Real-time audio software handles the input and output of the audio
signals with buffers. Audio buffers, which have a predefined size
in samples, are delivered to the software at a rate that depends on
the audio sampling rate and the predefined buffer size. As a con-
sequence, these systems have a limited amount of time to process
the input buffers before the succeeding buffer is delivered in in-
put. This limited “time budget” is particularly relevant for systems
that also have to deliver an output audio signal, since any failure
in performing every computation inside this time slot will reflect
on the output in the form of audible glitches. For rt-MIR systems
that operate on an input audio signal, at least part of the analysis
computations must be performed at the same rate as the audio pro-
cessing. As a result, these computations will add to the time used
out of the available budget. This also holds for rt-MIR systems
that operate on input audio signals.

Lastly, real-time audio programming requires developers to
use only operations that are guaranteed to execute in a given amount
of time to complete (i.e., real-time-safe opf:rationsl [22]), which
prevents the aforementioned issues. This requires developers to
avoid dynamic memory allocation, locking operations, and more
instructions that can force the real-time thread to wait on lower
priority operations. These rules also apply to any external library
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used, which can be a problem with code designed for offline use
(e.g., offline MIR and libraries for deep learning inference).

2.4. Embedded hardware and software limitations

The performance of any rt-MIR system is dependent on the limi-
tations of the computing hardware used, along with the low-level
software (e.g., OS) of its target computing device. While mod-
ern PCs are generally powerful and fitted with hardware for high
throughput operations (i.e., GPUs), embedded computers tend to
be resource-constrained platforms that offer many challenges for
real-time audio and rt-MIR applications.

First of all, deep learning algorithms have almost completely
replaced traditional machine learning and simpler heuristics in ma-
ny MIR areas [3] [17] [23] [24], but they tend to be more compu-
tationally complex. Furthermore, embedded computers are gener-
ally resource-constrained devices when compared to general pur-
pose PCs. Other than limited CPU speeds, core count, RAM amount,
and speed, very few embedded computers are provided with GPUs
or similar acceleration hardware for deep learning inference, such
as Tensor Processing Units (TPUs). Moreover, while it is possible
to collect an audio signal on-site and process it in the cloud (on a
powerful server), this introduces high communication latencies
that are not desirable in a real-time system.

3. POTENTIAL SOLUTIONS AND VIABLE TRADEOFFS

3.1. Availability of only causal information

In Section 2.1 we discussed the limitation imposed to rt-MIR sys-
tems due to the availability of only past and current input infor-
mation. In some cases, this limitation requires developers to de-
vise entirely different methods to those used in offline contexts.
However, if the target task of a rt-MIR system allows for a tolera-
ble degree of latency, the analysis of the signal can be delayed as
much as possible, so to give as much information as possible to the
processing algorithm about the input signal. For example, for the
expressive technique recognition algorithm presented in Section 4,
the feature extraction window was set to be as large as possible,
while fitting in the maximum target latency along with the delays
introduced by the other components of the classification algorithm.

However, some algorithms cannot be used in real-time con-
texts by definition. These include techniques that need to collect
information about the entire signal beforehand, such as whitening
(see Section 2.1). In many cases, such as for whitening, these op-
erations can be replaced by their approximate versions, which only
rely on the part of the signal gathered up to each point of the anal-
ysis. This is the case of the adaptive whitening technique for onset
detection presented by Stowell et al. [18].

Similarly, some operations in neural networks can only be
used for offline MIR. This is the case of the bidirectional infor-
mation flow in BiRNNs [16] [17], which must be replaced with
unidirectional Recurrent Neural Networks (RNNs). A similar ap-
proach was used by Bock et al. [23], who presented a successful
real-time onset detector, which was adapted from a previously de-
veloped approach for offline contexts.

3.2. Tradeoff between accuracy and latency
As mentioned in the previous sections, signal analysis can be de-
layed up to a maximum tolerable latency. This is in itself a trade-

off, since it involves forgoing a potentially high accuracy to achieve
a specific maximum tolerable latency.
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In the case of a deep classifier, this can be obtained by making
a neural network shallower, narrower, or reducing the precision
of the neuron weights (i.e., weight quantization). The first two
methods will require retraining the neural network and will reflect
directly on the execution time, since they reduce the number of
computations that need to be performed. In our classifier, we tuned
the size of the classifier network to fit the target latency (see Sec-
tion 4.3). Differently, weight quantization is performed on trained
models, and it consists in reducing the precision of floating-point
weights to fixed-point values. This greatly reduces execution time
thanks to the lower computational cost of fixed-point operations,
but it also reduces the accuracy of neural networks. Depending on
the structure of a neural network, its size, and its overall robustness
to weight quantization, reducing the precision of network weights
will have a larger or smaller impact on the results. In our expres-
sive technique classifier, weight quantization reduced greatly the
accuracy of the results (i.e., 10-20% depending on different quan-
tization techniques) so we avoided using it in the final models.

3.3. Audio processing deadlines and real-time-safe program-
ming rules

Section 2.3 described briefly how audio is delivered in buffers to
any processing software, including rt-MIR systems, leaving a set
“time-budget” for the completion of signal processing and anal-
ysis computations. In this context, rt-MIR systems that need to
execute their entire analysis pipeline at each buffer-read operation
will have a strict constraint on the number of operations that can be
performed to produce their results. In these cases, the size of the
audio buffer can be increased, but it will slow down the entire anal-
ysis. Furthermore, many rt-MIR algorithms can be subdivided into
multiple stages of analysis, where some can potentially run at a
different rate of execution without affecting the time-budget avail-
able. For example, the expressive technique recognition pipeline
presented in Section 4.3 is composed of an onset detector, a set of
feature extractors, and a deep learning classifier (see Fig. 3). The
onset detector must run in the real-time thread of execution and
will benefit from running at a high rate (i.e., small audio buffer
size), which reduces the latency with which onsets are detected.
On the contrary, features need to be extracted only when an on-
set is detected, and the same holds for the execution of the rather
computationally expensive deep learning classifier. Moreover, the
requirements of our task state that, as a reasonable assumption,
there is no need to classify notes that are less than 20 ms apart, so
both the feature extraction operation and the execution of the clas-
sifiers are rather low-rate tasks. The onset detector was executed in
the real-time thread of execution with a buffer size of 64 samples
at 48 kHz (i.e., onset detection is executed every 1.33 ms), while
both the feature extraction and classification stages can exceed the
time budget of the audio processing routine (i.e., 1.33 ms), and
their execution can be moved to a separate high-priority thread.

Nevertheless, this divide-et-impera approach can not be ap-
plied to end-to-end neural networks. In fact, an underlying trend
in deep learning is to devise end-to-end neural networks, which
can operate directly on raw data and produce their results with-
out any additional algorithm. This approach leads neural networks
to learn “internal” feature extractors that can surpass hand-crafted
feature extractors in terms of the quality of the descriptors, but this
approach can greatly increase the computational complexity of the
analysis pipeline. Additionally, end-to-end neural networks can
hardly be subdivided into different stages.

Apart from reducing the execution time of the code devised
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by the developer of a rt-MIR system, great care must be devoted to
using external libraries that only perform real-time-safe operations
during the execution of the analysis of the signal (see Section 2.3).
For example, our expressive technique recognition system uses the
real-time onset detector from the Aubio library [25], and our fea-
ture extractors were C++ ports of the TimbrelD library tools [26].
Moreover, there are various deep learning execution libraries that
can run inference of neural networks quickly and without breaking
real-time-safe programming rules (i.e., TensorFlow Lite, ONNX
Runtime, and RTNeural [27]).

3.4. Embedded hardware and software limitations

As mentioned in Section 3.4, modern deep learning models can
be computationally expensive to train and execute. On powerful
computers, training, and execution of neural networks are accel-
erated thanks to GPUs, which are specialized hardware for high-
throughput parallel operations. However, very few embedded com-
puters are provided with specialized hardware that can support
deep learning tasks. Among these, the Nvidia Jetson family of em-
bedded computers is specifically designed to accelerate deep learn-
ing applications with the use of GPUs. More recently, many dif-
ferent types of processing units for low-power deep learning infer-
ence have been developed, such as Google’s Coral TPU and Intel’s
Visual Processing Units (VPUs). Some of these come in the form
of an embedded computing board (e.g., the Coral Dev Board?),
while others are provided as external devices that communicate
with the CPU of embedded computers through a USB connection
(e.g., Coral USB Accelerator®, Neural Compute Stick4).

Additionally, the more flexible design of FPGAs has become
increasingly more interesting for deep learning inference. This is
to be attributed to the development of new tools to convert neural
networks to FPGA compatible code. Vandendriessche et al. [9]
recently compared the performance of multiple embedded alter-
natives for environmental sound recognition, which include TPUs
and FPGAs. The authors focused on Convolutional Neural Net-
works (CNNs), which is a type of neural network that require a
large number of parallelizable computations. FPGAs have also
been explored for ultra-low latency DSP. In particular, Risset et al.
presented preliminary results on the development of a tool that can
compile Faust code for FPGAs [11], while very recently Wegener
et al. described a method to interface Pure Data with a FPGA for
low latency physical modeling synthesis [28].

However, single-board computers have become more power-
ful in recent years, resulting in the possibility of executing rather
small neural networks, such as compact Feed-Forward Neural Net-
works (FFNNs), with only a CPU. Moreover, each of the afore-
mentioned acceleration hardware solutions introduces a different
overhead because of the communication with the CPU, which may
become an issue for very low-latency real-time systems

Apart from the aforementioned hardware alternatives, embed-
ded rt-MIR systems can greatly benefit from using optimized real-
time audio platforms [8]. Some of the most advanced alternatives
are the Bela platform [29] and the Elk audio operating system
(Elk Audio OS) [30]. Both of these solutions are based on the
Xenomai Cobalt real-time kernel, which allows reaching very low
scheduling latency ad round-trip audio latency. Moreover, Vig-

Zhttps://coral.ai/products/dev-board/

3https://coral.ai/products/accelerator

“https://www.intel.com/content/www/us/en/developer/tools/neural-
compute-stick/overview.html
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nati et al. [31] recently compared the performance of the Xeno-
mai kernel with the more accessible PREEMPT_RT patch for the
Linux kernel. The comparison showed the superior performance
of Xenomai-based solutions, but PREEMPT_RT proved to be con-
siderably easier to implement while still delivering a good per-
formance. Overall, these low-level software solutions can allow
embedded rt-MIR systems to exploit more CPU performance and
reduce latency when compared to the standard Linux kernel. Our
expressive technique classifier is deployed to a Rasberry PI com-
puter that runs Elk Audio OS and neural inference is executed on
the CPU because of the aforementioned considerations.

4. EXPRESSIVE TECHNIQUE CLASSIFIER

To demonstrate some of the potential solutions described in the
previous section, we now present a real-time embedded classifi-
cation system that can recognize the expressive playing technique
used by an acoustic guitar player. This system is limited to a mono-
phonic setting, where the musician plays one note at a time, sim-
ilarly to a guitar solo setting. Furthermore, we performed the de-
tection on the acoustic guitar, which allows for a great range of
techniques such as percussive techniques (i.e., drum-like sounds
produced by hitting the body of the instrument). Real-time de-
tection of the type of percussive hits can be used to trigger drum
samples or control percussive synthesis algorithms. The classifier
was deployed on a Raspberry PI 4 embedded computer with Elk
Audio OS. The code of the expressive guitar technique classifier is
available in an online repository’.

Figure 1: Hardware setup of the expressive technique classifier.
The audio signal from the guitar pickup is fed to a Raspberry Pl
through the Elk PI Hat, which contains high definition audio con-
verters. The result of the classification is communicated through
a simple sine wave tune with different frequencies, which is moni-
tored with a pair of headphones.

The technique classifier was trained on three tasks of increas-
ing complexity, which are described in Section 4.1. Section 4.2
describes the dataset used to train the classifier, while Section 4.3
illustrates the detail of the classification pipeline. Finally, Sec-
tion 4.4 presents the results of the system in terms of accuracy and
latency.

4.1. Classification tasks

This study was divided into three classification tasks of increasing
level of complexity:

Shttps://github.com/domenicostefani/cpp-timbreID/
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e Task A [binary]: The first task is a binary classification
problem, where the output of the neural network must indi-
cate whether a note was produced with a pitched or percus-
sive technique;

» Task B [percussive+]: The second task involves multiclass
classification of four individual percussive techniques and a
single aggregate class for every pitched technique (See next
section);

e Task C [full]: The third task is the full classification prob-
lem, where twelve expressive playing techniques are con-
sidered as individual classes. This problem is considerably
more complex than Task A and B.

4.2. Dataset

This study required a dataset containing high-quality recordings
from multiple acoustic guitars with timbre annotations for each
note played. Moreover, the recordings needed to be monophonic
and to contain a number of relevant playing techniques. Finally,
as the final system must work whitout external microphones, the
dataset had to be recorded through pickups embedded into the gui-
tar. Given the scarcity of free datasets of guitar recordings com-
plying with our specific requirements, we proceeded to define and
record a new dataset. With the help of professional guitarists we
compiled the following list of twelve acoustic guitar techniques,
which includes both percussive and pitched techniques:

1. “Kick” percussive technique: producing a sound that re-
sembles a kick drum by hitting the lower right part of the
top of the guitar body;

“Snare-A” percussive technique: producing a sound by hit-
ting the lower right side of the guitar body;

“Tom” percussive technique: producing a sound by hitting
the area of the guitar body near the top of the end of the
fretboard, using the thumb;

“Snare-B” percussive technique: producing a sound by hit-
ting the muted strings over the end of the fretboard;
Bending technique: pulling the strings, raising the pitch
(half-tone interval);

Hammer-on technique: sharply bringing a finger down onto
the fingerboard, creating a legato sound (half-tone interval);
Natural Harmonics: plucking the strings and stopping them
to suppress the dominant note frequency and let harmonic
overtones ring;

Palm Mute: partially muting the strings with the palm of
the picking hand, resulting in a muffled sound.

“Pick Near Bridge”: plucking the string near to the guitar
bridge, producing sounds with great high-frequency con-
tent;

“Pick Over the Soundhole”: plucking the string over the
soundhole, producing sounds with lower treble content and
greater intensity;

10.

11.
12.

Staccato: playing short notes;
Vibrato: Moving the fretting-finger to warp the pitch and
tone of the sound.

The selection of percussive techniques was inspired by the in-
terview study on percussive fingerstyle conducted by Martelloni
et al. [32]. The areas of the guitar body used for each of these
techniques are shown in Fig. 2.
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Figure 2: Percussive techniques of choice, with the relative guitar
areas used.

The dataset was recorded with five experienced guitarists and
five different guitars, using the internal pickups of each guitar. The
percussive techniques were recorded for each guitarist with three
intensities (piano, mezzoforte, forte), with 10 repetitions for each
sound. For all the pitched techniques, individual notes were played
across a selected ranges of keys® for each string. For each key on
each string, the corresponding note was played three times for each
of the aforementioned intensity levels. While the dataset has yet to
be labeled at onset level, which will be done in the near future, the
onset detector used for our implementation indicated that the total
of our recordings for the dataset contains about 35,035 notes.

4.3. System Architecture

This section describes the design of the classification pipeline and
its practical implementation for embedded real-time expressive gui-
tar technique recognition. The target embedded device for our
classifier is the Raspberry PI 4 (4 GB RAM version) with Elk
Audio OS, the choice of which was based on the considerations
drawn in Section 3.4. In order to comply with the constraints im-
posed by the limited computational power of the target embedded
platform, we choose to use a multi-step classification pipeline (see
Section 3.3), composed of an onset detector, a set of feature ex-
tractors, and a deep learning classifier (See Fig. 3).

DNN
Classifier

Output

Onset Feature
Detector Extractors
Audio Signal

Figure 3: Classification pipeline.

This allows us to separate the steps that need to be executed
with a high refresh rate (i.e., onset detection), from those that only
need to be executed with a lower frequency (i.e., feature extrac-
tion, classification). Moreover, classification can be performed on
a thread separate from the real-time execution. As a result, the la-
tency introduced by the software system can be described by the
sum of the latency of each stage of the pipeline (See Fig. 4). Each

6Natural harmonics were recorded only for frets 5, 7 and 12, while the
remaining pitched techniques were played from the open string up to a fret
between the 15™ and the 20", depending on the physical limitations of
each guitar (e.g., cutaway, string gauge, guitar scale)
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Time instants

A - Note Onset

B - Time of Onset Detection

C - Beginning of Feature
Extraction

D - End of Feature Extraction,
Beginning of classification

E - End of Classification

Time intervals

T, - End-to-end classifica-
tion time

T, - Onset detection latency

T,op - Postonset delay

T, - Feature extraction time

T, - DNN inference time
(classification)

Feature Analysis Window

E
N
|

Figure 4: Graphical representation of a guitar sound in the audio
signal and all the components of the total latency between a note
onset and its classification.

step of the pipeline is now described in detail.

Onset Detection is the task of recognizing the beginning of
individual sounds in an audio signal (i.e., onsets). Contrary to the
technique classifier at the end of the pipeline, the onset detector has
to analyze the audio signal at a fast rate. This imposes a constraint
on the types of detectors that can be used, ruling out slow offline
solutions like most deep learning approaches. We found aubioon-
set [25] to be reliable and able to detect onsets with a small latency
interval.

Feature Extraction: While it is possible to devise a neural
network that operates directly on the raw audio signal, its high
dimensionality can be counterproductive for discriminative tasks
[33]. For these tasks, an alternative solution is to exploit transfor-
mations that better describe the relevant signal properties of inter-
est. On the full dataset, the following feature extractors of the Tim-
brelD library were used: Attack time, Bark Spectrum Brightness,
Bark Spectrum (50 values), Bark Frequency Cepstral Coefficient
(BFCC) (50 values), Cepstrum, Mel Frequency Cepstral Coeffi-
cient (MFCC), and Peak sample. As introduced in Section 3.1,
the feature extraction was delayed as much as possible while fit-
ting into the target latency, resulting in a feature analysis window
of 1,024 samples, which corresponds to 21.33 ms of audio at 48
kHz. To do so, the computation of features was delayed by a brief
time interval after each onset detection (i.e., Post-onset delay), to
align the beginning of the window with the note onset. For each
classification task, a different feature subset was selected through
a process of trial and error.

Classification: The classification of the expressive playing
technique was performed through neural network models loaded
in TensorFlow Lite. Each model was developed through a process
of trial and error, by testing multiple combinations of input fea-
tures, layer number and size, dropout probabilities, and optimiza-
tion parameters. The Stochastic Gradient Descent optimizer was
found to work best for all the learning tasks and was used with a
learning rate of 1e—3 and momentum values between 0.7 and 0.9.
The loss function used was Sparse Categorical Cross-entropy, as
it is appropriate for multiclass classification problems. The execu-
tion time of models of different sizes was measured on the target
platform, and the size of the final models was tuned to fit the target
latency (see Section 3.2). Each neural network was trained for a
number of epochs between 1,000 and 2,000, on a 75% stratified
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random split of the original dataset. The following three neural
networks were used for Task A, B, and C:

¢ Network A [binary]: Network A uses 110 input features (50
BFCC + first 60 Real Cepstrum features) and it is com-
posed of four dense hidden layers (fully connected) with
500 neurons each. The final layer has 2 neurons. Each of
the hidden layers used the LeakyRelu activation function,
end they were interleaved by dropout layers for regulariza-
tion, as suggested by Sigtia et al; [34].

Network B [percussive+]: The model used for task B was
similar to that of Task A, differing in the number of out-
put neurons (i.e., five outputs for Network B). The first four
outputs represent the prediction of one of the four percus-
sive techniques, while the fifth corresponds to any pitched
sound;

Network C [Full]: Similarly, the same network of Task A
and B was used for the full classification task, except for
using 513 input features (i.e., all the Cepstrum coefficients)
and having 12 outputs, one for each expressive technique.

4.4. Results and Discussion

The success rate of the classifier was measured in terms of its ac-
curacy, precision, recall and Fl-score. These were measured on
a stratified random split of 25% of the entire dataset, while each
neural network was trained only on the remaining 75% split. The
best results obtained through a process of trial and error for Task
A, B and C are presented respectively in Table 1, 2 and 3.

Table 1: Summary of the results of Task A.

Class Precision Recall F1-score
Percussive 95.6% 92.6% 94.1%
Pitched 99.5% 99.7% 99.6%
Macro avg. 97.5% 96.1% 96.8%
Accuracy 99.2%

Table 2: Summary of the results of Task B.

Class Precision Recall F1-score
Kick 91.4% 95.5% 93.4%
Snare-A 89.3% 95.0% 92.1%
Tom 92.8% 91.8% 92.3%
Snare-B 90.9% 96.8% 93.7%
Pitched 99.7% 99.4% 99.5%
Macro avg. 92.8% 95.7% 94.2%
Accuracy 99.1%

Table 3: Summary of the results of Task C.

Class Precision Recall F1-score
Kick 82.1% 76.7% 79.3%
Snare-A 78.3% 66.7% 72.0%
Tom 64.7% 39.3% 48.9%
Snare-B 78.3% 60.0% 67.9%
Bending 55.7% 42.8% 48.4%
Hammer-on 48.0% 48.8% 48.4%
Nat.Harmonics 69.7% 50.9% 58.8%
Palm Mute 61.1% 82.0% 70.0%
Bridge-Pick 67.2% 59.8% 63.3%
Soundhole-Pick 49.4% 52.6% 51.0%
Staccato 60.4% 71.2% 65.3%
Vibrato 48.5% 41.6% 44.8%
Macro avg. 63.6% 57.7% 59.8%
Accuracy 56.5%
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These results show how both Task A and Task B can be tack-
led effectively with a rather simple FFNN method, using a naive
trial and error process to establish the input features to use and
the parameters of the classifier. In particular, the classification ac-
curacy of Task B (99.1%) surpassed our previous results obtained
with smaller feature vectors on the simpler task of only percus-
sive technique recognition (i.e., 92.5%). On the other hand, Task
C is considerably more complex, and we were not able to reach a
meaningful accuracy score. Preliminary results seem to indicate
that reducing the variance of the onset detection latency will lead
to more precise alignment of the feature extraction window, which
in turns should improve classification accuracy. Moreover, feature
selection can be used to obtain better feature vectors, and more
regularization layers in the deep classifier (e.g., Batch Normaliza-
tion) may allow the neural network to be trained more effectively.

4.4.1. Latency

Measuring the exact end-to-end latency of the classification system
would require feeding the embedded computer with a prerecorded
guitar signal, having the classifier produce a clear signal mark in
output when classification is completed, and hand-labeling each
onset and mark in the signal. This would allow for a precise mea-
surement of the delay introduced by the software between onsets
and classification results.

For the sake of simplicity, an approximate measuring setup
was used for this demonstrative case. Each delay was measured on
Task B. The delay between an onset and its detection (Onset de-
tection latency) was measured separately, on 211 individual notes
(about 100 percussive sounds and 100 pitched ones), and it aver-
aged at 19.00 ms. It is to be noted that the latency of detection de-
pends on changes in the inner buffer of the onset detector, and it is
different from the execution time of the detector itself, which fol-
lows each audio buffer read operation and is considerably shorter
than the 1.33 ms time-budget of our real-time system (64 samples
at 48 kHz).

Instead, all the delays apart from onset detection latency could
be measured inside the classification software in real-time, with a
high precision timer. These were measured by playing 200 notes
(100 percussive and 100 pitched) with the guitar connected to the
system, and saving each timer result in a log file. Such delays
were composed of the post-onset delay, the feature computation
time and finally the inference time of the classifier (see Fig. 4),
which averaged respectively at 7.77 ms, 0.78 ms, and 3.15 ms.
These delays add up at 11.70 ms. As an indicative measure, the
sum the onset detection latency and the remaining delays totals
at 30.7 ms. However, the next iteration of the expressive guitar
technique classifier will include a more precise latency test setup.

Most importantly, the system was complemented with a sim-
ple sine-wave oscillator that played a different tune depending on
the classification result, as soon as it was produced. The system
was then connected to the guitar and played in real-time, and the
delay between the act of the guitarist and the synthetic tune was
inaudible. This is a subjective but promising result, as it suggests
that a smart guitar could use a similar system to trigger differ-
ent synthetic sounds depending on the technique used, without the
player perceiving the recognition delay.

5. CONCLUSION AND FUTURE WORKS

In this paper, we discussed the challenges of developing embed-
ded real-time Music Information Retrieval systems for acoustic
signals. These included the availability of only past and current
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input information, the process of tuning the tradeoff between sys-
tem accuracy and latency, real-time audio deadlines, real-time-safe
programming rules, and the limitations of embedded hardware and
low-level software. Furthermore, we presented potential solutions
to these issues, and we demonstrated the validity of some of these
with the embedded implementation of a real-time expressive guitar
technique classifier.

The demonstrative implementation reached 99.2% accuracy
in distinguishing pitched and percussive techniques and a 99.1%
average accuracy in distinguishing four distinct percussive tech-
niques and a fifth class for pitched sounds. On the contrary, the full
classification task of distinguishing twelve different techniques was
more complex, and the proposed approach could not reach satis-
factory accuracy scores. The classification pipeline was success-
fully deployed on an embedded computer, and the classification
results were produced with an average latency of approximately
30.7 ms from the note onset, which was hardly perceptible. The
solutions demonstrated by our experiment are the possibility of di-
viding the classification pipeline in several steps that execute at
different frequencies, the tuning of the system delays, the effective
use of a real-time embedded OS to obtain the best performance on
a resource constrained device and the use of real-time-safe code.
Furthermore, the results of this study and the challenges discussed
can also apply to more general real-time audio contexts, such as
in acoustic sensor networks, where classification may need to be
performed with very low latency.

However, the demonstrative experiment is limited in several
ways. First of all, the complex “full” classification problem will re-
quire an improvement of the entire recognition pipeline to achieve
satisfying results. Moreover, the classification latency can be fur-
ther reduced, to enable chaining more complex synthesis algo-
rithms and effects after the classification. Additionally, the pro-
posed classifier works with the guitarist playing only one note at
at time, such as in a guitar solo setting. Finally, an objective and
repeatable measurement of the end-to-end latency will require the
design of a custom test setup.

Future studies will devote more attention to the refinement of
the entire classifier, to reduce latency and improve the classifica-
tion accuracy. Moreover, we will attempt to use the separate sig-
nals from an hexaphonic pickup to enable polyphonic technique
recognition. Finally, a future development of the project should in-
vestigate the potential of Tensor Processing Units and other mod-
ern acceleration hardware in the context of embedded real-time
Music Information Retrieval.
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