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ABSTRACT

Herein, we demonstrate the use of neural nets towards simulating
multiport nonlinearities inside a wave digital filter. We introduce a
resolved wave definition which allows us to extract features from a
Kirchhoff domain dataset and train our neural networks directly in
the wave domain. A hyperparameter search is performed to min-
imize error and runtime complexity. To illustrate the method, we
model a tube amplifier circuit inspired by the preamplifier stage
of the Fender Pro-Junior guitar amplifier. We analyze the per-
formance of our neural nets models by comparing their distortion
characteristics and transconductances. Our results suggest that ac-
tivation function selection has a significant effect on the distortion
characteristic created by the neural net.

1. INTRODUCTION

Vintage audio gear based on analog tube amplifier circuits is re-
sponsible for many of the distinctive sounds that characterize mu-
sic today. For example, genres such as blues, rock, and metal
continue to rely heavily on guitar tube amplifiers. Tube-based vin-
tage recording studio gear, such as as the LA-2A leveling amplifier
and the Pultec EQP-1A program equalizer, continues to be widely
used. Tube-based analog audio gear is expensive to reproduce,
making it inaccessible to many, and, even worse, many popular
pieces of audio gear derive their sound from electrical components
that are no longer manufactured. As ever dwindling supply drives
prices to unreasonable levels, the demand for effective digital em-
ulation increases.

Virtual analog modeling seeks to create digital algorithms that
accurately replicate the behavior of analog audio effects. Models
can be broadly divided into two categories: “black-box” models
that only emulate the effect of a specific piece of gear by analyz-
ing and replicating only its input-output behavior, and “white-box”
models that emulate the effect by analyzing internal behavior and
replicating its physical operation.

Wave-digital filters (WDFs) have been thoroughly investigated
as a white-box method for modeling many audio circuits [1–8].
Tubes have been modeled with WDFs in [9–11] using a simplified
model with ad hoc delays and in [12] using a blockwise K-method.
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WDFs are especially effective for simulating the linear parts of
circuits, providing a high degree of modularity and desirable prop-
erties [13]. Circuits containing multiple or multiport nonlinearities
have been specifically addressed in WDF models by [4, 14–16].
Most nonlinear circuits do not have closed form WDF solutions,
requiring resolution of delay-free loops via table-lookup, func-
tional approximation, or iterative techniques (typically using New-
ton’s method or its variants) [1,3,15–18]. As an alternative to these
resolution methods, we propose to use of machine learning to cap-
ture the behavior of the nonlinear ports in the wave domain.

Machine learning has been usefully applied to virtual ana-
log modeling in the Kirchhoff domain using black-box models for
tubes circuits in [19], generally in [19–23], and in grey-box mod-
els which utilize knowledge of the circuit to train neural networks
within a white-box structure [24]. Machine learning has more re-
cently been applied to grey-box modeling in the WDFs for single-
port nonlinearities [25].

In this article, we propose a wave domain definition based on
the K-method [17, 26] that explicitly resolves the delay-free loop
for multiport nonlinearities. We use this definition to extract the
feedforward wave domain behavior from a dataset describing a
nonlinearity in the Kirchhoff domain. This dataset is then used
to train a neural net to functionally approximate the resolved wave
behavior and replace the multiport adaptor in a WDF model of a
tube amplifier circuit. The combined neural net and wave digital
filter model can run in real-time.

Section 2 presents theoretical background on WDFs and de-
rives the resolved wave transformation. Section 3 provides some
background on machine learning and the design of the neural net
models used in our case study, the first stage of the Fender Pro-
Junior preamplifier. Case study results appear in Section 4. Sec-
tion 5 summarizes and concludes the paper.

Adaptor 1 Adaptor 2
port kport j
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Figure 1: Two adaptors connected by a single port. Connecting
them enforces the equality of wave variables ak = bj , aj = bk,
and port resistance Rj = Rk.
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Figure 2: The proposed loop resolution process. The resolved wave definition — equation (7b) — is used to transform the nonlinearity in
(a) to the form g(·) in (b) which is then approximated using a neural net as in (c).

2. WAVE DIGITAL FILTER THEORY

2.1. Background

Wave-digital filters represent electrical circuits in the wave domain
— i.e. in terms of traveling-wave components — in place of the
usual Kirchhoff-domain variables: voltage and current. A vector
voltages, v, and currents, i, across and through a port are related to
their traveling-wave components a and b by the parametric wave
definition:

a = Rρ−1v +Rρi

b = Rρ−1v −Rρi (1a)

v =
1

2
R1−ρa+

1

2
R1−ρb

i =
1

2
R−ρa− 1

2
R−ρb, (1b)

where ρ is a constant that changes the physical units of the
wave variables in the adaptor [4, 13]. For voltage waves, ρ =
1. Applying the parametric wave definition results in a change
of basis between the Kirchhoff domain (i, v) and the wave domain
(a, b), and the circuit can now be viewed as an electric transmission
line with port impedance R.

WDFs are composed of a network of adaptors connected to
ports such as a resistor, capacitor, or an inductor. The port
impedances of a resistor R, capacitor C, and inductor L, are R,
T/(2C), and 2L/T respectively, where T denotes the sampling
interval in seconds. These values are obtained by discretizing
the continuous-time reflectances using the bilinear transform and
choosing the port impedance that suppressing the instantaneous
reflected wave. This step is known as adapting the model which
additionally enforces causality in the WDF.

The WDF is preferably arranged in a binary connection tree
[27], which requires only three-port adaptors. When two ports are
connected, as shown in Figure 1, the incident wave of one is equal
to the reflected wave of the other (ak = bj and aj = bk). Connect-
ing two different wave impedances results in a scattering junction
called an adaptor.The free port impedance of an adaptor (the port
facing the root of the tree and connecting to another adaptor) is
chosen to eliminate the instantaneous reflection from that adaptor
as seen from the root of the tree. This practice eliminates delay-
free loops in the model’s overall structure [28]. Specifically, a

series adaptor sets its root-facing port to the sum of the two port
impedances it connects, while a parallel adaptor presents the par-
allel combination of those impedances.

The binary connection tree is only sufficient for series and par-
allel connections. In more general circuits, the adaptors may be
systematically defined based on an SPQR tree decomposition [14]
that allows any given circuit to be represented by Series, Parallel,
and Rigidly connected WDF elements. The Rigid node is not de-
composable into series and or parallel subgraphs and an R-type
adaptor is used to represent the complex topology. In [8], Werner
et al. demonstrated how modified nodal analysis (MNA) may be
used to create custom R-type adaptors for any rigid topological
connection between circuit elements. Several adaptors for non-
linear circuit elements exist, such as the Chua diode [29] and the
Schottky diode [2], but their use is usually limited to a single non-
linear element or element combination at the root of the binary
connection tree. This is because only the root of the tree may have
an instantaneous reflection without introducing a delay-free loop.

2.2. Delay-Free Loop Resolution

Before [1], a general procedure for incorporating multiple port
nonlinearities, such as tubes and transistors, into WDF models,
was unknown. When the parametric wave definition is applied
to an existing Kirchhoff domain nonlinearity function of the form
i = k(v), it is rarely possible to express the resulting wave-domain
reflectance b = f(a) in closed form. Furthermore, the resulting
nonlinear adaptor must be attached via multiple ports to an R-type
adaptor, forming delay-free loops between them. In [1,30], Werner
et al. proposed applying the K-method [17, 26] to resolve the de-
lay free loop. Here, we propose a resolved wave definition, which
uses generalized wave variables [1, 31] to resolve the delay-free
loop between the R-type adaptor and wave domain nonlinearity.

Consider an R-type adaptor connected by multiple ports to
some nonlinearity described, in the Kirchhoff domain, by if =
k(vf ) and f(af ) = bf in the wave domain. The R-type adaptor
is generally described by a linear scattering matrix,[

bi

bc

]
=

[
S11 S12

S21 S22

] [
ai

ac

]
(2)

Here, each wave vector has been partitioned into wave vectors of
the ports attached to the the wave-domain nonlinearity (ai,bi),
and the wave vectors of the ports attached to adapted ports of other
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linear adaptors (ac,bc). The nonlinearity is attached such that
af = bi and ai = bf , like in Figure 1.

At each sample, this portion of the WDF model must compute
bc, the reflected wave-vector from the root node. The vector ac is
known at all times from the tree below. To compute bi or bc, ai =
bf must first be found, which in turn depends instantaneously on
af = bi resulting in a delay-free loop with the nonlinearity.

The nonlinear delay-free loop has previously been resolved by
minimizing

∥âi − f(S11âi + S12ac︸ ︷︷ ︸
âf

)∥ (3)

over âi using Newton-Raphson iterations [12, 15]. This method
can be costly, since iteration must be carried out for each sample.

The K method [17, 26] defines a state-space representation of
the system plus an auxiliary nonlinear function that is resolved as
such:

xn = Axn−1 +Bun +Cin

i = k(v)

v = Dx+Eu+ Fi

vn = Γ(pn)

in = f(Γ(pn))

where
pn = Dxn−1 +Eun

so that
0 = pn + Ff(vn)− vn

In the Nodal K -Method described in [26], the nonlinear resolving
function Γ is precomputed using Newton homotopy and stored in
a lookup table for real-time use through multidimensional linear
interpolation based on interpn from the Octave distribution. All
variables are in the Kirchhoff domain.

In [1], the nonlinear delay-free loop resolution of the K-
method is applied to the WDF multiport nonlinearity problem. To
allow for easier tabulation of the lookup, the R-type adaptor is first
transformed from the wave domain to the Kirchoff domain using a
w-K converter. Then, the K-method is applied to the transformed
R-type adaptor.

Instead, consider that both the K-method and the paramet-
ric wave definition constitute a linear transformation or change of
variables. Furthermore, the parametric wave definition is chosen
as such because it is useful for preventing delay free loops within
a WDF model’s structure. Thus, if we can preserve model behav-
ior, it is reasonable to choose an alternative linear transformation
of Kirchhoff variables that prevents delay free loops.

We desire transformed wave variables (ag,bg) for which the
transformed nonlinear function g has no delay-free loop,

g(ag) = bg. (4)

as shown in (3). To break the dependency of bi and ai, we must
effectively set S11 = 0. This corresponds to matching the port
impedance of the nonlinearity with the instantaneous impedance,
dependent on ac, of the nonlinearity itself.

These transformed wave-variables are related to the normal
wave variables by the K-method:[

ag

bg

]
=

[
I K
0 I

] [
af

bf

]
, (5)

where I is the identity matrix with the same dimensions as S11

and K = S11 for a system with no dynamics, as is the case here.
Substituting in (1a) gives the relationship to the Kirchhoff domain.[

ag

bg

]
=

[
I S11

0 I

] [
Rρ−1 Rρ

Rρ−1 −Rρ

] [
vf

if

]
, (6)

This combined relationship defines the resolved wave defini-
tion:

ag = Rρ−1 (I− S11)vf +Rρ (I+ S11) if

bg = Rρ−1vf −Rρif (7a)

vf =
1

2
R1−ρ ((S11 + I)bg + ag)

if =
1

2
R−ρ ((S11 − I)bg + ag) . (7b)

While this definition is not convenient for the tabulation of a
lookup table, it is useful for data transformation. A Kirchhoff do-
main nonlinearity described by if = k(vf ) and transformed using
the resolved wave definition can be inserted directly into the WDF
model, as shown in Figure 2b. This WDF model is equivalent to
the one described by Figure 2a, but contains no delay free loop, by
definition of the transformed wave variables.

3. MACHINE LEARNING FOR TRIODES

Sets of voltages, vf , and currents, if , at each port of a nonlinear-
ity can be obtained through either direct measurement or circuit
modeling, forming a Kirchhoff domain dataset for that nonlinear-
ity. The resolved wave definition — derived in the previous sec-
tion — allows us to transform said set of vf ’s and if ’s creating
a set of known solutions to the nonlinear function (4). As in the
K-method [17], g(·) represents the explicit solution resolving the
delay-free loop.

g(·) can be implemented using iteration representation in a
table lookup that is optionally compressed by functional approxi-
mation (e.g., using linear interpolation or splines) [26, 32]. Both
methods result in an approximation of the desired resolved non-
linearity. Function approximation of this kind is also a task well-
suited for neural networks, which have been shown to be univer-
sal approximators, capable of replicating any continuous nonlinear
function with arbitrary precision [33–35]. Due to the enormity of
the lookup tables required for multiple nonseparable nonlineari-
ties, neural net functional approximations present an interesting
alternative implementation.

Training our neural network as a universal approximator of
g(·) is a regression task, where the ag and bg are the respective
features and outcomes. Thus, the resolved wave definition be-
comes a feature extraction method applied to the Kirchhoff domain
dataset. For a memoryless nonlinearity such as a triode or transis-
tor, the function we need to approximate is necessarily memory-
less; this suggests we should use a memoryless feedforward neural
network [36]. Within feedforward networks, if our nonlinearity is
represented by an amplitude mapping, this further suggests the use
of a multilayer perceptron (MLP) network [24] rather than a con-
volution neural network (CNN), which is akin to FIR filtering [37].

Consider that encapsulating our neural network inside a WDF
structure greatly reduces the complexity of the function the net
must learn to approximate. When a circuits contains stateful ele-
ments, such as capacitors and inductors, modeling the system with
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Figure 3: Preamplifier stage of the Fender Pro-Junior guitar amplifier. The modeling method was applied to the 1st stage of the circuit.

a neural net would similarly require the use of stateful recurrent
neural networks (RNN) [36], as in [21]. Instead, in our model, we
have separated the linear portion in to WDF model that also main-
tains all the stateful portions of the circuit model. Our nonlinear
behavior is independent from these states, reducing the complex-
ity of the machine learning task.This allows our model to use small
neural nets that can easily run in real time.

We modeled the first stage of a two-stage tube preamplifier
from a Fender Pro-Junior guitar amplifier. A schematic of the cir-
cuit and its first stage is shown in Figure 3a and the accompanying
WDF and neural net model is shown in Figure 3b . The preampli-
fier utilizes a 12AX7 triode vacuum tube.

3.1. Dataset Generation

To generate a Kirchhoff domain dataset for the 12AX7 triode, the
circuit was modelled using LTspice. The SPICE model proposed
by Dempwolf et al. [38] was used to simulate each 12AX7 triode.

To generate a dataset that accurately captured the behavior of
the nonlinearity, we devised a 10-second test signal. The signal
was composed of dry guitar samples and logarithmic sine sweeps
with additive white noise. Each sine sweep is 3.0 seconds long,
and has varying digital signal levels, from ±0.25 to ±1.0. The
level of noise was equal to the level of the swept sine tones to
ensure a wide range of frequencies were captured by the neural
nets during training. A sampling rate of 96 kHz was used for both
measurement and training.

In the LTspice model, full scale digital audio was scaled to 10
Vpp, which exceeds reasonable real-world voltage levels expected
on the input of the amplifier. This was chosen to ensure that both
the nonlinearity completely saturates and the Kirchhoff domain
dataset of the tube extends beyond reasonable usage behavior in
the circuit model. Voltage and current data were collected at the
grid, anode and cathode. Finally, the dataset was transformed into
the resolved wave domain using equation (7b).

3.2. Training

To train our model, we initially used a combination of error-to-
signal ratio (ESR) loss and dc offset loss functions as suggested

by Wright and Välimäki in [39]. Loss was computed individually
along each dimension of the output vector, with the total loss being
the sum of the losses in each dimension. Our networks had diffi-
culty training due to a large variance in the loss, and we found it
helpful to sample normalized each loss function. The normalized
ESR loss used is given by

EESR =

(
1

N

∑N−1
n=0 |yn − ŷn|2∑N−1

n=0 |yn|2

)1/2

, (8)

where N is the number of signal samples, yn is the expected output
value, and ŷn is the output value predicted by the neural net. The
normalized dc offset loss used is given by

Edc =

(
1

N

| 1
N

∑N−1
n=0 (yn − ŷn)|2

1
N

∑N−1
n=0 |yn|2

)1/2

. (9)

Combining normalized ESR and dc loss provided suitable initial
results.

We found that including an additional normalized mean
squared error (MSE) loss given by

EMSE =
1

N

N−1∑
n=0

(yn − ŷn)
2

y2
n

(10)

in the loss function helped to further match the desired transcon-
ductance behavior of the neural network. See Section 4.2 for our
transconductance analysis.

During training we utilized the Adam optimizer with values
suggested by an initial Optuna study [40] for the learning rate α
and decay rates β1 and β2. Our batch size was fixed at 256 sam-
ples. All training and verification of our neural networks was per-
formed using Keras [41] and TensorFlow [42].

3.3. Hyperparameter Search

Two hyperparameter searches were performed using Optuna [40].
We first conducted an initial hyperparameter search to roughly de-
termine adequate hyperparater values. Then a final search was
done with a reduced set hyperparameters based on the results from
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Hyperparameter Searched Range Spacing
# Hidden Layers 1− 8 linear

Hidden Layer Size 8− 128 log
α* 10−6 − 10−2 log
β1* 0.8− 1.0 log
β2* 0.9− 1.0 log

Activation ReLU, tanh*, ELU, N/A

Table 1: The maximum and minimum bounds of each hyperpa-
rameter included in the Optuna search. Activation type was also
included as a hyperparameter. * indicates the following parameter
was not utilized in the final hyperparameter search

the initial study. The hyperparameters included in our search and
their respective minimum and maximum possible ranges are given
in Table 1. Included in our initial search were three activation
functions: rectified linear units (ReLU), tanh, and exponential lin-
ear units (ELU) [43]. Optuna worked to minimize the validation
loss of 100 different neural network architectures over 250 epochs.
The final validation loss was then stored for comparison.

To better understand the effects of layer width and depth, fol-
lowing our initial study, an approximate median of best performing
neural nets’ learning rate and decay rates were used in lieu of in-
cluding these hyperparameters in our search. This corresponded
to α = 10−4, β1 = 0.9 and β2 = 0.999. The tanh activation
performed worse compared to the the ReLU and ELU activations,
and it was removed from our final hyperparameter search.

As the goal of our model is real-time implementation, we com-
pared each neural network’s validation loss to an estimation of
their runtime using single instruction, multiple data (SIMD) op-
timization. This estimation was derived by computing the number
of multiplies and additions each neural network requires, and the
computation time of the different activation functions relative to
the ReLU activation.

A final Optuna study of 100 neural network architectures was
carried out and in Figure 4 the final validation loss was compared
to a runtime metric proportional to the size of the network. Of
interest is that there exists a Pareto front, suggesting that there is a
region where the loss is close to optimal for a given runtime.

Following this final hyperparameter search, three neural net-
work architectures — given in Table 2 — were chosen from the
left most points on the Pareto front that best minimized validation
loss and maximized runtime efficiency.

Included in this table is the real-time factor (RTF) at a 96 kHz
sampling rate for each neural net. The RTF is found by ratio of
input duration and runtime-duration. For our analysis, a 10-second
long input at 96 kHz was processed by each neural net on 2.4 GHz
8-Core Intel Core i9 CPU and the runtime of the net was used in the
denominator of the RTF ratio. RTF analysis and audio validation
of the neural nets was implemented in C++ using the RTNeural1

library.

3.4. WDF Implementation

To test our method, we implemented a WDF model of the by the
first stage of the Fender Pro-Junior Guitar amplifier. The WDF
model was derived using the methods shown in [4]. The model di-
agram is shown in Figure 3b. The wave digital filter models were

1https://github.com/jatinchowdhury18/RTNeural
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Figure 4: Comparison of validation loss and runtime as generated
by the Optuna study. The dashed line indicates the Pareto front.

implemented in Python using the Differentiable Wave-Digital Fil-
ters library2. A custom combined R-type 3 and the neural net
adaptor was implemented as shown in Figure 2c.

The voltage across R6 as was used as the output of the model.
The circuit modeled only included the elements denoted in Fig-
ure 3a; any parasitic capacitances assiociated with the 12AX7 tri-
ode were left out for sake of simplicity. If desired, these could be
added to the WDF model by reforming the R-type and connecting
capacitance adaptors of the relevant values.

4. MODEL ANALYSIS

Figure 5 compares the behavior of the three trained neural nets
to the LTspice model which generated the training data. The top
two plots of Figure 5 display the grid and plate reflected wave out-
puts as predicted by the neural net for a subset of our validation
dataset. The results are compared to the values transformed from
the LTspice generated Kirchhoff domain data. The signal shown
is a dry guitar sample sampled at 96 kHz on the input of the cir-
cuit. These graphs demonstrate the neural nets suitably learned
the input-output relationship of our dataset in the resolved wave
domain.

The bottom plot of Figure 5 compares the output behavior of
the neural net WDF model to the LTspice model for a 3 Vpp 220
Hz sine tone signal. Our models show minimal deviation from the
LTspice model. Thus, the learned relationship translates well to
the final output when the neural net is inserted into the wave digital

2github.com/jatinchowdhury18/differentiable-wdfs
3derived using https://chowdsp.com/rsolver

# Hidden
Layers

Hidden
Layer
Size

Activation Final E RTF @
96 kHz

4 8 ELU 5.07e-4 39.2457x
2 32 ELU 1.77e-3 25.8181x
2 32 ReLU 5.48e-3 39.573x

Table 2: Final neural nets used in analysis, their final loss and
their real-time factor at 96 kHz.
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Figure 5: The top two plots compare the components of the pre-
dicted output vector, bf to the desired output as generated by
LTspice for a guitar input signal. The bottom plot compares the
output behavior of the 1st stage of the preamplifier circuit to the
LTspice model output.

filter. These plots experimentally confirm our proposed delay-free
loop resolution method and supports using the resolved wave def-
inition as a feature extraction tool when training a wave domain
nonlinearity from a Kirchhoff domain dataset.

4.1. Activation Function Comparison

Figure 6 shows a detailed comparison of the different neural net-
work architectures in response to the aforementioned 220 Hz sine
tone signal. Note how different activation types exhibit different
clipping profiles; the model with ReLU activations exhibits harsh
transition points compared to the ELU networks that are relatively
smooth. This behavior can be ascribed to piecewise linear approx-
imators used in ReLU networks [35]. The ELU networks, on the
other hand, do not exhibit these sharp edges as the “knee” of the
activation function has been softened with an exponential. These
time-domain artifacts are reflected in the frequency-domain where
the ReLU network produces more high-frequency noise compared
to the ELU networks. Frequency-domain analysis further suggests
that the flatter ELU network (2x32) performs better for this partic-
ular function approximation.

4.2. Transconductance Analysis

To better understand the behavior of our trained networks, we
experimentally examined their transconductance behavior in the
Kirchhoff domain and compared to the LTspice model equations
from Dempwolf et al. [38]. Through the resolved wave definition
(7b), the behavior of our neural nets can be directly related to the
Kirchhoff domain allowing us a better understanding of the neural
nets behavior.
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Figure 6: Detailed comparison of the different neural net archi-
tectures in response to a 3 Vpp 220 Hz sine tone. Note how dif-
ferent architectures create different harmonic profiles in the high
frequencies.
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Figure 7: Transconductance plot of the 4x8 ELU neural network
model. Extracted curves of the neural net (solid red) closely ad-
here to the Dempwolf model (dashed blue)

To extract the transconductance of our neural nets, the neural
net’s output was captured for a set of random input vectors with
a Gaussian distribution over the expected range of the input. This
range was bounded by the minimum and maximum found for each
input-vector element in the training set. (7b) was then used to
transform the input and output vectors into a Kirchhoff domain
dataset, yielding a set of input voltages and output currents that
characterize the neural net’s transconductance.

The transconductance behavior for the 4x8 ELU neural net is
shown in Figure 7. The experimentally extracted grid transcon-
ductance curves of the neural net (solid red), closely match the
transconductance curves of the Dempwolf model (dashed blue).
There is some deviation from the expected curves for lower volt-
ages, possibly due to a lack of training data in this region. Overall,
this demonstrates that our model has learned the Kirchhoff domain
behavior of the 12AX7 triode through our feature extraction.
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5. CONCLUSIONS

In this paper, we demonstrated the use of neural nets for simulating
multiport nonlinearities in wave digital filter models. Previously,
nonlinear elements have been modeled using iterative methods, K-
method lookup tables, or functional approximations to lookup ta-
bles.

We introduced the resolved wave definition — a wave trans-
formation that directly resolves the delay free loop created by a
multiport nonlinearity — and used it to perform feature extraction
from a Kirchhoff-domain dataset of a 12AX7 triode simulated in
LTspice. Our results demonstrate that small neural nets are capable
of learning the behavior of circuit nonlinearities in the resolved-
wave domain and, due to complexity reduction in our grey-box
modeling method, are easily capable of running in real time when
implemented in C++.

Transconductance analysis of our neural net domain showed
our neural nets closely replicated the tubes Kirchhoff domain be-
havior over an expected range of input. We found that hyperpa-
rameter selection in the network changed the distortion character-
istic of the model independent of measured loss. For small dimen-
sion neural nets, we found the choice of activation function had
a noticeable effect on aliasing artifacts, suggesting smooth activa-
tion functions are desirable. More detailed research is needed to
understand how hyperparameters, such as the activation function,
can effectively be chosen to minimize undesirable effects such as
aliasing.

Because a nonlinearity’s behavior is circuit invariant in the
Kirchhoff domain, with a sufficient Kirchhoff domain dataset a
nonlinearity could be appropriately transformed and placed into
any WDF model. Even if the mathematical model of a nonlinear
device is not well understood, it could still be trivially treated by
the proposed method and used in a WDF model. In the future,
the authors hope to collect real-world data on various nonlineari-
ties and explore how this method can simulate them inside a WDF
model.

The authors also hope to investigate how to include S11 as a
learnable parameter, such that parameter control of the model is
not limited by a static resolved wave definition. It is reasonable to
expect that a sufficiently large neural net could extract the behavior
of S11 in addition to modeling the wave domain behavior, given
sufficient data.
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