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ABSTRACT

The integration of additional side information to improve music
source separation has been investigated numerous times, e.g., by
adding features to the input or by adding learning targets in a
multi-task learning scenario. These approaches, however, require
additional annotations such as musical scores, instrument labels, etc.
in training and possibly during inference. The available datasets
for source separation do not usually provide these additional an-
notations. In this work, we explore transfer learning strategies to
incorporate VGGish features with a state-of-the-art source separa-
tion model; VGGish features are known to be a very condensed
representation of audio content and have been successfully used
in many music information retrieval tasks. We introduce three ap-
proaches to incorporate the features, including two latent space
regularization methods and one naive concatenation method. Our
preliminary results show that our proposed approaches could im-
prove some evaluation metrics for music source separation. In this
work, we also include a discussion of our proposed approaches,
such as the pros and cons of each approach, and the potential exten-
sion/improvement.

1. INTRODUCTION

Music source separation has been an intensively studied problem
due to its numerous applications. By isolating the sound of individ-
ual instruments from a mixture of instruments, source separation
systems have been used, e.g., for audio-remixing [1], instrument-
wise equalization [2], accompaniment generation for Karaoke sys-
tems [3], or singer identification [4].

A typical music source separation pipeline often includes input
representation (e.g., waveform and extracted features), the machine
learning model (e.g., neural network and loss function), and the
post-processing algorithm (e.g., Wiener filtering). Although there
has been some work on the input representation to improve source
separation systems, e.g., investigating waveforms [5] or complex
spectrograms [6] instead of the common magnitude spectrograms,
most research in recent years has focused on improving source
separation models through new, more powerful model architec-
tures [6, 7, 8]. One successful architecture is the U-net [9] that
has been adopted and utilized for many source separation studies
[5, 10, 11, 12, 13]. While the original U-net is based on a Convolu-
tional Neural Network (CNN) and skip connections, an advanced
U-net architecture proposed by Takahashi et al. combines the CNN
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with a Recurrent Neural Network (RNN) [7]. Different combina-
tion of CNN, RNN, and Fully-Connected (FC) layers have been
studied by Choi et al. [6]. The popular Open-Unmix and the more
recent X-UMX models are based on a combination of RNN and FC
[8, 14].

While the increasing model complexity has led to noticeable
increases in the quality of the system outputs, it has also led to an
increased need for computational resources particularly during train-
ing. Researchers often cannot easily meet the GPU and memory
requirements for training or inference with modern source separa-
tion systems. This resulted in a parallel research direction aiming
at improving a source separation model by adding additional infor-
mation during training, inference, or both [15, 16, 17, 18], which is
a contrasting approach compared to increasing model complexity.

However, one drawback of these methods is that they need
additional ground truth annotations for training or sometimes even
during inference. The available datasets for music source sepa-
ration —most prominently the MUSDB18 dataset [19]— do not
provide these additional annotations. While generating pseudo-
annotations with other machine learning models can be one so-
lution, their usefulness depends on the correctness of the model.
Furthermore, the computation time will increase with more added
features.

In this work, we propose to leverage a feature representation
learned from large-scale datasets as additional information. This
feature representation includes more generalized features than sin-
gle task-specific models. To this end, we leverage the well-known
VGGish features [20]. The VGGish model is a very deep model
trained on a very large audio dataset and provides a condensed
feature representation of the input audio file. We investigate three
methods to incorporate VGGish features into a state-of-the-art
(SOTA) music source separation model, including two latent space
regularization methods. In summary, this study explores:

• leveraging the information contained by mid-level features
trained on a different task to improve music source separa-
tion without the need of additional ground truth annotations,
and

• restricting the use of such additional features to the training
in order to preserve computational resources during infer-
ence.

In the following sections, we first review existing approaches
on using VGGish features for music information retrieval (MIR)
tasks and incorporating additional features in music source sepa-
ration. Section 3 provides a detailed overview of the methods we
propose for our feature-informed source separation system. Sec-
tion 4 presents the evaluation results for both, a state-of-the-art
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(SOTA) system and our proposed system. The same section also
presents a detailed analysis of the latent space after regularization.

2. RELATED WORK

This section discusses two related research directions that inspired
our proposed approach. First, we introduce transfer learning meth-
ods that leverage representations from models pre-trained on larger
datasets to help downstream tasks. Then, the literature on adding
additional information that supports a target task is briefly surveyed.

2.1. VGGish features

Traditional hand-crafted features have nowadays been replaced by
feature representations learned automatically from the training data.
These learned representations can also be used in other tasks in var-
ious domains. The pre-trained features from the BERT model [21],
for example, have been successfully used in multiple natural lan-
guage processing tasks such as question answering and language
inference. In the image domain, large-scale pre-trained models
such as AlexNet [22] and VGG-16 [23] have achieved competitive
results in image classification and assist in many visual feature
extraction tasks [24]. There exist several pre-trained models in the
audio domain, such as L3-Net [25], VGGish [20] and SoundNet
[26], which leverage both audio and visual information provided
by video to train an audio feature extraction network.

VGGish features, particularly, have been successfully used in
numerous MIR tasks. These tasks include weakly-supervised instru-
ment recognition [27], cross-modal representation learning [28, 29],
music auto-tagging [30], music emotion recognition [31], and mu-
sic genre classification [32, 33, 34]. The VGGish model was pre-
trained on a larger dataset (i.e., YouTube-8M [35]) than most other
audio feature extractors; this potentially gives this representation
higher discriminative power.

The apparent popularity of VGGish features combined with
the variety of the tasks they have successfully used this input rep-
resentation implies that these features are able to capture many
task-agnostic properties of audio files suitable for a large variety of
music-related tasks. Consequently, we choose the VGGish model
to extract the feature representation for our experiment.

2.2. Additional features for music source separation

Leveraging additional side information to improve music source
separation systems has been proposed in multiple forms. The two
most common methods are (i) to add the additional information
directly to the input and (ii) to utilize the additional information
gained in a multi-task setup.

Taking advantage of the close relation of the music instrument
classification task and music source separation, several studies have
shown that instrument activity labels as an additional input to a
source separation system can improve results. Slizovskaia et al.
investigated several methods to add instrument labels to the U-
net model [36] and Swaminathan added voice activity labels to
improve singing voice separation quality [37]. Instrument activity
labels can also be used as a condition to control the output sources
by using one model instead of multiple models for each source
[15, 38, 39]. In addition to instrument labels, the instrumentation
and pitch information provided by musical scores has also been
used to guide the learning process and improve separation results
[40, 41, 42]. Carabias-Orti et al. learn a timbre model for each

instrument they separate and use the trained models as priors for the
separation system based on non-negative matrix factorization [43].
Source separation systems can also be informed by incorporating
visual features, leveraging the cross-modal information of the video
for the separation [44, 45, 46].

As an alternative to adding additional information to the input
of a source separation system, this information can also be utilized
during the training to improve the internal representation and help
the model to generalize better. Hung et al. proposed to combine
the training of a frame-level instrument classifier and a source
separation system in a multi-task setup and then leverage the in-
strument predictions during inference for post-processing the result
[16]. Manilow et al. were able to improve source separation with a
deep clustering model using both separation and transcription as a
training tasks [17] and Jansson et al. explored a variety of methods
to learn singing voice separation and fundamental frequency (F0)
estimation at the same time [18].

3. PROPOSED METHOD

In this work, we investigate three transfer learning approaches
to improve a SOTA source separation model via VGGish features.
The first approach directly integrates the VGGish information while
the second and third approach perform transfer learning indirectly
through the regularization of the embedding space based on the
VGGish information. Our proposed methods can be categorized as
transfer learning since the additional features — which are extracted
from a model pre-trained on a larger dataset — provide direct or
indirect knowledge transfer. Figure 1 shows a high-level overview
of the proposed training pipeline, indicating the use of VGGish
features (purple) to modify the latent vector (red).

Our approaches show some similarity to feature-based knowl-
edge distillation methods used in teacher-student learning [47],
where the pre-trained representations are used to regularize the
embedding space during training. VGGish features might contain
information that is useful for separation but not adequately rep-
resented in the unregularized latent space. Projecting the latent
vectors into the VGGish feature space can help transfer the knowl-
edge from VGGish feature space into latent vectors. Moreover,
VGGish features have strong discriminative power. Forcing the
latent vectors to be close to VGGish features can lead to more
separable latent space representations, and prevent the model from
confusing distinct instruments.

3.1. Source separation model

We adopt the X-UMX model as the baseline model [14] since this
model achieves very good results on the MUSDB18 dataset and
has open-sourced code 1. The model is based on the Open-Unmix
(UMX) architecture [8]. Instead of training one separate model
for each instrument, X-UMX uses a bridging network architecture,
connecting the paths to cross each source’s network by adding two
average operators to the original UMX model. The result shows
0.4 dB improvement for the average Source-to-Distortion Ratio
(SDR) compared to the baseline UMX architecture [8]. As indi-
cated in Figure 1, the model uses four separate encoders consisting
of fully-connected layers and bi-directional recurrent layers to com-
pute the latent vectors l ∈ RB×Tl where B denotes the number
of feature bins for the latent vector for each instrument while Tl

1https://github.com/sony/ai-research-code/tree/master/x-umx
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FC + Bridging + BLSTM

FC + Bridging + BLSTM

FC + Bridging + BLSTM

FC + Bridging + BLSTM

FC

FC

FC

FC

Spectrogram Encoder Latent Vector Decoder VGGish Feature
Extraction

Figure 1: Overview of the X-UMX structure and our proposed training pipeline for the two proposed regularization methods. x̂ denotes the
estimated target spectrograms; x denotes the ground truth spectrograms; l denotes the latent vectors; v denotes the VGGish features; Lmse

and Lreg denote the Mean Square Error and Regularization loss respectively. FC denotes fully-connected layers. The dotted line represents
the feature extraction process by VGGish.

denotes the number of the latent vectors across time. The decoders
comprise of fully-connected layers to decode the target spectrogram
masks from the latent vectors.

3.2. Input representation and features

Following the setup of the X-UMX model, the input of the source
separation model is the magnitude spectrogram x ∈ RTs×F , where
Ts represents the duration of the spectrogram while F represents
number of frequency bins. The short time Fourier transform is com-
puted with a hop length and block length of 1024 and 4096 samples,
respectively.

The additional VGGish features are extracted by the pre-trained
VGGish model [20] as 128 -dimensional vector with 0.96 s time
resolution (no overlap). The features are PCA transformed (with
whitening) and quantized to 8-bits.

One obstacle encountered when incorporating the VGGish
features is the difference in time resolution. The VGGish model is
originally trained for clip-level tagging so the features have a low
time resolution (approx. 1 s). Our source separation model needs
frame-wise prediction, and therefore has a much higher resolution
(approx. 0.02 s). We address this issue by simply repeating the
features n times with n representing the number of time frames in
0.96 s. This approach is based on the assumption that one frame of
VGGish features contains information for the entire n latent vector
frames and that a slight mis-alignment in time will have a negligible
effect on the results.

3.3. Transfer Learning Approaches

3.3.1. Method 1: Concatenation

The first proposed method aims to provide additional information
encoded by VGGish directly to the decoder. We simply concatenate

Linear

Figure 2: The proposed Concat method to concatenate VGGish
features with latent vectors.

the VGGish features (of the mixture audio) and the latent vector
along feature dimension B, as shown in Figure 2. It should be
noted that this approach requires VGGish feature extraction during
inference time. The original VGGish model has 72M parameters.
Although the VGGish features can be extracted prior to training and
thus have only minimal impact on the training time, this approach
has the potential to slow down the inference time. Since in practice
there is no access to the ground truth for the separated tracks during
inference, the VGGish features we use in this method for both
training and testing are extracted from the mixture audio. This
method is referred as Concat in the remainder of this paper.

3.3.2. Method 2: Contrastive Regularization

The second method aims to regularize the latent space with the
additional VGGish features. To do so, we utilize the VGGish
features extracted from the separate ground truth tracks (e.g., bass
latent vectors from the model should be close to VGGish features
extracted from the bass track) and add an extra loss term Lcon−reg

based on cosine similarity to force the latent vectors to be close to
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Figure 3: The proposed Con-Reg method to regularize latent vectors
through VGGish features.

VGGish features:

Lcon−reg =

{
1− cos(f(l), v) if y = 1

max(cos(f(l), v)− α, 0) if y = −1,
(1)

with y = 1 when the latent vector li and the VGGish features vi
both correspond to the same instrument i (e.g., bass latent vector
and bass VGGish features) and y = −1 in the case that li and vj
represent two different instruments i ̸= j. The hyperparameter
α is the margin of distance (set to α = 0.2 after hyperparameter
search). A 1D CNN with 1 kernel size (f ) is applied to transform
the latent vector dimensionality to 128 to match the VGGish feature
dimensionality, allowing us to compute the cosine distance between
l and v. This method is referred as Con-Reg in the remainder of
this paper.

3.3.3. Method 3: Distance-based Regularization

Similar to method Con-Reg, the latent space is regularized with
an additional loss. In this case, however, the additional loss term
Ldis−reg aims at forcing the distances between pairs of latent vec-
tors to be similar to the distances between two corresponding VG-
Gish features:

Ldis−reg = max
(
Dlatent(f(li), f(lj))−Dvgg(vi, vj), 0

)
, (2)

where Dlatent represents the cosine distance between two latent
vectors and Dvgg represents the distance of two VGGish feature
vectors from two different instruments i and j where i ̸= j. This
method is similar to the scenario in Con-Reg if y = −1 in Equa-
tion (1). Instead of choosing a fixed value α as the margin, the
distance of VGGish feature pairs serve as a ‘soft’ margin which in-
dicates the lower bound of the distance of two latent vectors. Since
the cosine distance is evaluated on two distinct instruments, the
latent vectors should be more separated from each other, indicating
that Dlatent should be smaller than Dvgg

The loss design is based on the observation that the latent vec-
tors from the same instrument category might not always be close to
the same category. For example, ‘Electrical Bass’ and ‘Double Bass’
in ‘Bass’ category might have slightly different features. The same
as ‘Female Vocals’ and ‘Male Vocals’ in the ‘Vocals’ categories.
Since the VGGish model is pre-trained on the dataset that contains
more detailed instrument labels2, the distance of VGGish features
might be able to capture the similarity of each instrument frame.
As a result, instead of using the category labels y to determine

2The ontology of the labels is shown in this website
https://research.google.com/audioset/ontology/index.html

the absolute distance, we use distance between the corresponding
VGGish features to decide the distance of the latent vectors. Since
optimizing the model to predict latent vectors matching the dis-
tance of VGGish features is not easy, we use the VGGish distance
(Dvgg) as a margin so that the latent vectors will have a distance
(Dlatent) where Dlatent ≤ Dvgg. Distances smaller than Dvgg are
also acceptable, since these encourage the latent vectors of two
separate instruments to be more separable. This method is referred
as Dis-Reg in the remainder of this paper.

3.4. Training Setup

The Adam optimizer [48] is used with a 1e-4 learning rate and 1e-5
weight decay to optimize the model. Early stopping is applied if the
validation loss does not decrease for 25 epochs and the learning rate
decrease by a factor of 0.3 if the validation loss does not decrease for
10 epochs. The applied data augmentation (e.g., channel swapping
and volume adjustment) is identical to the one described in [8].
Each input sample has a length of 6 s and is picked by randomly
selecting a starting time in the audio. The standard Mean Square
Error (MSE) loss and regularization loss (for Con-Reg & Con-Dis)
are combined with:

Ltotal = Lmse + λLreg, (3)

where Lreg is either Lcon−reg or Ldis−reg. The weight of the regu-
larization loss λ is set after hyperparameter search to λcon−reg =
1e−6 and λdis−reg = 1, respectively. Since Lcon−reg has a ‘strong’
margin between the latent vector and VGGish features, we found
that setting the loss small to gradually influence the model during
training can lead to better performance. Note that the multi-domain
loss in the X-UMX model is ignored in this study even if it led to
an improvement of 0.2 dB [14] for the sake of computational speed.

4. EXPERIMENTS

We train and evaluate the proposed methods on the MUSDB18
dataset [19] and use the ‘train,’ ‘evaluation,’ and ‘test’ split defined
in the original dataset. MUSDB18 has a total of 150 full-track
songs of different styles. All signals are stereophonic and encoded
at 44.1kHz. Each song in the dataset is comprised of four tracks,
‘Vocals,’ ‘Bass,’ ‘Drums,’ and ‘Other.’ The X-UMX model without
any regularization is our baseline for comparison. The same train-
ing strategy described above is also used to re-train X-UMX. The
Museval toolbox is used to calculate evaluation metrics: Signal-
to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), and
Signal-to-Artifact Ratio (SAR) [49]. These three metrics are com-
monly used to evaluate the separation quality, the amount of other
sources, and the amount of unwanted artifacts in an estimated
source. Increasing values indicate better performance.

4.1. Music Source Separation

The results of the source separation experiments per instrument are
given in Figure 4. We can observe that, compared to the baseline X-
UMX model, our proposed methods show a tendency of suppressing
unwanted artifacts and increasing the SAR scores on all instruments.
The result supports our assumption that VGGish features contain
additional information potentially helpful for separation. Utilizing
VGGish features seems to help stabilizing the model and reducing
artifacts.
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Figure 4: SDR, SIR and SAR scores for X-UMX and our proposed methods across four instruments.

By using the proposed methods, SIR scores improve slightly
for ‘Vocals’, ‘Drums,’ and ‘Bass.’ This result suggests that the
discriminative power of the VGGish features can benefit separation
and decrease the interference of non-targeted sources. As our pro-
posed methods aim to make the latent space more discriminative by
either adding additional VGGish features or forcing different instru-
ments’ latent vector to be apart from each other, the interference
from other instruments decreases. The soft margin employed in
Dis-Reg generally leads to a higher SIR score than the hard margin
in Con-Reg. The SIR score of ‘Other,’ however, decreases after
regularization. We speculate that this is due to the non-homogeneity
of the ’Other’ category as it includes a variety of instruments with
large distance variations in the embedding space. For example, if
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Figure 5: Confusion matrix of latent vector classification.

‘Other’ contains low pitched instruments such as Tuba, then the
distance might be closer to ‘Bass’ instead of ‘Violin,’ another in-
strument in ‘Other.’ As a result, the distance regularization might
actually impede the training and thus lead to the observed poor SIR
score. This result also suggests the possibility of improving source
separation systems by replacing the ‘Other’ category with a set of
specific “clean” instruments.

Comparing con-Reg and Dis-Reg, we can observe that Dis-Reg
generally outperforms Con-Reg. The distance-based regularization
appears to help the model maintain a structure targeted at source
separation while adding relevant information. The SDR score stays
mostly constant for most of the instruments except for ‘Drums,’
where we can observe improvement when using regularization
methods. The general lack of improvement in SDR scores could
potentially be related to much lower time resolution of VGGish
features.

To summarize, while the Concat method performs better than
Dis-Reg and Con-Reg on most of the metrics, it needs to incorporate
the VGGish model during inference, which increases computation
time and required memory. In contrast, Dis-Reg and Con-Reg,
although they do not achieve the same improvement as Concat
on some of the metrics, still show improvement over X-UMX for
SIR and SAR and do not require the additional features during
inference.

4.2. Latent Space Classification

To measure the discriminative power of the latent vectors after the
proposed latent space modification, we compute the latent vectors
from the test set for our four models: X-UMX, Concat, Con-Reg,
and Dis-Reg. Each audio input has a Tl × C latent features for C
represents the dimension of latent vectors after modification. Since
all the tracks have same length, the total number of frames across
classes is equally distributed. For Con-Reg and Dis-Reg, C is equal
to 128 . C is equal to (B+128) for Concat and C is equal to B for
X-UMX. We perform K-means algorithm on all the latent vectors
across all audio inputs for clustering. The latent vectors from the
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(a) VGGish features (b) X-UMX (c) Concat

(d) Con-Reg (e) Dis-Reg

Figure 6: The t-SNE visualization of the VGGish features as well as the latent vectors of the baseline X-UMX model and the proposed
methods from an audio sample in test set. ‘Blue’: vocals, ‘Red’: drums, ‘Green’: bass, ‘Yellow’: other.

same instruments should be in the same cluster.
The confusion matrix of the proposed models are shown in

Figure 5. The matrix is processed through log function for better
visualization. ‘Vocals’ has the best performance for X-UMX latent
vectors, while ‘Other’ tends to be confused with other instruments.
The confusion is eased by using latent vectors from proposed meth-
ods. Surprisingly, when using Concat and Con-Reg, ‘Drums’ tends
to get confused with other instruments and ‘Bass’ tends to to get
confused when using Dis-Reg. The consistent confusion of a spe-
cific instrument might be caused by the silence or low volume
frames. K-means algorithm directly assigns the closest instrument
to those frames.

4.3. Latent Space Visualization

We randomly choose a sample from the test set and visualize a
t-SNE projection [50] of the extracted latent vectors from the VG-
Gish features, the baseline X-UMX model, Concat, Dis-Reg, and
Con-Reg. The results are shown in Figure 6. We can observe
from Figure 6b that — although the latent vectors are clearly clus-
tered — several small clusters can be found to be far from their
corresponding main cluster (top-left yellow and bottom-right red).
This implies that model might confuse one instrument with an-
other in these cases. When using regularization in Figure 6d and
Figure 6e, the clusters tend to be more tightly packed and the spu-
rious small clusters decrease in both number and size. Directly
concatenating the VGGish features with latent vectors yields the
most separable latent space, as shown in Figure 6c. As with classi-
fication, we observe that some of the clusters separated from the
main clusters are from low volume audio frames or silence. Since
they contain minimal instrument information, their latent vectors

are difficult to cluster into one of the four groups. Moreover, we can
observe that Concat and Dis-Reg achieve slightly better clustering
results than X-UMX and Con-Reg. The result is aligned with our
separation result in Figure 4, where Dis-Reg and Concat tend to
outperform Con-Reg.

5. CONCLUSION

In this work, we propose three methods to incorporate VGGish fea-
tures into a SOTA music source separation system. The first method
simply concatenates features with the latent vectors, while the other
two methods regularize the latent space through an additional loss
function during training. Our proposed methods show the potential
of reducing the artifacts and the interference created by the model
and improving the SAR and SIR scores on ‘Vocals,’ ‘Drums,’ and
‘Bass’. Latent space visualization confirms that the latent space has
slightly better discriminative properties after regularization.

However, further experimentation is required to verify our
approaches in different settings. For example, we plan to include
other features into our proposed training strategies, such as the L3-
Net embedding features [25]. Other model architectures, feature
resolutions, and instrument categories, as well as the application to
other audio-related tasks will also be studied in the future.
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