
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

REAL-TIME IMPLEMENTATION OF THE DYNAMIC STIFF STRING USING
FINITE-DIFFERENCE TIME-DOMAIN METHODS AND THE DYNAMIC GRID

Silvin Willemsen and Stefania Serafin

Multisensory Experience Lab
Aalborg University Copenhagen

Denmark
sil@create.aau.dk | sts@create.aau.dk

ABSTRACT

Digital musical instruments based on physical modelling have
gained increased popularity over the past years. This is partly due
to recent advances in computational power, which allow for their
real-time implementation. One of the great potentials for digital
musical instruments based on physical models, is that one can go
beyond what is physically possible and change properties of the
instruments which are static in real life. This paper presents a
real-time implementation of the dynamic stiff string using finite-
difference time-domain (FDTD) methods. The defining parame-
ters of the string can be varied in real time and change the under-
lying grid that these methods rely on based on the recently devel-
oped dynamic grid method. For most settings, parameter changes
are nearly instantaneous and do not cause noticeable artefacts due
to changes in the grid. A reliable way to prevent artefacts for all
settings is under development.

1. INTRODUCTION

Physical models of strings have been known since D’Alembert’s
formulations in the 18th century, but recent computational devel-
opments have allowed for their real-time implementation. One of
the first real-time physical models, due to Karplus and Strong,
was that of a (damped) ideal string and used digital waveguides
(DWGs) [1]. Jaffe and Smith used allpass filters to extend the
algorithm to include inharmonicity due to stiffness in [2]. Other
techniques, such as modal synthesis [3], have been used to model
stiff strings in e.g. [4]. Both these techniques, however, rely on
assumptions that the system can be decomposed into either travel-
ling waves (for DWGs) or uncoupled modes (for modal synthesis)
[5].

Finite-difference time-domain (FDTD) methods, on the other
hand, only assume that a continuous partial differential equation
(PDE) can be described over a grid, which is by no means re-
strictive [5]. These methods are therefore very general and al-
low for physical parameters to be directly modelled and controlled.
FDTD methods were first used to model strings by Ruiz in [6] and
Hiller and Ruiz in [7, 8], and appear in many recent publications
[9, 10, 11, 12].

According to the authors, one of the most interesting poten-
tials of physical modelling is to exploit the virtual nature of the
simulation, and to go beyond that what is physically possible. One

Copyright: © 2022 Silvin Willemsen et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

could, for example, change material properties and geometry of
the string while the simulation is running, to create sounds which
are impossible in the physical world. Furthermore, using time-
varying parameters could help greatly in tuning the models in real
time, as opposed to needing to change the parameters at the start
of the simulation.

An issue with FDTD methods is that the parameters describ-
ing the underlying system are closely tied to the discrete grid that
these methods rely on. Previously mentioned methods have been
shown to allow for smooth parameter changes, see e.g., [13] for
DWGs and [4, 14] for modal synthesis, but come with their own
aforementioned drawbacks.

Recently, the authors of the current work developed a method
to smoothly change grid configurations of FDTD-based musical
instrument simulations referred to as ‘the dynamic grid’. Using
this method, the defining parameters of the physical model can be
varied while smoothly adapting the underlying grid to the changes
in parameter values. As opposed to, e.g., adaptive mesh refinement
[15], this method uses the same time step for the entire grid, and
thus does not require complex interfacing between different parts
of the grid. The dynamic grid method first appeared in [16], and
presented its application to the 1D wave equation. Simultaneously,
a real-time physical model of the trombone was presented in [17]
using this method for implementing the time-varying length of the
instrument in real time. A more in-depth description of the method
can be found in [12, Ch. 12].

More recently, [18] extended the dynamic grid method to more
complex systems, including the damped stiff string, by using a
matrix-vector formulation, which will be used as the foundation
of this work. This paper presents the work on the real-time dy-
namic stiff string and provides more details on the mathematical
formulation as well as its (real-time) implementation.

The rest of this paper is structured as follows: Section 2
presents the non-dynamic stiff string in continuous time. Section 3
introduces FDTD methods and discretises the (non-dynamic) stiff
string. The dynamic grid is presented in Section 4 and applied to
the stiff string. The real-time application, together with implemen-
tation details, are presented in Section 5, and results are presented
and discussed in Section 6. Finally, concluding remarks appear in
Section 7.

2. PHYSICAL MODEL

The model of the stiff string is well covered in the literature [19, 5],
but will be recalled here. Consider the transverse displacement of
a stiff string of length L (in m) described by u = u(x, t) (in m)
with time t ≥ 0 (in s) and space x ∈ D (in m), where domain
D = [0, L]. Using ∂t and ∂x to denote partial derivatives in time

DAFx.1

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

130

https://melcph.create.aau.dk/
mailto:sil@create.aau.dk
mailto:sts@create.aau.dk
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

t and space x respectively, the dynamics of the damped stiff string
can be described by the following PDE [20]:

ρA∂2
t u = T∂2

xu− EI∂4
xu− 2σ0ρA∂tu+ 2σ1ρA∂t∂

2
xu. (1)

Parameters are material density ρ (in kg/m3), cross-sectional area
A = πr2 (in m2), radius r (in m), tension T (in N), Young’s
modulus E (in Pa), area moment of inertia I = πr4/4 (in m4) and
frequency-independent and frequency-dependent loss coefficients
σ0 ≥ 0 (in s−1) and σ1 ≥ 0 (in m2/s) respectively. Notice that the
parameters in Eq. (1) are not time-varying.

For any system distributed in space, boundary conditions need
to be defined [5]. In this work, simply supported boundary condi-
tions are chosen such that:

u = ∂2
xu = 0, at x = 0, L. (2)

3. NUMERICAL METHODS

Following the notation in [5], this section introduces FDTD meth-
ods and applies it to the stiff string presented in the previous sec-
tion.

Applying FDTD methods to discretise a continuous-time PDE
such as Eq. (1) starts by defining a discrete grid in time and space
[5]. Time can be discretised using t = nk, with temporal index
n = 0, 1, . . . and time step k = 1/fs (in s) where fs is the sam-
ple rate of the simulation (in Hz). The continuous spatial domain
D can be subdivided into N equal intervals according to x = lh.
Here h is the grid spacing (in m) and spatial index l ∈ {0, . . . , N},
resulting in N +1 grid points. Using these definitions, the contin-
uous state variable u = u(x, t) can be discretised to grid function
un
l , which describes the transverse displacement of the discrete

string at spatial index l and temporal index n.

3.1. Finite-Difference Operators

To approximate the continuous-time derivatives in Eq. (1), shift
operators must be introduced. These can be applied to a grid func-
tion to shift it with one step either in space or time. The forward
and backward shift in time, as well as the identity operator are
defined as follows:

et+u
n
l = un+1

l , et−u
n
l = un−1

l , and 1un
l = un

l . (3)

Shift operators can be used to create finite-difference (FD) oper-
ators that approximate derivatives. The forward, backward and
centred difference in time operators are defined respectively as

δt+ ≜
et+ − 1

k
, δt− ≜

1− et−
k

, δt· ≜
et+ − et−

2k
(4)

and all approximate a first-order temporal derivative ∂t. The cen-
tred difference can be shown to be second-order accurate as op-
posed to the first-order accurate forward and backwards difference
operators [5].

Similarly, forward and backward shifts in space are

ex+u
n
l = un

l+1, and ex−u
n
l = un

l−1, (5)

and can be used to create the forward, backward and centred dif-
ference in space operators:

δx+ ≜
ex+ − 1

h
, δx− ≜

1− ex−
h

, δx· ≜
ex+ − ex−

2h
, (6)

all approximating ∂x.
Combinations of these FD operators can be used to approxi-

mate higher-order derivatives:

δtt = δt+δt− ≜
et+ − 2 + et−

k2
, (7)

δxx = δx+δx− ≜
ex+ − 2 + ex−

h2
(8)

δxxxx = δxxδxx ≜
e2x+ − 4ex+ + 6− 4ex− + e2x−

h4
, (9)

which approximate ∂2
t , ∂2

x and ∂4
x respectively. A squared shift

operator means to apply the operator twice.

3.2. Discrete Damped Stiff String

Using the operators defined in Section 3.1, the damped stiff string
in Eq. (1) can be discretised to the following most commonly used
FDTD scheme [5] (notice the division by ρA):

δttu
n
l = c2δxxu

n
l −κ2δxxxxu

n
l −2σ0δt·u

n
l +2σ1δt−δxxu

n
l , (10)

with wave speed c =
√

T/ρA (in m/s), stiffness coefficient κ =√
EI/ρA (in m2/s). The operators approximating the first-order

temporal derivatives are chosen to yield the highest accuracy while
keeping the system explicit.

To implement Eq. (10), the operators must be expanded and
the equation solved for un+1

l (the only unknown). This results in
the following update equation (before division by A):

Aun+1
l = B0u

n
l +B1 (u

n
l+1 + un

l−1) +B2 (u
n
l+2 + un

l−2)

+ C0u
n−1
l + C1

(
un−1
l+1 + un−1

l−1

)
,

(11)

with

A = 1 + σ0k, B2 = −µ2,

B0 = 2− 2λ2 − 6µ2 − 2S, C0 = σ0k + 2S − 1,

B1 = λ2 + 4µ2 + S, C1 = −S,

(12)

and
λ =

ck

h
, µ =

κk

h2
, and S =

2σ1k

h2
. (13)

The boundary condition in Eq. (2) can be discretised to:

un
l = δxxu

n
l = 0, at l = 0, N. (14)

This is implemented by reducing the range of calculation to l =
{1, . . . , N − 1} (as the boundary points are 0 at all times), and
by applying the following definitions for the virtual grid points,
which are needed to calculate Eq. (11) at l = 1 and l = N − 1
respectively:

un
−1 = −un

1 , and un
N+1 = −un

N−1. (15)

Equation (10), like all explicit FDTD schemes, needs to abide
a stability condition [5]. Usually this is written in terms of the
grid spacing h, which in the case of the damped stiff string can be
shown to be (using von Neumann analysis [21])

h ≥ hmin =

√
c2k2+4σ1k+

√
(c2k2+4σ1k)2+16κ2k2

2
. (16)

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

131

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

See [12, Ch. 4] for a derivation. The closer h is to the minimum
stable grid spacing hmin (in m) for a given time step k, the higher
the simulation quality and bandwidth.1 In implementation, this is
achieved by performing the following operations in order:

N :=

⌊
L

hmin

⌋
, h :=

L

N
. (17)

Here, ⌊·⌋ denotes the flooring operation, and is necessary as the
number of intervals needs to be an integer value. This causes
many combinations of parameters to not yield the optimal simu-
lation quality, though usually not noticable for a large N .

3.3. Matrix Form

To be able to apply the dynamic grid to the stiff string later on, the
update equation in Eq. (11) needs to be written in matrix form.
One can store the state of un

l for l = {1, . . . , N − 1} (as un
0 =

un
N = 0 due to the simply supported boundary condition) in the

(N − 1)× 1 column vector

un = [un
1 , . . . , u

n
N−1]

T , (18)

where T denotes the transpose operation. Using Eq. (18), at dif-
ferent time indices, Eq. (11) can then be written in matrix form
as:

Aun+1 = Bun +Cun−1 (19)

where A is as defined in Eq. (12), and

B = 2IN−1 + λ2Dxx − µ2Dxxxx + SDxx, and
C = −(1− σ0k)IN−1 − SDxx,

(20)

where the (N − 1)× (N − 1) matrix

Dxx =


0

. . .

. . .

1

−2

. . .

1

−2

1

. . .
−2

1

. . .

. . .

0


, (21)

is the matrix form of the δxx operator in Eq. (8) (scaled by h2)
and IN−1 is the (N − 1) × (N − 1) identity matrix. Finally, for
simply supported boundary conditions,

Dxxxx = DxxDxx =


0

1

−4

5

. . .

. . .
6

−4

1

. . .

. . .

. . .
1

−4

6

. . .

. . .

5

−4

1

0
 , (22)

and is the matrix form of the δxxxx operator in Eq. (9) (scaled by
h4).

1For a smaller time step k, a smaller minimum grid spacing hmin can
be chosen. See [12, Sec. 2.4.4] for additional intuition.

4. THE DYNAMIC STIFF STRING

One could imagine that varying the defining parameters of the
damped stiff string might cause various issues in the above men-
tioned framework. Large enough changes in parameters causes a
change in the number of intervals N as per Eq. (17), which, due
to the flooring operation, causes sudden changes in the number of
grid points defining the system. As one might imagine, this could
cause audible artefacts and – in the worst case – an unstable simu-
lation.

The formulation of the dynamic grid therefore starts by in-
troducing a fractional number of intervals N , where ⌊N⌋ = N .
Apart from allowing for smooth transitions between grid config-
urations, substituting N for N in Eq. (17) removes the flooring
operation and allows for h = hmin at all times, yielding an optimal
simulation quality.

In the following, all variables that are made time varying will
get the superscript n. These are all physical parameters from Eq.
(1): Ln, ρn, An, rn, Tn, En, In, σn

0 , σn
1 , and all derived param-

eters used in Section 3.2: hn, Nn cn, κn, λn, and Sn. Notice that
the sample rate fs and therefore the time step k remain fixed. The
fractional number of intervals can then be calculated according to

Nn =
Ln

hn
. (23)

Finally, the (time-varying) location of grid point ul (in meters from
the left boundary) at time n will be denoted by xn

ul
.

4.1. System Setup

As done in [16, 18], to implement the fractional number of in-
tervals, the original system un

l first needs to be split into two
subsystems vnlv and wn

lw with lv ∈ {0, . . . ,Mn
v } and lw ∈

{0, . . . ,Mn
w}. Here,

Mn
v = Nn −Mn

w and 0 < Mn
w < Nn (24)

are the number of intervals of the left and right subsystems respec-
tively. Notice that the total number of grid points (Mn

v +Mn
w +2)

is one more than the original system (Nn + 1), and that the lower
limit of the number grid points on a subsystem is 2 grid points (in-
cluding the boundary). The FDTD scheme in (10) can then be split
into the following schemes:

δttv
n
lv = (cn)2δxxv

n
lv − (κn)2δxxxxv

n
lv

− 2σn
0 δt·v

n
lv + 2σn

1 δt−δxxv
n
lv ,

(25a)

δttw
n
lw = (cn)2δxxw

n
lw − (κn)2δxxxxw

n
lw

− 2σn
0 δt·w

n
lw + 2σn

1 δt−δxxw
n
lw ,

(25b)

with wave speed cn =
√

Tn/ρnAn and stiffness coefficient κn =√
EnIn/ρnAn, both made time-varying. Here, the time-varying

cross-sectional area and moment of inertia are An = π(rn)2 and
In = π(rn)4/4 respectively, and the stability condition in Eq.
(16) is modified to

hn =

√√√√ (cn)2k2+4σn
1 k+

√(
(cn)2k2+4σn

1 k
)2
+16(κn)2k2

2
,

(26)
which, as mentioned before, can now always be satisfied with
equality.

DAFx.3

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

132

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

wn
Mn

w

<latexit sha1_base64="Wats0yuk3UvGkGFuwxNEsRYm09w=">AAACDnicdVBNSwMxFMzWr1q/qh69BIvgqWylVXtTvNiDUMHaQrcu2fStDc1mlyRrKcv+Ai/+FS8eFPHq2Zv/xmytoKIDgWFmHnlvvIgzpW373crNzM7NL+QXC0vLK6trxfWNSxXGkkKLhjyUHY8o4ExASzPNoRNJIIHHoe0NTzK/fQNSsVBc6HEEvYBcC+YzSrSR3OKO0wffOdYgg8QJiB5QwpNGeiXSwshNztyRYVcmV7LL9cNavVbFdtmeICN7+/WqjStTpYSmaLrFN6cf0jgAoSknSnUrdqR7CZGaUQ5pwYkVRIQOyTV0DRUkANVLJuekeMcofeyH0jyh8UT9PpGQQKlx4JlktrH67WXiX1431v5hL2EiijUI+vmRH3OsQ5x1g/tMAtV8bAihkpldMR0QSaipRxVMCV+X4v/J5V65Ui3Xzqulo8a0jjzaQttoF1XQATpCp6iJWoiiW3SPHtGTdWc9WM/Wy2c0Z01nNtEPWK8fhXSdFw==</latexit>

wn
lw

<latexit sha1_base64="CZHsLi4tGzhX0aQpUii+zy5B3yE=">AAACDHicdVDLTgIxFO34RHyhLt00EhNXZCCgsMO4kR0m8kgYJJ1yBxo6nUnbkZAJH+DGX3HjQmPc+gHu/Bs7gIkaPUmTk3POTe89bsiZ0rb9YS0tr6yurac20ptb2zu7mb39pgoiSaFBAx7ItksUcCagoZnm0A4lEN/l0HJHF4nfugWpWCCu9SSErk8GgnmMEm2kXibr9MFzzjVIP3Z8ooeU8Lg2vRHT9LgX897YUJOyc5VyqVIqYjtnz5CQwmmlaOP8QsmiBeq9zLvTD2jkg9CUE6U6eTvU3ZhIzSiHadqJFISEjsgAOoYK4oPqxrNjpvjYKH3sBdI8ofFM/T4RE1+pie+aZLKv+u0l4l9eJ9JeuRszEUYaBJ1/5EUc6wAnzeA+k0A1nxhCqGRmV0yHRBJqylFpU8LXpfh/0izk8sVc6aqYrdYWdaTQITpCJyiPzlAVXaI6aiCK7tADekLP1r31aL1Yr/PokrWYOUA/YL19AhlInFY=</latexit>

vn
lv

<latexit sha1_base64="/78jsre3ULRBzn0xKIiCWKny4E0=">AAACDHicdVDLSgMxFM3UV62vqks3wSK4KjNSsd1V3NhdBfuATi2Z9E4bmskMSaZQhn6AG3/FjQtF3PoB7vwbM22FKnogcDjnXHLv8SLOlLbtTyuzsrq2vpHdzG1t7+zu5fcPmiqMJYUGDXko2x5RwJmAhmaaQzuSQAKPQ8sbXaV+awxSsVDc6kkE3YAMBPMZJdpIvXzB7YPvXmqQQeIGRA8p4UlteiemuXEv4b2xoSZlF+0Z8BKpVMpOpYKdhVJAC9R7+Q+3H9I4AKEpJ0p1HDvS3YRIzSiHac6NFUSEjsgAOoYKEoDqJrNjpvjEKH3sh9I8ofFMXZ5ISKDUJPBMMt1X/fZS8S+vE2u/3E2YiGINgs4/8mOOdYjTZnCfSaCaTwwhVDKzK6ZDIgk15aicKeH7Uvw/aZ4VnVLx/KZUqNYWdWTRETpGp8hBF6iKrlEdNRBF9+gRPaMX68F6sl6tt3k0Yy1mDtEPWO9f/LecRA==</latexit>

vn
0

<latexit sha1_base64="uTAmmYnS879o0vs43DIA9YsRzBY=">AAACCnicdVDLSgNBEJz1GeNr1aOX0SB4CrsSMblFvJhbBPOAbAyzk95kyOzsMjMbCEvOXvwVLx4U8eoXePNvnDyEKFrQUFR1093lx5wp7Tif1tLyyuraemYju7m1vbNr7+3XVZRICjUa8Ug2faKAMwE1zTSHZiyBhD6Hhj+4mviNIUjFInGrRzG0Q9ITLGCUaCN17COvC4F3qUGGqRcS3aeEp5XxnRhnh53UMaRj55y8MwVeIKVS0S2VsDtXcmiOasf+8LoRTUIQmnKiVMt1Yt1OidSMchhnvURBTOiA9KBlqCAhqHY6fWWMT4zSxUEkTQmNp+riREpCpUahbzon16rf3kT8y2slOii2UybiRIOgs0VBwrGO8CQX3GUSqOYjQwiVzNyKaZ9IQk00KmtC+P4U/0/qZ3m3kD+/KeTKlXkcGXSIjtEpctEFKqNrVEU1RNE9ekTP6MV6sJ6sV+tt1rpkzWcO0A9Y71/4+Zsf</latexit>

vn
Mn

v
,wn

0

<latexit sha1_base64="vZZWG8oB6+aFpzQP6a9jzS0ilGY=">AAACQXicdVBNSwMxFMz6bf2qevQSLYIHKbuiaG+KFz0IClYL3bpks281NJtdkmylhP1rXvwH3rx78aCIVy+mtYqKPhIYZubl5U2Ycaa06947Q8Mjo2PjE5OlqemZ2bny/MKZSnNJoU5TnspGSBRwJqCumebQyCSQJORwHrb3e/p5B6RiqTjV3QxaCbkULGaUaEsF5YYfQezvaZCJ8ROiryjh5rC4EEXJ+P3nTchzKDqBOQo6lrbHX/5SCG0X6/7yp1VCVODrwLWmoFxxq26/8DdQq+14tRr2BkwFDeo4KN/5UUrzBISmnCjV9NxMtwyRmlEORcnPFWR2HrmEpoWCJKBapj+3wKuWiXCcSnuFxn32e4chiVLdJLTO3pLqt9Yj/9KauY53WoaJLNcg6MegOOdYp7gXJ46YBKp51wJCJbN/xfSKSEJtoqpkQ/jcFP8Pzjaq3mZ162Szsns4iGMCLaEVtIY8tI120QE6RnVE0Q16QE/o2bl1Hp0X5/XDOuQMehbRj3Le3gGJAbNE</latexit>

(a)

wn
Mn

w

<latexit sha1_base64="Wats0yuk3UvGkGFuwxNEsRYm09w=">AAACDnicdVBNSwMxFMzWr1q/qh69BIvgqWylVXtTvNiDUMHaQrcu2fStDc1mlyRrKcv+Ai/+FS8eFPHq2Zv/xmytoKIDgWFmHnlvvIgzpW373crNzM7NL+QXC0vLK6trxfWNSxXGkkKLhjyUHY8o4ExASzPNoRNJIIHHoe0NTzK/fQNSsVBc6HEEvYBcC+YzSrSR3OKO0wffOdYgg8QJiB5QwpNGeiXSwshNztyRYVcmV7LL9cNavVbFdtmeICN7+/WqjStTpYSmaLrFN6cf0jgAoSknSnUrdqR7CZGaUQ5pwYkVRIQOyTV0DRUkANVLJuekeMcofeyH0jyh8UT9PpGQQKlx4JlktrH67WXiX1431v5hL2EiijUI+vmRH3OsQ5x1g/tMAtV8bAihkpldMR0QSaipRxVMCV+X4v/J5V65Ui3Xzqulo8a0jjzaQttoF1XQATpCp6iJWoiiW3SPHtGTdWc9WM/Wy2c0Z01nNtEPWK8fhXSdFw==</latexit>

vn
0

<latexit sha1_base64="uTAmmYnS879o0vs43DIA9YsRzBY=">AAACCnicdVDLSgNBEJz1GeNr1aOX0SB4CrsSMblFvJhbBPOAbAyzk95kyOzsMjMbCEvOXvwVLx4U8eoXePNvnDyEKFrQUFR1093lx5wp7Tif1tLyyuraemYju7m1vbNr7+3XVZRICjUa8Ug2faKAMwE1zTSHZiyBhD6Hhj+4mviNIUjFInGrRzG0Q9ITLGCUaCN17COvC4F3qUGGqRcS3aeEp5XxnRhnh53UMaRj55y8MwVeIKVS0S2VsDtXcmiOasf+8LoRTUIQmnKiVMt1Yt1OidSMchhnvURBTOiA9KBlqCAhqHY6fWWMT4zSxUEkTQmNp+riREpCpUahbzon16rf3kT8y2slOii2UybiRIOgs0VBwrGO8CQX3GUSqOYjQwiVzNyKaZ9IQk00KmtC+P4U/0/qZ3m3kD+/KeTKlXkcGXSIjtEpctEFKqNrVEU1RNE9ekTP6MV6sJ6sV+tt1rpkzWcO0A9Y71/4+Zsf</latexit>

vn
lv

<latexit sha1_base64="/78jsre3ULRBzn0xKIiCWKny4E0=">AAACDHicdVDLSgMxFM3UV62vqks3wSK4KjNSsd1V3NhdBfuATi2Z9E4bmskMSaZQhn6AG3/FjQtF3PoB7vwbM22FKnogcDjnXHLv8SLOlLbtTyuzsrq2vpHdzG1t7+zu5fcPmiqMJYUGDXko2x5RwJmAhmaaQzuSQAKPQ8sbXaV+awxSsVDc6kkE3YAMBPMZJdpIvXzB7YPvXmqQQeIGRA8p4UlteiemuXEv4b2xoSZlF+0Z8BKpVMpOpYKdhVJAC9R7+Q+3H9I4AKEpJ0p1HDvS3YRIzSiHac6NFUSEjsgAOoYKEoDqJrNjpvjEKH3sh9I8ofFMXZ5ISKDUJPBMMt1X/fZS8S+vE2u/3E2YiGINgs4/8mOOdYjTZnCfSaCaTwwhVDKzK6ZDIgk15aicKeH7Uvw/aZ4VnVLx/KZUqNYWdWTRETpGp8hBF6iKrlEdNRBF9+gRPaMX68F6sl6tt3k0Yy1mDtEPWO9f/LecRA==</latexit>

wn
lw

<latexit sha1_base64="CZHsLi4tGzhX0aQpUii+zy5B3yE=">AAACDHicdVDLTgIxFO34RHyhLt00EhNXZCCgsMO4kR0m8kgYJJ1yBxo6nUnbkZAJH+DGX3HjQmPc+gHu/Bs7gIkaPUmTk3POTe89bsiZ0rb9YS0tr6yurac20ptb2zu7mb39pgoiSaFBAx7ItksUcCagoZnm0A4lEN/l0HJHF4nfugWpWCCu9SSErk8GgnmMEm2kXibr9MFzzjVIP3Z8ooeU8Lg2vRHT9LgX897YUJOyc5VyqVIqYjtnz5CQwmmlaOP8QsmiBeq9zLvTD2jkg9CUE6U6eTvU3ZhIzSiHadqJFISEjsgAOoYK4oPqxrNjpvjYKH3sBdI8ofFM/T4RE1+pie+aZLKv+u0l4l9eJ9JeuRszEUYaBJ1/5EUc6wAnzeA+k0A1nxhCqGRmV0yHRBJqylFpU8LXpfh/0izk8sVc6aqYrdYWdaTQITpCJyiPzlAVXaI6aiCK7tADekLP1r31aL1Yr/PokrWYOUA/YL19AhlInFY=</latexit>

vn
Mn

v
wn

0

<latexit sha1_base64="M03DQB4Fw51c+WSPUJotdIRr7m0=">AAACPHicdVBNSwMxFMz6WetX1aOXYBE8lV1RtDfFiz0IilaFbl2y2bcams0uSbZSwv4wL/4Ib568eFDEq2fTWkVFHwkMM+9l8ibMOFPade+dkdGx8YnJ0lR5emZ2br6ysHiq0lxSaNKUp/I8JAo4E9DUTHM4zySQJORwFnb2+vpZF6RiqTjRvQzaCbkULGaUaEsFlWM/gtjf1SAT4ydEX1HCTaO4EEXZ+IPnTchzKLqBOQi6lrbniye0U3x2SYgKfB24Vg8qVbfmDgp/A/X6tlevY2/IVNGwDoPKnR+lNE9AaMqJUi3PzXTbEKkZ5VCU/VxBZs3IJbQsFCQB1TYD3wKvWibCcSrtFRoP2O8ThiRK9ZLQdvb3U7+1PvmX1sp1vN02TGS5BkE/jOKcY53ifpI4YhKo5j0LCJXM/hXTKyIJtWGqsg3hc1P8Pzhdr3kbtc2jjepOYxhHCS2jFbSGPLSFdtA+OkRNRNENekBP6Nm5dR6dF+f1o3XEGc4soR/lvL0DeCix7A==</latexit>

(b)
Figure 1: Visualisation of the system setup for the dynamic grid
method. (a) The split systems in Eq. (25). The inner boundaries
are overlapping. (b) Grid points move according to Eq. (27) due to
parameter variation (in this case hn is decreased). The boundaries
no longer overlap. The dashed grey box is used as a reference for
Figures 2 and 3.

The subsystems in (25) are placed adjecent on the same do-
main x with the locations of the grid points defined as

xn
vlv

= lvh
n and xn

wlw
= Ln − (Mn

w − lw)h
n, (27)

for subsystems vnlv and wn
lw respectively. See Figure 1a. Notice

that the locations lv = 0 and lw = Mn
w , which will be referred to

as the outer boundaries, are fixed along the x-axis at the edges of
the domain x = 0 and x = Ln. Furthermore, the outer boundaries
will have the same boundary conditions as the original system,
i.e., the simply supported condition as defined in Eq. (14). The
locations lv = Mn

v and lw = 0, referred to as the inner boundaries
will, however, need to be calculated in a different fashion.

4.2. Connecting the Inner Boundaries

Here, the (damped) 1D wave equation will be taken as a starting
point, which is done by setting the stiffness coefficient κn = 0
in Eq. (25) such that the δxxxx operator can be ignored for now.
One can observe that expanding the δxx operator (see Eq. (8)) at
the inner boundaries, i.e., Eq. (25a) at lv = Mn

v and Eq. (25b)
lw = 0, shows that the system requires definitions for two virtual
grid points: vnMn

v +1 and wn
−1. If Nn = Nn and thus Nn is an

integer, the inner boundaries perfectly overlap as per Eq. (27), and
a rigid connection is imposed on the inner boundaries as

vnMn
v
= wn

0 , if xn
vMn

v
= xn

w0
. (28)

As shown in [16], calculating the virtual grid points according to

vnMn
v +1 = wn

1 , and wn
−1 = vnMn

v −1 (29)

yields identical behaviour between the split system and the original
system.

If any physical parameter is changed, the locations of the grid
points will change according to Eq. (27). See Figure 1b. If the
length Ln is changed, only the grid points of the right subsystem
will move. Changes in any other parameter cause a change in the
grid spacing hn through Eq. (26). The latter results in the grid
points of the two subsystems to move away from or towards their
respective outer boundaries according to Eq. (27). In either case,
as the inner boundaries will no longer overlap, Eq. (29) can no
longer be used and alternative definitions for the virtual grid points
need to be found.

Following earlier work in [16, 18] quadratic Lagrangian inter-

vn
Mn

v

<latexit sha1_base64="S09U3fEfRHAhui8Ucl7cETeYvS4=">AAACDnicdVDLSgMxFM3UV62vqks3wVJwVWZEsd1V3NiFUME+oNOWTHqnDc1khiRTKEO/wI2/4saFIm5du/NvTB9CFT0QOJxzLrn3eBFnStv2p5VaWV1b30hvZra2d3b3svsHdRXGkkKNhjyUTY8o4ExATTPNoRlJIIHHoeENr6Z+YwRSsVDc6XEE7YD0BfMZJdpI3Wze7YHvXmqQQeIGRA8o4Ull0hGTzKib3HRHhnVMLmcX7BnwEimVik6phJ2FkkMLVLvZD7cX0jgAoSknSrUcO9LthEjNKIdJxo0VRIQOSR9ahgoSgGons3MmOG+UHvZDaZ7QeKYuTyQkUGoceCY53Vj99qbiX14r1n6xnTARxRoEnX/kxxzrEE+7wT0mgWo+NoRQycyumA6IJNTUozKmhO9L8f+kflpwzgrnt2e5cmVRRxodoWN0ghx0gcroGlVRDVF0jx7RM3qxHqwn69V6m0dT1mLmEP2A9f4FaO6dBQ==</latexit>

vn
Mn

v �1

<latexit sha1_base64="IKLv/ex+zX1UgwkIyQUZQyDaCcs=">AAACEHicdVBNS8NAEN3U7/pV9ehlsYheLIlUbG8VL3oQFGwVmhg224ldutmE3U2hhP4EL/4VLx4U8erRm//GTa1QRR8svH1vhpl5QcKZ0rb9YRWmpmdm5+YXiotLyyurpbX1lopTSaFJYx7L64Ao4ExAUzPN4TqRQKKAw1XQO879qz5IxWJxqQcJeBG5FSxklGgj+aUdtwOhe6RBRpkbEd2lhGenwxsxLPb97Mzv34g9x3z9Utmu2CPgCVKv15x6HTtjpYzGOPdL724npmkEQlNOlGo7dqK9jEjNKIdh0U0VJIT2yC20DRUkAuVlo4OGeNsoHRzG0jyh8Uid7MhIpNQgCkxlvrP67eXiX1471WHNy5hIUg2Cfg0KU451jPN0cIdJoJoPDCFUMrMrpl0iCTUBqaIJ4ftS/D9p7VecauXgolpunI7jmEebaAvtIgcdogY6QeeoiSi6Qw/oCT1b99aj9WK9fpUWrHHPBvoB6+0TXhqddw==</latexit>

vn
Mn

v �2

<latexit sha1_base64="wtq2nT63tiIrkA9Y6Bp1lh8DZyo=">AAACEHicdVBNS8NAEN34bfyqevSyWEQvlqQo2pvixR6ECrYVmho224ku3WzC7qZQQn+CF/+KFw+KePXozX/jpq1QRR8svH1vhpl5QcKZ0o7zaU1Nz8zOzS8s2kvLK6trhfWNhopTSaFOYx7L64Ao4ExAXTPN4TqRQKKAQzPonuV+swdSsVhc6X4C7YjcChYySrSR/MKu14HQO9Ugo8yLiL6jhGfVwY0Y2D0/u/B7N2K/bL5+oeiUnCHwBKlUjt1KBbtjpYjGqPmFD68T0zQCoSknSrVcJ9HtjEjNKIeB7aUKEkK75BZahgoSgWpnw4MGeMcoHRzG0jyh8VCd7MhIpFQ/CkxlvrP67eXiX14r1eFxO2MiSTUIOhoUphzrGOfp4A6TQDXvG0KoZGZXTO+IJNQEpGwTwvel+H/SKJfcg9Lh5UHxpDqOYwFtoW20h1x0hE7QOaqhOqLoHj2iZ/RiPVhP1qv1NiqdssY9m+gHrPcvX6GdeA==</latexit>

vn
Mn

v +1

<latexit sha1_base64="eOZCCzCk4ZXRAfyUZV+paOwoVg4=">AAACEHicbVDLSsNAFJ3UV62vqEs3wSIKQkmkosuKG7sQKtgHNG2YTG/aoZNJmJkUSugnuPFX3LhQxK1Ld/6N0weirQcGzpxzL/fe48eMSmXbX0ZmaXlldS27ntvY3NreMXf3ajJKBIEqiVgkGj6WwCiHqqKKQSMWgEOfQd3vX4/9+gCEpBG/V8MYWiHuchpQgpWWPPPY7UDgXikQYeqGWPUIZml51Oaj3MBLb71Bm586+uuZebtgT2D9EGee5NEMFc/8dDsRSULgijAsZdOxY9VKsVCUMBjl3ERCjEkfd6GpKcchyFY6OWhkHWmlYwWR0I8ra6L+7khxKOUw9HXleGc5743F/7xmooLLVkp5nCjgZDooSJilImucjtWhAohiQ00wEVTvapEeFpjogGROh7Bw8iKpnRWcYuH8rpgvlWdxZNEBOkQnyEEXqIRuUAVVEUEP6Am9oFfj0Xg23oz3aWnGmPXsoz8wPr4BHOmdSQ==</latexit>

wn
0

<latexit sha1_base64="Nu5guKSNALNUVf3A9lm/CrL/peU=">AAACCHicdVBNS8NAFNzU7/hV9ejBxSJ4KmlJ1d4UL3pTsFpo0rLZvrRLN5uwu1FK6NGLf8WLB0W8+hO8+W/c1AoqOrAwzMxj35sg4Uxpx3m3ClPTM7Nz8wv24tLyympxbf1Sxamk0KAxj2UzIAo4E9DQTHNoJhJIFHC4CgbHuX91DVKxWFzoYQJ+RHqChYwSbaROccvrQugdaZBR5kVE9ynh2emoLUb2Tcdpm0TJKdcPavWai52yM0ZOqnt118GViVJCE5x1im9eN6ZpBEJTTpRqVZxE+xmRmlEOI9tLFSSEDkgPWoYKEoHys/EhI7xjlC4OY2me0Hisfp/ISKTUMApMMt9V/fZy8S+vlerwwM+YSFINgn5+FKYc6xjnreAuk0A1HxpCqGRmV0z7RBJqilG2KeHrUvw/uayWK265du6WDk8ndcyjTbSNdlEF7aNDdILOUANRdIvu0SN6su6sB+vZevmMFqzJzAb6Aev1Azh3miQ=</latexit>

wn
1

<latexit sha1_base64="57RizvQCpJfJaduJr+aHKut94cc=">AAACCHicdVBNSwMxFMz6WetX1aMHg0XwVHal1fZW8WJvFWwrdGvJpm/b0Gx2SbJKWXr04l/x4kERr/4Eb/4bs20FFR0IDDPzyHvjRZwpbdsf1tz8wuLScmYlu7q2vrGZ29puqjCWFBo05KG88ogCzgQ0NNMcriIJJPA4tLzhWeq3bkAqFopLPYqgE5C+YD6jRBupm9tze+C7pxpkkLgB0QNKeFIbX4tx9rbrXJtE3i5UyqVKqYjtgj1BSo6OK0UbOzMlj2aod3Pvbi+kcQBCU06Uajt2pDsJkZpRDuOsGyuICB2SPrQNFSQA1Ukmh4zxgVF62A+leULjifp9IiGBUqPAM8l0V/XbS8W/vHas/XInYSKKNQg6/ciPOdYhTlvBPSaBaj4yhFDJzK6YDogk1BSjsqaEr0vx/6R5VHCKhdJFMV+tzerIoF20jw6Rg05QFZ2jOmogiu7QA3pCz9a99Wi9WK/T6Jw1m9lBP2C9fQI5/Zol</latexit>

wn
2

<latexit sha1_base64="81EAHf/EWcepDqnJ6TzvqMOoA5k=">AAACCHicdVDLSgMxFM3UV62vqksXBovgqkxLq3ZXcWN3FewDOm3JpHfaYCYzJBmlDF268VfcuFDErZ/gzr8x01ZQ0QOBwznnknuPG3KmtG1/WKmFxaXllfRqZm19Y3Mru73TVEEkKTRowAPZdokCzgQ0NNMc2qEE4rscWu71eeK3bkAqFogrPQ6h65OhYB6jRBupn913BuA5ZxqkHzs+0SNKeFyb9MQkc9sv9kwiZ+crp+VKuYTtvD1FQorHlZKNC3Mlh+ao97PvziCgkQ9CU06U6hTsUHdjIjWjHCYZJ1IQEnpNhtAxVBAfVDeeHjLBh0YZYC+Q5gmNp+r3iZj4So191ySTXdVvLxH/8jqR9k67MRNhpEHQ2UdexLEOcNIKHjAJVPOxIYRKZnbFdEQkoaYYlTElfF2K/yfNYr5QypcvS7lqbV5HGu2hA3SECugEVdEFqqMGougOPaAn9GzdW4/Wi/U6i6as+cwu+gHr7RM7g5om</latexit>

wn
�1 �In

<latexit sha1_base64="jHGjqnuBw99U/OkXFC0i21bb2HY=">AAACCnicdZDLSgMxFIYzXmu9VV26iRbBjWVaWm13FV3oroK9QKeWTHqmDc1khiQjlKFrN76KGxeKuPUJ3Pk2ZtoKKvpD4Oc755BzfjfkTGnb/rDm5hcWl5ZTK+nVtfWNzczWdkMFkaRQpwEPZMslCjgTUNdMc2iFEojvcmi6w7Ok3rwFqVggrvUohI5P+oJ5jBJtUDez5/TAc041SD92fKIHlPD4cnwjxumjKe5msnauUi5VSkVs5+yJElM4rhRtnJ+RLJqp1s28O72ARj4ITTlRqp23Q92JidSMchinnUhBSOiQ9KFtrCA+qE48OWWMDwzpYS+Q5gmNJ/T7REx8pUa+azqTbdXvWgL/qrUj7ZU7MRNhpEHQ6UdexLEOcJIL7jEJVPORMYRKZnbFdEAkoSYDlTYhfF2K/zeNQi5fzJWuitnq+SyOFNpF++gQ5dEJqqILVEN1RNEdekBP6Nm6tx6tF+t12jpnzWZ20A9Zb5+jTprj</latexit>

In

<latexit sha1_base64="vaHeALIT5oAelxCZOLYUE2CqSWk=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwVRJRdFnRhe4q2Ae0sUwmN+3QySTMTIQSunXjr7hxoYhb/8Cdf+OkLaKtBwYO59x7597jJ5wp7ThfVmFhcWl5pbhaWlvf2Nyyt3caKk4lhTqNeSxbPlHAmYC6ZppDK5FAIp9D0x9c5H7zHqRisbjVwwS8iPQECxkl2khdG3cCCDvnGmSUdSKi+5Tw7Hp0J0alidq1y07FGQP/EHeWlNEUta792QlimkYgNOVEqbbrJNrLiNSMcjBjUwUJoQPSg7ahgkSgvGx8yQgfGCXAYSzNExqP1d8dGYmUGka+qcyXVbNeLv7ntVMdnnkZE0mqQdDJR2HKsY5xHgsOmASq+dAQQiUzu2LaJ5JQk4EqmRDmTp4njaOKe1w5uTkuVy+ncRTRHtpHh8hFp6iKrlAN1RFFD+gJvaBX69F6tt6s90lpwZr27KI/sD6+AdcHmnA=</latexit>

1

<latexit sha1_base64="3mAv0p7AfsgTDAE0SD5qbipOldk=">AAACBHicdVBNS8NAEN34bf2qeuxlsQieQlJabW+KHvRWwVahiWWzndSlm03Y3Qgl9ODFv+LFgyJe/RHe/Ddu2goq+mDg8d4MM/OChDOlHefDmpmdm19YXFourKyurW8UN7faKk4lhRaNeSyvAqKAMwEtzTSHq0QCiQIOl8HgOPcvb0EqFosLPUzAj0hfsJBRoo3ULZa8HoTekQYZZV5E9A0lPDsbXYtRwe0Wy47dqNcatSp2bGeMnFT2G1UHu1OljKZodovvXi+maQRCU06U6rhOov2MSM0oh1HBSxUkhA5IHzqGChKB8rPxEyO8a5QeDmNpSmg8Vr9PZCRSahgFpjO/U/32cvEvr5PqsO5nTCSpBkEni8KUYx3jPBHcYxKo5kNDCJXM3IrpDZGEmlBUwYTw9Sn+n7Qrtlu1a+fV8uHJNI4lVEI7aA+56AAdolPURC1E0R16QE/o2bq3Hq0X63XSOmNNZ7bRD1hvn/2DmFY=</latexit>

�In 1
In

Figure 2: Figure 1b zoomed in. Virtual grid points are calculated
from surrounding grid point values using quadratic interpolation
according to Eq. (30). The calculation of vnMn

v +1 is highlighted.

polation2 can be used, yielding the following definitions for the
virtual grid points:

vnMn
v +1 = InvnMn

v
+ wn

0 − Inwn
1 , (30a)

wn
−1 = −InvnMn

v −1 + vnMn
v
+ Inwn

0 , (30b)

where
In =

αn − 1

αn + 1
, (31)

and
αn = Nn −Nn (32)

is the fractional part of Nn (and thus 0 ≤ αn < 1). See Figure 2
for a visualisation of Eq. (30).

As can be seen from Eq. (9), expanding the δxxxx operator at
vnMn

v
and wn

0 requires two virtual grid points to be calculated for
each of these inner boundaries. Similarly, at vnMn

v −1 and wn
1 the

definition of a single virtual grid point is required. To find these
definitions, a matrix form needs to be used.

4.3. Matrix Form

To write system (25) in matrix form, the state vectors can be
stacked to the following Nn × 1 column vector:

un =

[
vn

wn

]
(33)

with vn = [vn1 , . . . , v
n
Mn

v
]T and wn = [wn

0 , . . . , w
n
Mn

w−1]
T . No-

tice that the outer boundaries, vn0 and wn
Mn

w
, are not included as

their states are 0 at all times.

Similar to Eq. (19), system (25) can be written in matrix form
as

Anun+1 = Bnun + Cnun−1 (34)

where An = 1 + σn
0 k and

Bn = 2INn + (λn)2Dn
xx − (µn)2Dn

xxxx + SnDn
xx,

Cn = −(1− σn
0 k)INn − SnDn

xx,
(35)

with λn = cnk/hn, µn = κnk/(hn)2 and Sn = 2σn
1 k/(h

n)2.

2See [12, Ch. 12.3] for experiments using other interpolators.

DAFx.4

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

133

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Here, Nn ×Nn matrix

Dn
xx =



. . .
. . . 0

. . . −2 1

1 In − 2 1 −In

−In 1 In − 2 1

1 −2
. . .

0
. . .

. . .


(36)

is an adapted version of Eq. (21) including the quadratic interpo-
lation at the inner boundaries in Eq. (30).

Furthermore, Dn
xxxx is a matrix form of the δxxxx operator in

Eq. (9) (scaled by h4) which includes the dynamic grid method. It
is created by substituting Dxx in Eq. (22) for Dn

xx in Eq. (36), and
performing the matrix product Dn

xxDn
xx. This yields the following

Nn ×Nn matrix3

Dn
xxxx =



5
. . .

. . . 0
. . .

. . . −4 1
. . . −4 6 In

1 1 In
3

1 −4 In
0 In

1 In
2 In

3

In
3 In

2 In
1 In

0 −4 1

In
3 1 In

1 6 −4
. . .

1 −4
. . .

. . .

0
. . .

. . . 5


, (37)

with
In
0 = (In)2 − 4In + 6, In

1 = In − 4,

In
2 = −(In)2 + 4In + 1, In

3 = −In.
(38)

Figure 3 visualises the calculation of the virtual grid points re-
quired to calculate the inner boundaries vnMn

v
and wn

0 . Those re-
quired at vnMn

v −1 and wn
1 can be visualised by Figure 2.

Although the matrix in Eq. (37) looks quite different from
Dxxxx in Eq. (22), Eq. (34) exhibits identical behaviour (within
machine precision) to the original system in Eq. (19) with the same
parameters for a value of αn = 0 in Eq. (31) (and thus In = −1
in Eq. (38)). Furthermore, if αn → 1 in Eq. (31) (and thus
In → 0), the matrix in (37) reduces to Dxxxx as defined in Eq.
(22).

In the extreme case that the right system only has one moving
grid point (i.e., Mn

w = 1 ∀n in Eq. (24)), the simply supported
boundary condition in Eq. (14) can be used. In this case, the
lower-right quadrant of matrix (36) will only have one element,
and Dn

xxDn
xx results in:

Dn
xxxx =



5 −4 1 0 0

−4
. . .

. . .
. . .

1
. . . 6 −4 1
. . . −4 6 In

1 1

0 1 −4 In
0 , In

1 − In
3

0 In
3 In

2 In
1 In

0 − 1


. (39)

3Note that only the first element and the last element of the main diag-
onal are 5, the rest are 6 unless denoted otherwise.

vn
Mn

v

<latexit sha1_base64="S09U3fEfRHAhui8Ucl7cETeYvS4=">AAACDnicdVDLSgMxFM3UV62vqks3wVJwVWZEsd1V3NiFUME+oNOWTHqnDc1khiRTKEO/wI2/4saFIm5du/NvTB9CFT0QOJxzLrn3eBFnStv2p5VaWV1b30hvZra2d3b3svsHdRXGkkKNhjyUTY8o4ExATTPNoRlJIIHHoeENr6Z+YwRSsVDc6XEE7YD0BfMZJdpI3Wze7YHvXmqQQeIGRA8o4Ull0hGTzKib3HRHhnVMLmcX7BnwEimVik6phJ2FkkMLVLvZD7cX0jgAoSknSrUcO9LthEjNKIdJxo0VRIQOSR9ahgoSgGons3MmOG+UHvZDaZ7QeKYuTyQkUGoceCY53Vj99qbiX14r1n6xnTARxRoEnX/kxxzrEE+7wT0mgWo+NoRQycyumA6IJNTUozKmhO9L8f+kflpwzgrnt2e5cmVRRxodoWN0ghx0gcroGlVRDVF0jx7RM3qxHqwn69V6m0dT1mLmEP2A9f4FaO6dBQ==</latexit>

vn
Mn

v �1

<latexit sha1_base64="IKLv/ex+zX1UgwkIyQUZQyDaCcs=">AAACEHicdVBNS8NAEN3U7/pV9ehlsYheLIlUbG8VL3oQFGwVmhg224ldutmE3U2hhP4EL/4VLx4U8erRm//GTa1QRR8svH1vhpl5QcKZ0rb9YRWmpmdm5+YXiotLyyurpbX1lopTSaFJYx7L64Ao4ExAUzPN4TqRQKKAw1XQO879qz5IxWJxqQcJeBG5FSxklGgj+aUdtwOhe6RBRpkbEd2lhGenwxsxLPb97Mzv34g9x3z9Utmu2CPgCVKv15x6HTtjpYzGOPdL724npmkEQlNOlGo7dqK9jEjNKIdh0U0VJIT2yC20DRUkAuVlo4OGeNsoHRzG0jyh8Uid7MhIpNQgCkxlvrP67eXiX1471WHNy5hIUg2Cfg0KU451jPN0cIdJoJoPDCFUMrMrpl0iCTUBqaIJ4ftS/D9p7VecauXgolpunI7jmEebaAvtIgcdogY6QeeoiSi6Qw/oCT1b99aj9WK9fpUWrHHPBvoB6+0TXhqddw==</latexit>

vn
Mn

v �2

<latexit sha1_base64="wtq2nT63tiIrkA9Y6Bp1lh8DZyo=">AAACEHicdVBNS8NAEN34bfyqevSyWEQvlqQo2pvixR6ECrYVmho224ku3WzC7qZQQn+CF/+KFw+KePXozX/jpq1QRR8svH1vhpl5QcKZ0o7zaU1Nz8zOzS8s2kvLK6trhfWNhopTSaFOYx7L64Ao4ExAXTPN4TqRQKKAQzPonuV+swdSsVhc6X4C7YjcChYySrSR/MKu14HQO9Ugo8yLiL6jhGfVwY0Y2D0/u/B7N2K/bL5+oeiUnCHwBKlUjt1KBbtjpYjGqPmFD68T0zQCoSknSrVcJ9HtjEjNKIeB7aUKEkK75BZahgoSgWpnw4MGeMcoHRzG0jyh8VCd7MhIpFQ/CkxlvrP67eXiX14r1eFxO2MiSTUIOhoUphzrGOfp4A6TQDXvG0KoZGZXTO+IJNQEpGwTwvel+H/SKJfcg9Lh5UHxpDqOYwFtoW20h1x0hE7QOaqhOqLoHj2iZ/RiPVhP1qv1NiqdssY9m+gHrPcvX6GdeA==</latexit>

wn
0

<latexit sha1_base64="Nu5guKSNALNUVf3A9lm/CrL/peU=">AAACCHicdVBNS8NAFNzU7/hV9ejBxSJ4KmlJ1d4UL3pTsFpo0rLZvrRLN5uwu1FK6NGLf8WLB0W8+hO8+W/c1AoqOrAwzMxj35sg4Uxpx3m3ClPTM7Nz8wv24tLyympxbf1Sxamk0KAxj2UzIAo4E9DQTHNoJhJIFHC4CgbHuX91DVKxWFzoYQJ+RHqChYwSbaROccvrQugdaZBR5kVE9ynh2emoLUb2Tcdpm0TJKdcPavWai52yM0ZOqnt118GViVJCE5x1im9eN6ZpBEJTTpRqVZxE+xmRmlEOI9tLFSSEDkgPWoYKEoHys/EhI7xjlC4OY2me0Hisfp/ISKTUMApMMt9V/fZy8S+vlerwwM+YSFINgn5+FKYc6xjnreAuk0A1HxpCqGRmV0z7RBJqilG2KeHrUvw/uayWK265du6WDk8ndcyjTbSNdlEF7aNDdILOUANRdIvu0SN6su6sB+vZevmMFqzJzAb6Aev1Azh3miQ=</latexit>

wn
1

<latexit sha1_base64="57RizvQCpJfJaduJr+aHKut94cc=">AAACCHicdVBNSwMxFMz6WetX1aMHg0XwVHal1fZW8WJvFWwrdGvJpm/b0Gx2SbJKWXr04l/x4kERr/4Eb/4bs20FFR0IDDPzyHvjRZwpbdsf1tz8wuLScmYlu7q2vrGZ29puqjCWFBo05KG88ogCzgQ0NNMcriIJJPA4tLzhWeq3bkAqFopLPYqgE5C+YD6jRBupm9tze+C7pxpkkLgB0QNKeFIbX4tx9rbrXJtE3i5UyqVKqYjtgj1BSo6OK0UbOzMlj2aod3Pvbi+kcQBCU06Uajt2pDsJkZpRDuOsGyuICB2SPrQNFSQA1Ukmh4zxgVF62A+leULjifp9IiGBUqPAM8l0V/XbS8W/vHas/XInYSKKNQg6/ciPOdYhTlvBPSaBaj4yhFDJzK6YDogk1BSjsqaEr0vx/6R5VHCKhdJFMV+tzerIoF20jw6Rg05QFZ2jOmogiu7QA3pCz9a99Wi9WK/T6Jw1m9lBP2C9fQI5/Zol</latexit>

wn
2

<latexit sha1_base64="81EAHf/EWcepDqnJ6TzvqMOoA5k=">AAACCHicdVDLSgMxFM3UV62vqksXBovgqkxLq3ZXcWN3FewDOm3JpHfaYCYzJBmlDF268VfcuFDErZ/gzr8x01ZQ0QOBwznnknuPG3KmtG1/WKmFxaXllfRqZm19Y3Mru73TVEEkKTRowAPZdokCzgQ0NNMc2qEE4rscWu71eeK3bkAqFogrPQ6h65OhYB6jRBupn913BuA5ZxqkHzs+0SNKeFyb9MQkc9sv9kwiZ+crp+VKuYTtvD1FQorHlZKNC3Mlh+ao97PvziCgkQ9CU06U6hTsUHdjIjWjHCYZJ1IQEnpNhtAxVBAfVDeeHjLBh0YZYC+Q5gmNp+r3iZj4So191ySTXdVvLxH/8jqR9k67MRNhpEHQ2UdexLEOcNIKHjAJVPOxIYRKZnbFdEQkoaYYlTElfF2K/yfNYr5QypcvS7lqbV5HGu2hA3SECugEVdEFqqMGougOPaAn9GzdW4/Wi/U6i6as+cwu+gHr7RM7g5om</latexit>

�In 1
In

1

<latexit sha1_base64="3mAv0p7AfsgTDAE0SD5qbipOldk=">AAACBHicdVBNS8NAEN34bf2qeuxlsQieQlJabW+KHvRWwVahiWWzndSlm03Y3Qgl9ODFv+LFgyJe/RHe/Ddu2goq+mDg8d4MM/OChDOlHefDmpmdm19YXFourKyurW8UN7faKk4lhRaNeSyvAqKAMwEtzTSHq0QCiQIOl8HgOPcvb0EqFosLPUzAj0hfsJBRoo3ULZa8HoTekQYZZV5E9A0lPDsbXYtRwe0Wy47dqNcatSp2bGeMnFT2G1UHu1OljKZodovvXi+maQRCU06U6rhOov2MSM0oh1HBSxUkhA5IHzqGChKB8rPxEyO8a5QeDmNpSmg8Vr9PZCRSahgFpjO/U/32cvEvr5PqsO5nTCSpBkEni8KUYx3jPBHcYxKo5kNDCJXM3IrpDZGEmlBUwYTw9Sn+n7Qrtlu1a+fV8uHJNI4lVEI7aA+56AAdolPURC1E0R16QE/o2bq3Hq0X63XSOmNNZ7bRD1hvn/2DmFY=</latexit>

In

<latexit sha1_base64="6ABf4b48pGk7FqORrlJyqZCmcCc=">AAACCXicdVDLSgMxFM34rPVVdekmWARXw7S02u4qutBdBfuAdiyZ9E4bmskMSUYoQ7du/BU3LhRx6x+482/MtBVU9EDgcM69N/ceL+JMacf5sBYWl5ZXVjNr2fWNza3t3M5uU4WxpNCgIQ9l2yMKOBPQ0ExzaEcSSOBxaHmjs9Rv3YJULBTXehyBG5CBYD6jRBupl8PdPvjdUw0ySLoB0UNKeHI5uRGT7Ezt5fKOXa2Uq+USdmxnipQUj6slBxfmSh7NUe/l3rv9kMYBCE05UapTcCLtJkRqRjmYsbGCiNARGUDHUEECUG4yvWSCD43Sx34ozRMaT9XvHQkJlBoHnqlMl1W/vVT8y+vE2q+4CRNRrEHQ2Ud+zLEOcRoL7jMJVPOxIYRKZnbFdEgkoSYDlTUhfF2K/yfNol0o2eWrUr52Po8jg/bRATpCBXSCaugC1VEDUXSHHtATerburUfrxXqdlS5Y85499APW2ycuppqs</latexit>

�In

<latexit sha1_base64="jHGjqnuBw99U/OkXFC0i21bb2HY=">AAACCnicdZDLSgMxFIYzXmu9VV26iRbBjWVaWm13FV3oroK9QKeWTHqmDc1khiQjlKFrN76KGxeKuPUJ3Pk2ZtoKKvpD4Oc755BzfjfkTGnb/rDm5hcWl5ZTK+nVtfWNzczWdkMFkaRQpwEPZMslCjgTUNdMc2iFEojvcmi6w7Ok3rwFqVggrvUohI5P+oJ5jBJtUDez5/TAc041SD92fKIHlPD4cnwjxumjKe5msnauUi5VSkVs5+yJElM4rhRtnJ+RLJqp1s28O72ARj4ITTlRqp23Q92JidSMchinnUhBSOiQ9KFtrCA+qE48OWWMDwzpYS+Q5gmNJ/T7REx8pUa+azqTbdXvWgL/qrUj7ZU7MRNhpEHQ6UdexLEOcJIL7jEJVPORMYRKZnbFdEAkoSYDlTYhfF2K/zeNQi5fzJWuitnq+SyOFNpF++gQ5dEJqqILVEN1RNEdekBP6Nm6tx6tF+t12jpnzWZ20A9Zb5+jTprj</latexit>

(In)2 � 4In

<latexit sha1_base64="3mzGvWpQr5wOMRGRdxNBfj2Ja2c=">AAACFXicdZDLSgMxFIYzXmu9jbp0EyyCgpaZUrHdVXShuwq2FjptyaRnbGgmMyQZoQx9CTe+ihsXirgV3Pk2phdBRX8I/HznHHLO78ecKe04H9bM7Nz8wmJmKbu8srq2bm9s1lWUSAo1GvFINnyigDMBNc00h0YsgYQ+h2u/fzqqX9+CVCwSV3oQQyskN4IFjBJtUMc+8LoQeCcaZJh6IdE9Snh6MWyLYXZvgvfbhcPixHbsnJN3xsLfTLlccstl7E5JDk1V7djvXjeiSQhCU06UarpOrFspkZpRDsOslyiICe2TG2gaK0gIqpWOrxriXUO6OIikeULjMf0+kZJQqUHom87R4up3bQT/qjUTHZRaKRNxokHQyUdBwrGO8Cgi3GUSqOYDYwiVzOyKaY9IQk0GKmtC+LoU/2/qhbxbzB9dFnOVs2kcGbSNdtAectExqqBzVEU1RNEdekBP6Nm6tx6tF+t10jpjTWe20A9Zb5/qap6r</latexit>

�(In)2 + 4In

<latexit sha1_base64="HRv0Gq6notW58ZoArFDfOV7D+wk=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgERVqmZartrqIL3VWwVujUkknv1GAmMyQZoQx9Cje+ihsXirgVd76NmbaCih4IHL57L7n3eBFnStv2hzU1PTM7N59ZyC4uLa+s5tbWL1QYSwpNGvJQXnpEAWcCmpppDpeRBBJ4HFrezVFab92CVCwU53oQQScgfcF8Rok2qJsruD3w3UMNMkjcgOhrSnhyOrwSw2xhZ8x3r8p7zth2c3m7WKtWahUH20V7pNSU92uOjUsTkkcTNbq5d7cX0jgAoSknSrVLdqQ7CZGaUQ7DrBsriAi9IX1oGytIAKqTjM4a4m1DetgPpXlC4xH9PpGQQKlB4JnOdHP1u5bCv2rtWPvVTsJEFGsQdPyRH3OsQ5xmhHtMAtV8YAyhkpldMb0mklCTgcqaEL4uxf+bi3Kx5BQrZ06+fjyJI4M20RbaQSV0gOroBDVQE1F0hx7QE3q27q1H68V6HbdOWZOZDfRD1tsnd66e8A==</latexit>

�4

<latexit sha1_base64="VSdR1LJiOniAVY6y+4gORU2LHK0=">AAACBXicdVA9SwNBEN3zM8avqKUWi0GwMVzkokkX0UK7COYDcjHsbebikr29Y3dPCEcaG/+KjYUitv4HO/+Ne0kEFX0w8Hhvhpl5XsSZ0rb9Yc3Mzs0vLGaWsssrq2vruY3NhgpjSaFOQx7KlkcUcCagrpnm0IokkMDj0PQGp6nfvAWpWCiu9DCCTkD6gvmMEm2kbm7H7YHvnmiQQeIGRN9QwpOL0bUYZQ+cbi5vFyrlUqXkYLtgj5GSw6OKY+PiVMmjKWrd3LvbC2kcgNCUE6XaRTvSnYRIzSiHUdaNFUSEDkgf2oYKEoDqJOMvRnjPKD3sh9KU0Hisfp9ISKDUMPBMZ3qo+u2l4l9eO9Z+uZMwEcUaBJ0s8mOOdYjTSHCPSaCaDw0hVDJzK6Y3RBJqUlFZE8LXp/h/0jgsFJ1C6dLJV8+mcWTQNtpF+6iIjlEVnaMaqiOK7tADekLP1r31aL1Yr5PWGWs6s4V+wHr7BHXbmJA=</latexit>

Figure 3: Figure 1b zoomed in. Visualisation of the calculation
of the virtual grid points needed to calculate the inner boundaries
vn+1
Mn

v
and wn+1

0 . The calculations of vnMn
v +1 and vnMn

v +2 are high-
lighted.

4.4. Adding and Removing Grid Points

If parameters are changed such that Nn ̸= Nn−1, grid points must
be added to or removed from the system in a smooth fashion. As
done in [18], this work only considers changes in grid configura-
tions to affect the left system. If the right system is to be affected,
or points are added or removed from both systems in an alternating
fashion (as done in [16, 17]), the same principles apply.

If Nn > Nn−1, grid points are added to vn and vn−1 using
cubic interpolation according to

vn :=
[
(vn)T In3 z

n
]T

,

vn−1 :=
[
(vn−1)T In3 z

n−1
]T

,
if Nn > Nn−1, (40)

where

zn =
[
vn
Mn−1

v −1
vn
Mn−1

v
wn

0 wn
1

]T
, and

zn−1 =
[
vn−1

Mn−1
v −1

vn−1

Mn−1
v

wn−1
0 wn−1

1

]T
,

contain the values of the inner boundaries and their neighbours at
n and n− 1 respectively. Furthermore, cubic interpolator

In3 =
[
− αn(αn+1)

(αn+2)(αn+3)
2αn

αn+2
2

αn+2
− 2αn

(αn+3)(αn+2)

]
, (41)

with αn as defined in Eq. (32). Notice that In3 is used for append-
ing to both vn and vn−1 and that Mn−1

v is used for indexing the
left inner boundary for zn and zn−1.

If Nn < Nn−1, grid points need to be removed from the
system. This is done by simply removing the grid point at the left
inner boundary as follows

vn :=
[
vn1 . . . vn

Mn−1
v −1

]T
,

vn−1 :=
[
vn−1
1 . . . vn−1

Mn−1
v −1

]T
,

if Nn < Nn−1. (42)

An issue that occurs when removing grid points is that vnMn
v
̸≈ wn

0

when xn
vMn

v
≊ xn

w0
at the time of removal. This violates the rigid

connection in Eq. (28) and causes auditory artefacts. As men-
tioned in [18], if the system has damping terms, audible artefacts
can be greatly reduced, as the difference between the inner bound-
aries is generally reduced too. As can be seen in the next section,
a minimum value is placed on the frequency-dependent damping
coefficient σn

1 to reduce artefacts when removing grid points.

DAFx.5

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

134

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

5. REAL-TIME IMPLEMENTATION

A real-time implementation of the dynamic stiff string has been
created using C++ and the JUCE framework4. The application can
be found online5 as well as a video demonstration [22]. This sec-
tion provides details on the implementation, including the update
equations at the inner boundaries as well as the parameter ranges
used, the graphical user interface (GUI) design, and the order in
which the various equations from the previous sections are calcu-
lated.

5.1. Update Equations at the Inner Boundaries

Although one could potentially use a matrix library to implement
Eq. (34) directly, it is generally more efficient to calculate the up-
date equation in a loop. This requires Eq. (34) to be rewritten into
its Nn separate update equations. If the right system has least two
moving grid points, the update equations at the inner boundaries
and their neighbouring points can be calculated as follows:

Anvn+1
Mn

v −1 = Bn
0,⋆v

n
Mn

v −1 + Bn
−1v

n
Mn

v −2 + Bn
1 v

n
Mn

v

− (µn)2(vnMn
v −3 + wn

0 + In
3w

n
1)

+ Cn
0,⋆v

n−1
Mn

v −1 − Sn
(
vn−1
Mn

v
+ vn−1

Mn
v −2

)
,

(43a)

Anvn+1
Mn

v
= Bn

0 v
n
Mn

v
+ Bn

−1v
n
Mn

v −1 + Bn
1w

n
0 + Bn

2w
n
1

− (µn)2(vnMn
v −2 + In

3w
n
2) + Cn

0 v
n−1
Mn

v

− Sn(vn−1
Mn

v −1 + wn−1
0 + In

3w
n−1
1),

(43b)

Anwn+1
0 = Bn

0w
n
0 + Bn

−1w
n
1 + Bn

1 v
n
Mn

v
+ Bn

2 v
n
Mn

v −1

− (µn)2(wn
2 + In

3 v
n
Mn

v −2) + Cn
0 w

n−1
0

− Sn(wn−1
1 + vn−1

Mn
v

+ In
3 v

n−1
Mn

v −1),

(43c)

Anwn+1
1 = Bn

0,⋆w
n
1 + Bn

−1w
n
2 + Bn

1w
n
0

− (µn)2(wn
3 + vnMn

v
+ In

3 v
n
Mn

v −1)

+ Cn
0,⋆w

n−1
1 − Sn (

wn−1
0 + wn−1

2

)
,

(43d)

with An and Sn as defined in Sec. 4.3 and

Bn
0 = 2 + (In − 2)((λn)2 + Sn)− In

0 (µ
n)2,

Bn
0,⋆ = 2− 2(λn)2 − 6(µn)2 − 2Sn,

Bn
−1 = (λn)2 + 4(µn)2 + Sn,

Bn
1 = (λn)2 − In

1 (µ
n)2 + Sn,

B2 = In
3 (λ

n)2 − In
2 (µ

n)2 + In
3S

n,

Cn
0 = σn

0 k − (In − 2)Sn − 1,

Cn
0,⋆ = σn

0 k + 2Sn − 1.

(44)

All other grid points can be calculated using the original update
equation shown in Eq. (11) (albeit with the time-varying param-
eters rather than the static ones). If the right system only has one
moving grid point, Eq. (39) will have to be used in Eq. (34).

4https://juce.com
5https://github.com/SilvinWillemsen/RealTimeDynamic/releases/

5.2. Parameter Ranges

Table 1 shows the initial values of all parameters and their lower
and upper limits. Most parameters range from half to double their
respective initial value (denoted by a subscript ‘i’). For Young’s
modulus En and frequency-independent damping σn

0 it is possible
to reduce their values to 0.

As done in [17], a limit was put on the maximum change in
Nn per sample, referred to as Nn

maxdiff, to prevent audible artefacts
due to too large rates of change in parameters. This was imple-
mented by rewriting Eq. (26) in terms of its respective variable and
calculating the amount of change it would take to reach a change
of Nmaxdiff. Here, Nmaxdiff = 1/20, together with the lower limit
placed on σn

1 , was heuristically found to prevent most noticable
artefacts, while still allowing for high rates of change in parame-
ters. Note that it is assumed that only one parameter is changed at
a time. A possible solution that could be investigated in the future
is to interleave multiple simultaneous parameter changes sample
by sample.

Finally, Mn
w = 1 ∀n such that Mn

v is dynamically changed
according to Eq. (24).6 Notice that the right system only has one
moving grid point, and update equations at the inner boundaries in
Eq. (43) have been adapted using matrix (39) in Eq. (34).

Table 1: Parameter values and ranges. Subscript ‘i’ denotes the
initial value of that parameter, which is defined in the third column.

Parameter name Symbol Init. value Lower lim. Upper lim.
Length Ln 1 0.5 · Li 2 · Li
Material density ρn 7850 0.5 · ρi 2 · ρi
Radius rn 5 · 10−4 0.5 · ri 2 · ri
Tension Tn 300 0.5 · Ti 2 · Ti
Young’s modulus En 2 · 1011 0 2 · Ei
Freq.-indep. loss σn

0 1 0 2 · σ0,i
Freq.-dep. loss σn

1 5 · 10−3 2 · 10−4 2 · σ1,i

5.3. Graphical User Interface

Figure 4 shows the GUI of the application. The bottom row con-
tains sliders with which the user can change various parameters of
the stiff string listed in Table 1. The top part shows the string using
a dashed black line where the state of the system is visualised as
a vertical displacement. The appearance of the string depends on
the parameter values according to Table 2. Changes in loss coef-
ficients are not directly visualised, but are implicitly shown by the
time evolution of the string. The GUI is refreshed at a rate of 15
Hz. See [22] for a video demonstration.

The string can be excited by clicking the left mouse button
in the top part, adding a raised cosine to un and un−1 at the x-
location of the mouse. The spacebar can also be used to trigger
the excitation (using the last x-location of the mouse), so that the
mouse can be used for slider interaction.

5.4. Order of Calculation

Algorithm 1 shows the order of calculation relating various in-
structions to the equations presented in previous sections. The
output is retrieved at an arbitrary fixed location close to the left
boundary (lv = 6).

6It has been chosen to keep the n superscript in Mn
w to retain generality.

DAFx.6

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

135

https://juce.com
https://github.com/SilvinWillemsen/RealTimeDynamic/releases/

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Figure 4: The graphical user interface (GUI) of the application.
The bottom part contains sliders that control various parameters
(see Table 1). The top part shows the state of the string with the
parameters visualised according to Table 2.

Table 2: Visualisation of parameters.

Parameter name Visual
Length Length between boundaries
Material density Length of dashes
Radius Thickness of line
Tension Rotation of boundaries
Young’s modulus Colour (blue - black - red)

6. RESULTS AND DISCUSSION

For the most part, the implementation of the dynamic stiff string
works as it should. Parameters of the stiff can be changed in real
time, and change the resulting timbre and pitch as expected. Infor-
mal testing by the authors confirms that for most settings, parame-
ters can be changed from their minimum to their maximum value
nearly instantaneously without producing noticable artefacts.

For some parameter settings and system states, however, au-
ditory artefacts due to grid point removal are not completely pre-
vented by the measures described in Section 5.2, i.e., the lower
limit on σn

1 and the use of Nmaxdiff. Increasing these values seems
to help, but does not prevent artefacts in all situations. As dis-
cussed in [16], artefacts seem to appear when the highest mode is
undamped at the moment that a grid point is removed. To combat
the aforementioned issues, one could therefore potentially reintro-
duce the method of displacement correction as presented in [16],
adding an artificial (damped) spring between the inner boundaries
that damps higher modes in the process. A drawback here is that
the damping is local and therefore unnatural as discussed in [18].
One could thus investigate other forms of frequency-dependent
damping that specifically affect higher-frequency modes, such as
adding another damping term −2σ2∂t∂

4
xu to Eq. (1) as described

in [5, p. 216].
Another issue with the current implementation relates to the

use of Nmaxdiff, which causes discrepancies between speed of vari-
ation between different settings of the parameters. For example,
changes in Ln for a setting with a low value for hn is much slower
than for a setting with a high value of hn, as there is a much higher
value for Nn in the former than in the latter.

Related to the variation of Nn are the dramatic differences in
computational cost for different parameter settings. At a sample
rate of fs = 44100 Hz, for the ranges of parameters presented

while application is running do
Retrieve new slider values
Calc. hn (Eq. (26))
Calc. Nn and Nn (Eqs. (23) and (17))
Calc. αn (Eq. (32))
if Nn ̸= Nn−1 then

Add or remove point (Eq. (40) or (42))
Update Mn

v and Mn
w (Eq. (24))

end
Calc. vn+1

lv
and wn+1

lw
(Eqs. (11) and (43))

Retrieve output
Update states (un−1 = un, un = un+1)
Update Nn−1 (Nn−1 = Nn)
Increment n

end

Algorithm 1: Pseudocode showing the order of calculations.

in Table 1, the number of grid points that needs to be calculated
can range between 24 ≤ Nn ≤ 1590 and the number of opera-
tions scales with Nn. Even though the application still runs in real
time (between 1.2% and 11.6% without graphics on a MacBook
Pro with a 2,3 GHz Intel i9 processor), it might cause auditory
dropouts for specific settings when used in parallel with other plu-
gins.

7. CONCLUSION

This paper presents a real-time implementation of the dynamic
stiff string. Parameters of the underlying model can be varied in
real time, mostly in a smooth fashion, though for some settings,
auditory artefacts can be heard.

Apart from being able to create sounds that go beyond what is
physically possible using this method, the implementation allows
users to tweak the parameters of the model in real time. This paves
the way for a drastically more efficient way of parameter tuning of
FDTD-based physical models of musical instruments.

Future work includes investigating a reliable way to reduce
audible artefacts due to grid point removal, as well as performing
listening tests to confirm their absence. Finally, creating real-time
implementations of other systems presented in [18], such as the
dynamic thin plate, will allow for entire instruments to be manip-
ulated, rather than only components in isolation.

8. ACKNOWLEDGMENTS

This work has been funded by the European Art-Science-
Technology Network for Digital Creativity (EASTN-DC), project
number 883023.

9. REFERENCES

[1] K. Karplus and A. Strong, “Digital synthesis of plucked-
string and drum timbres,” Computer Music Journal, vol. 7,
pp. 43–55, 1983.

[2] D. A. Jaffe and J. O. Smith, “Extensions of the karplus-strong

DAFx.7

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

136

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

plucked-string algorithm,” Computer Music Journal, vol. 7,
pp. 56–69, 1983.

[3] J.-M. Adrien, “The missing link: Modal synthesis,” in Rep-
resentations of Musical Signals, G. De Poli, A. Picalli, and
C. Roads, Eds., pp. 269–298. MIT Press, 1991.

[4] S. Mehes, M. van Walstijn, and P. Stapleton, “Towards a
virtual-acoustic string instrument,” Proceedings of the 13th
Sound and Music Computing Conference (SMC), 2016.

[5] S. Bilbao, Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics, John Wiley
& Sons, 2009.

[6] P. Ruiz, “A technique for simulating the vibrations of strings
with a digital computer,” M.S. thesis, University of Illinois,
1969.

[7] L. Hiller and P. Ruiz, “Synthesizing musical sounds by solv-
ing the wave equation for vibrating objects: Part I,” Journal
of the Audio Engineering Society (JASA), vol. 19, no. 6, pp.
462–470, 1971.

[8] L. Hiller and P. Ruiz, “Synthesizing musical sounds by solv-
ing the wave equation for vibrating objects: Part II,” Journal
of the Audio Engineering Society (JASA), vol. 19, no. 7, pp.
542–550, 1971.

[9] C. G. M. Desvages, Physical Modelling of the Bowed String
and Applications to Sound Synthesis, Ph.D. thesis, The Uni-
versity of Edinburgh, 2018.

[10] S. Bilbao, M. Ducceschi, and C. Webb, “Large-scale real-
time modular physical modeling sound synthesis,” in Pro-
ceedings of the 22th International Conference on Digital Au-
dio Effects (DAFx-19), 2019.

[11] S. Willemsen, S. Serafin, S. Bilbao, and M. Ducceschi,
“Real-time implementation of a physical model of the
tromba marina,” in Proceedings of the 17th Sound and Music
Computing (SMC) Conference, 2020, pp. 161–168.

[12] S. Willemsen, The Emulated Ensemble: Real-Time Simu-
lation of Musical Instruments using Finite-Difference Time-
Domain Methods, Ph.D. thesis, Aalborg University Copen-
hagen, Jul. 2021.

[13] R. Michon and J.O. Smith, “A hybrid guitar physi-
cal model controller: The BladeAxe,” in Proceedings
ICMC|SMC|2014, 2014.

[14] S. Willemsen, S. Serafin, and J. R. Jensen, “Virtual analog
simulation and extensions of plate reverberation,” in Proc. of
the 14th Sound and Music Computing Conference, 2017, pp.
314–319.

[15] M. J. Berger and J. Oliger, “Adaptive mesh refinement for
hyperbolic partial differential equations,” Journal of Com-
putational Physics, vol. 53, no. 3, pp. 484–512, 1984.

[16] S. Willemsen, S. Bilbao, M. Ducceschi, and S. Serafin, “Dy-
namic grids for finite-difference schemes in musical instru-
ment simulations,” in Proc. 24th Int. Conf. Digital Audio
Effects (DAFx), Vienna, Austria, 2021, pp. 144–151.

[17] S. Willemsen, S. Bilbao, M. Ducceschi, and S. Serafin, “A
physical model of the trombone using dynamic grids for
finite-difference schemes,” in Proc. 24th Int. Conf. Digital
Audio Effects (DAFx), Vienna, Austria, 2021, pp. 152–159.

[18] S. Willemsen, S. Bilbao, M. Ducceschi, and S. Serafin,
“The dynamic grid: Time-varying parameters for musical in-
strument simulations based on finite-difference time-domain
schemes,” The Journal of the Audio Engineering Society
(JAES), 2022.

[19] N. H. Fletcher and T. D. Rossing, The Physics of Musical
Instruments, Springer, 1998.

[20] J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith,
“The simulation of piano string vibration: From physical
models to finite difference schemes and digital waveguides,”
Journal of the Acoustical Society of America (JASA), vol.
114, no. 2, pp. 1095–1107, 2003.

[21] J. C. Strikwerda, Finite Difference Schemes and Partial Dif-
ferential Equations, Wadsworth and Brooks/Cole Advanced
Books and Software, Pacific Grove, California, 1989.

[22] S. Willemsen, “Demo of the Real-Time Dynamic Stiff String
- DAFx2022,” Available at https://youtu.be/8elYYOTWH3I,
accessed, April 5, 2022.

DAFx.8

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

137

https://youtu.be/8elYYOTWH3I

	1 Introduction
	2 Physical Model
	3 Numerical Methods
	3.1 Finite-Difference Operators
	3.2 Discrete Damped Stiff String
	3.3 Matrix Form

	4 The Dynamic Stiff String
	4.1 System Setup
	4.2 Connecting the Inner Boundaries
	4.3 Matrix Form
	4.4 Adding and Removing Grid Points

	5 Real-time Implementation
	5.1 Update Equations at the Inner Boundaries
	5.2 Parameter Ranges
	5.3 Graphical User Interface
	5.4 Order of Calculation

	6 Results and Discussion
	7 Conclusion
	8 Acknowledgments
	9 References

@inproceedings{DAFx20in22_paper_11,
 author = "Willemsen, Silvin and Serafin, Stefania",
 title = "{Real-Time Implementation of the Dynamic Stiff String Using Finite-Difference Time-Domain Methods and the Dynamic Grid}",
 booktitle = "Proceedings of the 25-th Int. Conf. on Digital Audio Effects (DAFx20in22)",
 editor = "Evangelista, G. and Holighaus, N.",
 location = "Vienna, Austria",
 eventdate = "2022-09-06/2022-09-10",
 year = "2022",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "3",
 doi = "",
 pages = "130--137"
}

