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ABSTRACT

Recent advancements in deep learning have shown great poten-
tial for audio applications, improving the accuracy of previous so-
lutions for tasks such as music transcription, beat detection, and
real-time audio processing. In addition, the availability of increas-
ingly powerful embedded computers has led many deep learning
framework developers to devise software optimized to run pre-
trained models in resource-constrained contexts. As a result, the
use of deep learning on embedded devices and audio plugins has
become more widespread. However, confusion has been rising
around deep learning inference engines, regarding which of these
can run in real-time and which are less resource-hungry. In this
paper, we present a comparison of four available deep learning in-
ference engines for real-time audio classification on the CPU of an
embedded single-board computer: TensorFlow Lite, TorchScript,
ONNX Runtime, and RTNeural. Results show that all inference
engines can execute neural network models in real-time with ap-
propriate code practices, but execution time varies between en-
gines and models. Most importantly, we found that most of the
less-specialized engines offer great flexibility and can be used ef-
fectively for real-time audio classification, with slightly better re-
sults than a real-time-specific approach. In contrast, more special-
ized solutions can offer a lightweight and minimalist alternative
where less flexibility is needed.

1. INTRODUCTION

In recent years, deep learning has become increasingly ubiquitous
in various areas of data processing and analysis, including audio
and music processing. Some of the sound-related tasks where deep
learning has been successfully applied include music tagging [1],
beat-detection [2], onset detection [3], instrument classification
[4], and, more recently, real-time audio processing [5]. Most of the
research in this area has focused on offline learning, where deep
learning almost completely replaced traditional machine learning
by achieving better accuracy and lower error rates. In contrast,
real-time use of deep learning has been explored less. This is due
to the added complexity of tight real-time execution-time dead-
lines, and the fact that neural networks typically take more time to
execute than most conventional machine learning counterparts.
Moreover, recent years have seen a growing interest towards
deploying deep learning algorithms to real-world applications thro-
ugh embedded computers. This holds for the field of real-time au-
dio, which fostered the development of many embedded platforms
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for audio, such as the Elk Audio Operating System (Elk Audio OS)
[6], Bela [7], or Prynth [8].

However, the requirements of deep learning and conventional
frameworks can particularly stress the limited computational re-
sources of even the most recent embedded devices, which is the
reason why we have seen an increase in offer in deep learning
inference engines (IEs) for embedded devices and single-board
computers. In deep learning, the terms “inference engine”, “in-
ferencing library” or “runtime” are used to refer to tools (i.e., code
libraries) that can execute pre-trained neural networks.

These IEs include solutions from popular deep learning frame-
works, such as TensorFlow, PyTorch, and ONNX. Despite the
availability of these tools, it is unclear whether they can safely
execute neural network models in real-time audio contexts, where
it is crucial to avoid any operation that might slow down or even
block the processing of the audio signal. The confusion around
these tools led developers to code their specialized approaches to
deep learning inference for real-time audio (e.g., RTNeural [9],
and [5]). However, specialized approaches tend to be very limited
in flexibility, while popular deep learning IEs can, during execu-
tion, load a very wide range of neural network models. In addition,
it is not clear whether the same exact model can be executed more
quickly with an IE than another.

In this paper we present a comparison of four deep learning
IEs for real-time audio classification on an embedded CPU, i.e.,
TensorFlow Lite (From TensorFlow, Google), TorchScript (from
Torch/PyTorch, Facebook’s Al Research lab), the ONNX Run-
time (from ONNX, Microsoft) and RTNeural [9]. We compare
the aforementioned tools in terms of their adherence to real-time-
safe programming rules' [10]), execution time with multiple neu-
ral networks, consumption of computation and memory resources,
ease of use, and quality of documentation. We focus on the exe-
cution of models on the CPU, which is often the only possibility
on off-the-shelf embedded devices because of the general lack of
GPUs. The comparison of even more specialized approaches, such
as the use of TPUs, DPUs, and FPGAs, is outside of the scope of
this study. Every IEs was executed and compared on a Raspberry
PI 4 single-board computer paired with Elk Audio OS, which is an
open-source and state-of-the-art real-time OS for low-latency em-
bedded audio processing. The Rasberry PI has been widely used
in deep learning and it is a platform supported by many inference
engine developers, while Elk Audio OS enables high quality and
low-latency audio processing thanks to its real-time capabilities.
The models used for this comparison were designed to classify
eight expressive guitar techniques, where the model output repre-
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sents a prediction of the technique used for each note, in the form
of the distribution of probability over all the classes. The code
relative to this project was made available in an online repository>.
The remainder of this paper is organized as follows. Section 2
presents studies that are related to the use of deep learning for
audio tasks and embedded computing platforms for audio. The
deep learning IEs, metrics, and models involved in the comparison
are described in Section 3. Section 4 discusses the results of the
comparison. Finally, we draw our conclusions in Section 5.

2. RELATED WORK

Recent years have seen an increase in the interest for deep learn-
ing for audio classification and processing tasks. Neural networks
have been applied successfully in contexts like onset detection,
such as in the work of Eyben et al. [11], where the authors pre-
sented a bidirectional Long short-term memory (LSTM) network
that was able to surpass previous state-of-the-art scores. A similar
neural network was applied to the problems of beat detection and
tracking [2], achieving state-of-the-art results. Similarly, Gémez
et al. presented a successful approach to instrument classification
that uses a convolutional neural network [4]. The authors managed
to improve the accuracy of their method through the use of a pre-
processing step based on source separation, and a transfer learning
approach. However, most of the deep neural networks proposed in
research for audio tasks focus on offline inference and are gener-
ally unfit for real-time usage, as they can either result in compu-
tationally expensive operations (e.g., in [4]) or require non-causal
information (e.g., the bidirectional network of [11]).

An interesting approach is described by Sigtia et al. in [12],
where a neural network was used for polyphonic transcription of
piano performances: while the main solution presented was rather
computationally complex, the authors proposed the use of an op-
timized search algorithm for real-time contexts. Moreover, Bock
et al. [3] presented a new version of their offline onset detection
model, designed to operate in real-time contexts. More recently,
Wright et al. [5] presented an end-to-end neural approach to audio
processing, with which authors managed to emulate several dis-
tortion pedals and guitar amplifiers. The real-time implementation
presented uses the Eigen library and was executed on a desktop
computer. This is a very specialized approach that can be help
produce very optimized code, but it completely lacks the flexibil-
ity of popular deep learning IEs.

These IEs, which include TensorFlow Lite, TorchScript, and
ONNX Runtime, can easily load almost any neural network model
during execution, without recompiling any code. However, as
mentioned in Section 1, there is a general confusion around the
compatibility of these IEs with real-time audio applications, which
require that the code does not contain any non-real-time-safe op-
eration that can slow down the processing of the audio signal.

For this reason, Chowdhury [9] developed RTNeural, which is
a “neural inferencing library” (i.e., deep learning IE) designed to
be used for real-time audio applications and similar deep learning
tasks that must meet hard time deadlines. The library supports a
limited but meaningful range of deep learning operations, and the
author stated the intention of implementing more neural network
layers. The author compared the performance of the library against
the PyTorch C++ API (i.e., TorchScript), but today there is a wider
range of available IEs. Moreover, while computation time is cru-
cial for real-time applications, it is fair to compare different IEs
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also in terms of other metrics, such as how many neural operators
are supported, the use of computing resources, memory, general
ease of use, and quality of documentation.

Rtneural was successfully used for the implementation of an
embedded guitar effect’ which was successfully deployed on a
Raspberry PI running Elk Audio OS [6].

Along with the increase in real-time deep learning approaches
for audio classification and processing, there has been a growing
number of embedded devices for audio processing. Meneses et
al. [13] presented a clear comparison of three open-source em-
bedded audio platforms: Prynth [8], the Bela framework [7], and
a custom processing unit. According to the authors, all the solu-
tions presented different characteristics with no clear winner. More
recently, the Elk Audio OS [6] was presented as an open-source
real-time operating system for embedded hardware. Similarly to
Bela, Elk Audio OS uses the Xenomai Cobalt real-time kernel to
handle low latency audio processing, but it is not limited to a sin-
gle hardware platform and it offers high definition audio inputs
and outputs. Vignati et al. [14] compared the performance of the
Xenomai Cobalt kernel with that of the more common Preempt RT
kernel patch, showing a better overall performance of the former
on heavy processing applications.

More recently, Vandendriessche et al. [15] explored the pos-
sibilities for hardware acceleration of deep learning inference for
audio. This can be achieved with Tensor Processing Units (TPUs),
Field Programmable Gate Arrays (FPGAs), and similar hardware.
However, these are highly specialized solutions that might not be
commonly available across different platforms or infeasible for
more practical reasons, such as cost or hard real-time require-
ments. While we will investigate on these technologies in the fu-
ture, this paper focuses on CPU inference, which is always possi-
ble on both embedded implementations and desktop audio plugins.

In a similar fashion, weight quantization and other model-
specific optimizations can help reducing the burden on limited
computing devices. A good overview on the limitation of some
mobile and embedded devices is presented by Lane et al. [16],
who also propose a sparse coding approach that can reduce the
use of computation resources. The authors reported on the results
obtained on the tasks of speaker recognition acoustic environment
classification, which show a significant reduction in mode size.
However, these are approximations that reduce the accuracy of
deep learning models to an extent that depends on many param-
eters, including the structure of the target neural network. For this
reason, model-specific optimizations are outside the scope of this
comparison.

3. METHODOLOGY

This section describes the details of our comparison, which in-
clude the deep learning IEs chosen, the benchmark task, the neural
networks tested, and the metrics of interest.

This study is meant to compare different deep learning IEs for
inference on embedded CPUs. Therefore, the acceleration capa-
bilities of some IEs (e.g., with GPUs and Tensor Processing Units)
will not be considered. Moreover, while it is possible to trade
model accuracy for quicker execution times with weight quanti-
zation, model-specific optimizations are outside of the scope of
this comparison

3.1. Inference Engines

The comparison will comprise the following deep learning IEs:

3 github.com/GuitarML/NeuralPi/releases/tag/v1.3.0

222
DBEX


https://github.com/domenicostefani/deep-classf-runtime-wrappers
https://github.com/GuitarML/NeuralPi/releases/tag/v1.3.0

Proceedings of the 25™ International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

1. TFlite 2.4.1*: TensorFlow Lite is the solution offered along-
side with TensorFlow (Google) to execute inference of neu-
ral network models on embedded devices. The system com-
prises a converter to produce “.tflite” files starting from mod-
els created and trained in TensorFlow, and an Interpreter,
which can load TFlite models and run inference.

2. TorchScript 1.10.0°: TorchScript is the way offered by Py-
Torch developers to convert models that were trained on a
Python environment, to code that can be executed on an en-
vironment with no Python dependency.

3. ONNX Runtime 1.7°: ONNX Runtime is the inference
engine provided by Microsoft for ONNX Neural network
models. It promises to enable great speedups for both train-
ing and inference of neural networks, thanks to its optimiza-
tion and acceleration features.

4. RTNeural’: RTNeural [9] is a custom IE, which was de-
veloped specifically for audio processing in hard real-time
contexts. Contrary to the aforementioned IEs, RTNeural
supports only a limited range of neural layers (e.g., Max-
Pooling and Batch Normalization layers are not supported).
However, RTNeural seems a compact and easy-to-use li-
brary that could be a strong competitor to the more pop-
ular alternatives in some audio processing contexts. Ulti-
mately, we includes RTNeural because the main reason for
its development was the confusion around light inference
IEs that we are trying to address. RTNeural offers both a
dynamic model loading mode (as other IEs) and a compile-
time mode. The latter is supposed to reduce the execution
time for small networks, according to the documentation of
the library.

3.2. Task

Here we compare the performance of four different IEs (see
Sec. 3.1) with a series of neural network models for real-time
classification of expressive guitar playing techniques, where the
model output is the distribution of probability over eight tech-
niques. For this task, the neural network is the last block of an
execution pipeline that includes an onset detector and a set of fea-
ture extractors (see Figure 1).

Onset | Trigger Feature DNN
Detector Extractors Classifier

Audio Signal

anbruyoa], aa1ssaxdxy

Figure 1: Expressive guitar technique Classification pipeline.

When a note onset is detected, the extractors compute a se-
ries of timbral features (e.g., MFCC, BFCC) that are fed to the
classifier. As a consequence, each model takes as input a one-
dimensional vector of features extracted from the first few mil-
liseconds of each note in the audio signal. We focused on 8§ cat-
egories of expressive guitar techniques, therefore, each classifica-
tion model has 8 output neurons, where the one with the highest
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activation value represents the predicted technique. As a conse-
quence, the neural network models compared are all examples of
Feed-Forward Neural Networks (FFNNs) with no recursions. The
applications of such a classifier impose a computation deadline of
20 ms [17] from the moment that an onset is produced. This is
due to the fact that the classification result has to be used to pro-
duce new sounds that feel simultaneous with the input sound to
the human hearing system, which generally can hardly distinguish
complex tones that are separated by less than 30 ms [18]. The
more strict deadline of 20ms allows for complex synthesis algo-
rithms that can use the classification result. When compared to
tasks with hard real-time constraints such as audio processing, this
classification task has a soft real-time deadline which allows us
to execute it on a high-priority thread that is separate to the hard
real-time processing of the input/output audio signal.

3.3. Models

The models chosen for our comparison are the following:

¢ Model A: the first model is a FFNN composed of four dense
hidden layers with 800 neurons each, an input layer with
180 neurons, and a final layer with 8 outputs. Batch nor-
malization was used between each hidden layer with a pos-
itive impact on model accuracy. The model comprises a
total of 2,083,208 parameters. On the target task, Model A
scored an average accuracy of 95.3% across 8 expressive
techniques and 5-fold cross-validation.

¢ Model B: Model B is a smaller version of Model A, with six
hidden layers of 350 neurons each, an input layer with 173
neurons, and 8 model outputs, resulting in a total of 677,958
model parameters. The lack of Batch Normalization re-
sults in a lower accuracy (92.0%). Model B was included
to test the performance of the RTNeural framework, which
does not support the Batch Normalization layers used in
Model A.

* Model C: The last model is a drastically smaller version of
Model A, with one dense hidden layer with 350 neurons,
173 inputs and 8 outputs, resulting in a total of 63,708 pa-
rameters. The accuracy of Model C is lower than Model A
and B at just 91.2% for this specific task. Model C was cho-
sen because Model A and B were found to be too large to
be executed in the real-time execution thread®, so only soft
real-time constraints can be guaranteed with those models.
While this is allowed by our specific task, we offer a com-
parison that includes the capabilities of each IE to execute
models in the real-time thread, which would be required
by any model that performs signal processing. The small
size of Model C ensures that execution will take less than
the time budget between audio interrupts. Model C is used
to verify whether the IEs compared here can run without
breaking real-time processing constraints (e.g., not allocat-
ing dynamic memory or waiting for lower priority tasks and
mutexes).

Every model was defined and trained in TensorFlow with the
Keras Sequential API and subsequently converted to the formats
needed by each IE. The conversion process is described in Sec-
tion 4.5.3.

8The audio plugin created for this task was executed at the rather fast
pace of 64 samples at a sample rate of 48 kHz (i.e., 1.33 ms in between
audio interrupts) for low-latency audio input and onset detection.
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Figure 2: Neural network models used for the comparison.

Table 1: Compatible combinations of models and IEs compared
in our analysis. The dynamic-model-load mode (R.load) and the
compile-time-definition mode (C.def) of RTNeural are tested sep-
arately. Only Model C is tested by running the IEs in the real-time
thread (for the reasons described in Sec. 3.2 and Sec. 3.3), while
the remaining are loaded on a separate high priority thread.

TFlite TorchSeript ONNX RTNeural
Runtime [R.load] [C.def]
MA v v v X X
MB v v v v v
MC | /(RT thread) | v/(RT thread) | v(RT thread) | v/(RT thread) | v/(RT thread)
3.4. Metrics

Each IE is compared in terms of the following metrics:
1. Real-time safety;

Model Execution time;

Usage of computation resources (CPU and RAM);

Model footprint (file size);

Library footprint (library object size);

Supported operations;

Nk LN

Ease of use;
8.

First, we are interested in whether each IE can or cannot execute
inference safely on a real-time thread, which refers to the absence
of code operations that take an “unbounded” amount of time to
complete. Because of the Xenomai hard real-time kernel used by
Elk Audio OS, any forbidden operation and system call generates
a mode switch, giving back control to the Linux kernel. Mode
switches are logged by the system, helping to identify non-safe
operations in the real-time thread. For this reason, with Model C
each IE is executed in the real-time thread.

Furthermore, we are interested in which IE is quicker at ex-
ecuting the same models, which is of great importance in a real-
time context as it limits the minimum latency achievable by the
system. Execution time was first measured in an isolated context,
by running each IE from the Linux shell, outside of the classifica-
tion pipeline. This serves as a reliable measure that is independent

Quality of documentation.
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from many parameters of our classification pipeline, but it lacks
to include delays that might be present when deploying the com-
plete pipeline. For this reason, execution time was also measured
in the deployed audio classification plugin. In the case of Model
A and B, which were executed on a high priority thread separate
from the real-time execution, the measurement includes the time
needed to schedule the inference and delays due to the real-time
audio processing running the foreground.

Additionally, average CPU and RAM usage was measured
during the execution of the audio classification plugin thanks to
the process status command (ps) of Linux and the Xenomai ker-
nel. Moreover, since every Model needed to be converted to a
specific format for each IE, we measured the size of the differ-
ent model-file sizes, which can be relevant with limited storage on
some embedded computers.

Metrics 1, 2, and 3 were measured on a Raspberry PI 4 single-
board computer (4 GB RAM model). The Raspberry PI board runs
the Elk Audio OS (v0.9.0), based on the the Xenomai Cobalt Ker-
nel’. Standalone computation times were averaged across 17,604
executions for each combination of model and IE. “Deployment”
execution times were averaged across 768 executions, triggered
on the classification plugin that was deployed on the target em-
bedded system. The 768 executions were triggered from as many
guitar notes in a 26-minutes audio signal that was streamed to the
embedded board in real-time for each combination of model and
compatible IE. This process was a lengthy operation, hence the
reduced number of executions. Additionally, we considered the
following four measures that depend only on the different deep
learning IEs and not on the models.

Library footprint (library object size): since memory stor-
age can be a constraint on embedded devices, we measured the
total size in MiB of the shared or static library objects that are
required by each IE. Each library was compiled for the Linux
AArch64 architecture (ARM64).

Supported operations: We compiled a list of the most com-
mon and more widely used neural layer types and assigned to each
IE a score that reflects the fraction of operations supported. In
Deep Learning, it is important that as many of the most used op-
erations are supported by IEs, so that a wider range of operations
can be used during training. The list of main layers is composed by
Dense, Gated Recurrent Unit, LSTM, 1D and 2D Convolution, 1D
and 2D MaxPooling, and Batch Normalization layers, while the
list of activation types includes: TanH, Sigmoid, Softmax, ReLU,
Leaky ReLU, and PReLU activations.

Ease of use: Albeit difficult to quantify, we wanted to include
a metric that describes the ease of use of each IE, which includes
how easy it was to convert a pre-trained model for each target for-
mat, and use the APIs to load a model, read its properties, and
execute inference. Two of the authors that worked on the imple-
mentation assigned a score from one to ten for each category and
the measures were averaged to obtain a final score.

Quality of documentation: the quantity and quality of doc-
umentation regarding each deep learning IE. Similarly to ease of
use, two of the authors assigned a score from one to ten to each IE,
and the two were averaged.

4. RESULTS AND DISCUSSION

This section presents the results of the comparison between the
deep learning IEs mentioned in Section 3.1, according to the met-
rics described in Section 3.4.

“https://xenomai.org/
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4.1. Real-time safety

The real-time safety capabilities of deep learning runtimes were
tested by executing the inference of Model C in the real-time
thread while monitoring the status of the Xenomai Cobalt real-time
kernel. Interestingly, all the IEs compared here were able to exe-
cute multiple inference operations without generating a number of
mode-switches that increases at run-time. However, both Torch-
Script and ONNX Runtime did generate a single mode switch
each, on the very first execution of the model.

In the case of TorchScript, the non-safe operation is the alloca-
tion of a std: :vector<clO::IValue> item which happens
consistently at the first call of the forward function. The solution
was to execute a single inference operation on the first execution
of the real-time audio processing method. This “priming” opera-
tion causes an early allocation of memory in the classifier, where
delays that are due to non-safe operations can be acceptable, so
that non-real-time-safe operations will not be executed when the
first actual classification needs to be made. The same solution ap-
plied to ONNX Runtime, where the call to Ort : :Run () caused
memory allocation on its very first call.

4.2. Execution time

Model execution time proved to be different between the various
deep learning IEs used, despite the models used being equal. As
mentioned in Section 3.4, model execution time was measured
both in an isolated context and in an audio plugin running on the
real-time Elk Audio OS. Both groups of measures are shown in
Figure 3.

The results show that, while most of the IEs offer rather com-
parable performance in terms of execution time (especially with
smaller models), TorchScript is consistently slower than the alter-
natives. Aside from TorchScript, the two alternatives among the
popular IEs (i.e., TFlite and ONNX Runtime) averaged compa-
rable times with Model B, while TFlite slightly prevailed on the
smaller Model B and ONNX Runtime worked better with the big-
ger Model A. The difference for Model A was reduced when run-
ning the deployment tests, which indicates that ONNX Runtime
could be performing better optimizations on larger numbers of op-
erations.

Finally, the less popular RTNeural showed average execution
times that are slightly longer than TFlite and ONNX Runtime,
but still very comparable as opposed to the performance of Torch-
Script. Moreover, RTNeural was tested with both the model load-
ing modalities that it offers: run-time dynamic model parsing and
compile-time model definition. Interestingly, the two modalities
showed a virtually identical performance in all the tests, while we
expected quicker inference with the compile-time model defini-
tion, based on the documentation of RTNeural. This can be at-
tributed to the size of the models that we used, which is generally
greater than that of the models RTNeural was designed for. It has
also to be noted that RTNeural was used with the Eigen backend,
which was suggested by the developer for larger networks, but it
also supports the use of either xsimd or the C++ STL, which could
produce different results.

As expected, the standard deviation of the execution time is
negligible for all the standalone execution tests and the execution
of Model C in the real-time thread of the deployment application.
On the contrary, the worst-case scenario for the execution of Model
A and B on the deployment applications is represented by a few
cases where the results of the classification reach the real-time
thread one or two audio interrupts late. These cases represent a
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maximum of 6.59% classifications where the results arrive one in-
terrupt later than the average (i.e., 1.33 ms) and 0.37% that arrive
two interrupts late (i.e., 2.67 ms). The consistency of these de-
lays shows that they are caused by synchronization issues between
the real-time execution and the classification thread, and they have
little to do with the deep learning IEs themselves. In the near fu-
ture we will investigate how to enforce a higher priority for the
classification thread, and reduce signaling and synchronization is-
sues through a new mechanism introduced in a recent version of
Elk Audio OS (i.e., RTConditionVariable'’).

4.3. Computational resources

The usage of CPU and RAM was monitored during the execution
of the audio classification plugin thanks to the process status com-
mand (ps) of Linux and the utilities of the Xenomai kernel. All
the usage metrics were averaged across 25 minutes and 50 seconds
tests, where 768 inference operations were executed. This results
in an average of an inference operation every 2 seconds. The re-
sults for each test are presented in Table 2.

Table 2: Usage of CPU and RAM for each combination of model
and compatible IE. “Avg.CPU” indicates the CPU usage of the
main Linux system (only non-real-time tasks), while “Avg. CpuX”
reports the usage of the CPU by real-time tasks in the Xenomai
kernel. Average CPU and memory are measured with the ps com-
mand. The percentage measures are relative to the embedded sys-
tem described in Section 3.4.

Model Inference Avg. Cpu Avg. CpuX Avg. RAM
Engine

MA TFlite 83 % 6.1 % 5.1%
TorchScript 9.0 % 58% 8.7 %
ONNX Runtime 10.7 % 6.1 % 6.4 %

MB TFlite 8.0 % 5.9 % 5.0%
TorchScript 8.6 % 59 % 8.6 %
ONNX Runtime 9.6 % 59% 58 %
RTNeural(R.time) 8.4 % 5.8% 5.7 %
RTNeural(C.time) 8.6 % 5.8 % 5.6 %

MC TFlite 6.1 % 6.2 % 4.7 %
TorchScript 53% 58% 7.6 %
ONNX Runtime 5.1 % 58 % 52%
RTNeural(R.time) 52 % 5.8% 4.7 %
RTNeural(C.time) 51% 5.8% 4.7 %

The results indicate that such a low frequency of classification
operation generates a low average use of computational resources.
However, the difference in resource usage between different IEs
and models could scale to higher frequency tasks, such as audio
processing. In particular, TorchScript consistently scores the high-
est memory consumption percentage, which is coherent with the
inference time results (see Sec. 4.2). Moreover, for both Model A
and B, ONNX Runtime shows higher CPU usage, on the standard
Linux kernel, than the alternatives. All the IEs present a higher
usage of CPU from operations running in the non-hard-real-time
domain for both Model A and B, which is to be expected since in-
ference for these two models is executed on a non-real-time thread.
On the contrary, CPU usage for all the IEs on Model C is higher
on the Xenomai Kernel operations, since Model B is executed in
the audio processing thread.

Overall, the average use of CPU is demonstrated to not be
an interesting metric for low-rate audio classification, while the
execution time measured in the previous section presents a better
overall image of processing performances. Finally, the increase of

10https://github.com/elk-audio/twine
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Figure 3: Mean and standard deviation of model execution time in microseconds, for each combination of model and compatible IE. The
image on the left shows the measures performed in an isolated context, while that on the right includes the “deployment” execution time

(see Sec. 3.4).

RAM consumption from Model C to B and A shows to be minimal,
despite the drastically different model sizes. This is mainly due to
the rather large amount of ram available with the last iteration of
the Raspberry PI single-board computer (i.e., 4 GB), which is a
testament to the technological advancement of modern embedded

computers.
4.4. Model footprint

When converting the original Keras models to the formats ac-
cepted by the various IEs, we noticed some differences in the final
file sizes, which might be critical on target devices with little mem-
ory, such as less recent Raspberry PI boards. TFlite, TorchScript,
and ONNX Runtime use compressed model formats that result in
very similar file sizes. On the contrary, RTNeural uses the JSON
format, which is a human-readable storage format for neural net-
works, which results in a significantly large file for each model.
The results are shown in Figure 4.

Model Size for each Runtime

Runtime

By Triite
TorchScript

- OnnxRuntime

- RTNeural

29.35

7.93
7.97
7.95

ModelB ModelA

ModelC

20

1‘5
Size (MiB)

25 30

Figure 4: Size of Model A, B and C when converted for each IE.

Additionally, a test conversion of only the supported opera-
tions of Model A (i.e., no batch normalization) results in a final
model file with a size of 94.9 MiB. Nevertheless, since RTNeural
is an open-source project, any developer could integrate serializa-
tion and deserialization primitives to obtain lightweight models.

4.5. Additional model-independent metrics

The last four measures are Library size, Supported operations,
Ease of use, and Quality of documentation (see Sec. 3.4). These
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are independent of the use of either Model A, B, or C. The re-
sulting scores are presented in Table 3 and Figure 5 and will be
discussed in the next sections.

Table 3: Model-independent metric results. All the scores are ex-
pressed on a scale from one to ten, with ten being the most de-
sirable score. The Library size score is inversely proportional to
the actual size, with ten being the smallest library (RTNeural) and
zero being the largest (TorchScript).

. Library size Supported Ease Quality
Inference Engine (score) Operations of use of doc.
TFlite 9.25 10 9.75 9.5
TorchScript 0 10 7.75 4.5
ONNX Runtime 8.98 10 7 8
RTNeural 10 5.7 6.5 35

4.5.1. Library Size

Library size refers to the total size of the C++ libraries of each
IE. The resulting sizes are presented in Table 4, which shows
that TorchScript has a considerably large code library, TFlite and
ONNX Runtime are similar in size, and RTNeural is several orders
of magnitude smaller than both. However, these measures must be
considered along with the size of the models presented previously.

Table 4: Size of the C++ library objects for each IE. The version
of each IE is specified in Section 3.1.

Inference Engine  Library Size (MiB) Total (MiB)

TFlite libtensorflow-lite.a 8.8 8.8
. libtorch_cpu.so 116.8

TorchScript libe10.50 05 117.3

ONNX Runtime libonnxruntime.so 12.0 12.0

RTNeural libRTNeural.a 0.026 0.026

From Figure 6 we can see that the rather compact size of the
TorchScript models is undercut by its large code library. Further-
more, even if the size of the RTNeural library is so low to even be
practically invisible in the plot, its large uncompressed JSON mod-
els are a significant disadvantage. Additionally, a virtual projection
of the size of Model A (which is currently unsupported) would be
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Figure 5: Graphical representation of the model independent
scores for each IE. The four spokes on each graph graph rep-
resent respectively the score assigned to the size of the IE library,
the number of supported operations, the perceived ease of use and
the quality of documentation.
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Figure 6: Combined sizes of models and C++ code libraries for
each compatible combination. The lighter-color part of each bar
shows the size of each code library, while the remaining part indi-
cates the size of the model.

north of 94 MiB, making the total size closer to the rather large
TorchScript than the other alternatives. However, implementing
new serialization and deserialization functions for RTNeural (see
Sec. 4.4) would greatly reduce the total footprint because at the
current state it depends almost entirely on the model size.

4.5.2. Supported Operations

The amount of supported operations is presented as the percent-
age of operations available in each IE from a list of the most com-
mon types of neural layers and activations (see Sec. 3.4). Accord-
ing to their documentation, the more advanced TFlite, TorchScript,
and ONNX Runtime cover 100% of the operations listed. RTNeu-
ral is instead more limited, as it only supports network layers that
are Dense, Gated Recurrent Units, LSTM cells, 1D Convolutions,
and the following activations: TanH, Sigmoid, Softmax, and ReLU.
RTNeural totals a coverage of 57% of the most common neural
network operations. Among the operations missing in RTNeural
at the moment, the most crucial are 2D convolutions, MaxPooling
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and Batch Normalization.

However, despite supporting over 50% of the most common
operations, the code library of RTNeural is over 300 times smaller
than that of TFlite and over 450 times smaller than ONNX Run-
time. Along with the execution-time results, which are comparable
with the most popular alternatives, this shows a great deal of care
towards simplicity and code bloat avoidance.

4.5.3. Ease of Use

Ease of use was rated by two of the authors, according to the
perceived complexity of converting a neural model and using the
APIs of each IE to load the model, obtain its proprieties (e.g., input
and output sizes) and execute the inference. It is to be noted that
the scores assigned to the ease of model-conversion are dependent
on the fact that the starting point was a regular Keras/TensorFlow
model.

The conversion to a TensorFlow Lite model is straightforward
since the developers provide a Python tool (i.e., TFLiteConverter)
that allows the user to convert a SavedModel, a Keras model, and
concrete functions. On the other hand, generating a TorchScript
model from a TensorFlow model requires a custom implemen-
tation of a TensorFlow-PyTorch converter. Fortunately, the two
frameworks represent the most basic layers in a relatively simi-
lar way, allowing for a simple conversion of the data types of one
library to the other. Once a PyTorch model is obtained, the JIT
API provides two ways to generate a TorchScript model: tracing
and scripting. Tracing is performed when the computational graph
is inferred by recording the operations executed on a sample in-
put, while scripting creates the TorchScript model by analyzing
the source code, therefore being a better choice for more complex
models (e.g., including conditional statements). In a similar fash-
ion, PyTorch allows users to perform tracing to generate an ONNX
model, which is a very simple process. Finally, RTNeural provides
a Python script to export the weights of a TensorFlow Model to a
JSON file, but it required refining to discard layers that are not
needed for inference (i.e., dropout layers).

The utility developed to convert TensorFlow models for each
IE is available in the project’s repository'!, along with wrappers
for each IE, which expose the same API to allow for easy IE inter-
changeability.

4.5.4. Quality of documentation

The quality of documentation comprises the clarity and quan-
tity of guides, tutorials, and formal API documentation. TFlite
showed the best documentation, composed of very user-friendly
guides and thorough API documentation. ONNX Runtime was
the second-best in the category: the API documentation is com-
plete and detailed, and there is a good number of examples, but it
lacks the number of tutorials offered with TensorFlow Lite. Torch-
Script was instead very different: the technical documentation is
very scarce for a project of such entity, and we had to rely on a few
incomplete guides. Finally, RTNeural has a very compact amount
of information on how to use the IE, which is to be expected by
a project of its size. Generally, the use of RTNeural was intuitive,
which reflects on the scores assigned in the previous section.

4.6. Key Takeaways

Each IE proved to be safe for real-time inference, with the ap-
propriate code practices. Moreover, In terms of model execution
speed, TFlite, ONNX Runtime and RTNeural proved to be the

Mhttps://github.com/domenicostefani/deep-classf-runtime-wrappers
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quickest, with mostly comparable results, while TorchScript was
considerably slower. Interestingly, we found that the compile-
time definition mode of RTNeural does not offer any significant
speedup with the models tested.

The average CPU and memory Usage was a less insightful
metrics for a rather low-frequency task, but the results helped to
confirm the difference in resource consumption between neural
network models. Moreover, except for RTNeural, all the IEs use
a compressed format for neural networks, which results in model
files that are considerably smaller than the human-readable repre-
sentation used by RTNeural. However TorchScript has a signifi-
cantly larger code library than all the alternatives.

All the popular IEs analyzed support a wide range of neural
layers and activation functions. In contrast, RTNeural lacks crucial
types of neural layers like Batch Normalization, MaxPooling, and
2D Convolutions. However, despite supporting 57% of the most
common neural operators, the code library of RTNeural is several
orders of magnitude smaller than the competition. Finally, TFlite
and ONNX Runtime were deemed to be the easiest to use and have
the most detailed documentation.

5. CONCLUSIONS

In this paper, we presented a comparison of four inference engines
for real-time audio classification on embedded CPU. Our aim was
to shed some light on optimized inference engines for deep learn-
ing inference and their properties in relation to real-time audio
classification. In our study, we employed models for real-time
classification of expressive guitar techniques. We found that many
popular deep learning inference engines can be used effectively for
real-time audio classification, without needing to resort to more
limited and specialized solutions, such as RTNeural. In contrast,
more specialized solutions can be lightweight and minimalist alter-
natives where less flexibility is needed. While we focused on em-
bedded computers and audio classification, most results are likely
to translate or scale to audio plugins for desktop computers, and
audio processing. The limitations of this study are in the choice
of restricting the comparison to Feed-Forward Neural Networks
and only four deep learning inference engines. Besides exploring
more inference engines, future work should also investigate per-
formance differences with a wider range of deep learning models,
such as recurrent and convolutional neural networks. Other possi-
bilities would be to extend this comparison to slower CPUs and to
test with quantized neural network models.
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