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ABSTRACT

Sinusoids are widely used to represent the oscillatory modes of
music and speech. The estimation of the sinusoidal parameters
directly affects the quality of the representation. A parabolic inter-
polation of the peaks of the log-magnitude spectrum is commonly
used to get a more accurate estimation of the frequencies and the
amplitudes of the sinusoids at a relatively low computational cost.
Recently, Werner and Germain [1] proposed an improved sinu-
soidal estimator that performs parabolic interpolation of the peaks
of a power-scaled magnitude spectrum. For each analysis win-
dow type and size, a power-scaling factor p is pre-calculated via
a computationally demanding heuristic. Consequently, the power-
scaling estimation method is currently constrained to a few tabu-
lated power-scaling factors for pre-selected window sizes, limiting
its practical applications. In this article, we propose a method to
obtain the power-scaling factor p for any window size from the
tabulated values. Additionally, we investigate the impact of zero-
padding on the estimation accuracy of the power-scaled sinusoidal
parameter estimator.

1. INTRODUCTION

Sinusoids are widely used to represent the oscillatory modes of
musical sounds [2] and speech [3]. The sound is typically mod-
eled as a sum of time-varying sinusoids parameterized by their
amplitudes, frequencies and phases. Sinusoidal parameter estima-
tors play a crucial role in sinusoidal modeling because the quality
of the representation depends on the accuracy of the estimation.

The estimation of the parameters of sinusoids in noise has a
long history in the signal processing literature [4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 1, 15]. Spectral estimators based on the interpo-
lation of three DFT samples [14, 1, 15] commonly fit a parabola
to local peaks of the magnitude spectrum. Parabolic interpolation
on a logarithmic scale has been shown to outperform parabolic
interpolation on linear scale for both stationary [16, 17] and non-
stationary [18] sinusoids. Fig. 1 shows that the shape of the main
lobe of the Hann window changes dramatically under linear or log
scaling of the magnitude spectrum.
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Figure 1: Comparison of the shape of the magnitude spectrum of
a Hann window under linear, logarithmic, and power scaling.

High-resolution methods such as MUSIC [19] and ES-
PRIT [20] provide accurate estimation for multiple sinusoids in
additive noise. Iterative estimation via least-squares [21] also con-
verges to accurate values. However, these estimators suffer from
the demanding computational cost of matrix algebra. Keiler and
Marchand [22] compared the sinusoidal parameter estimators most
commonly used for audio, including parabolic interpolation on a
logarithmic scale. To the best of our knowledge, their perfor-
mance has not been compared to recent state-of-the-art estima-
tors [12, 13, 14, 1, 15].

Recently, Werner and Germain [1] developed an estimator ba-
sed on parabolic interpolation of DFT samples of a power-scaled
magnitude spectrum. They heuristically pre-calculated the power
p that distorts the main lobe of the window to make its shape more
parabolic and minimize the estimation error (see Fig. 1). Then,
they compared the performance of their estimator with the state-of-
the-art estimators of Duda [12] and Candan [14] in additive noise.

Werner and Germain determined p for 12 commonly used
windows [23], showing that p depends on the window size M .
Thus, obtaining p for non-tabulated M would require performing
the computationally demanding heuristic. Consequently, power-
scaling estimation is currently constrained to a few tabulated val-
ues (see Table 1 reproduced from [1]), severely limiting its prac-
tical applications. In this article, we propose a simple method to
estimate p for any M starting from the existing tabulated values,
bridging the gap between [1] and practical use of the proposed
estimator. Additionally, we check the impact of zero-padding on
spectral estimation via log and power-scaled parabolic interpola-
tion.

The next section briefly reviews spectral estimation of sinu-
soidal parameters via parabolic interpolation of DFT samples of
the magnitude spectrum. Then, the method for obtaining a power
scaling parameter for any window size is presented, followed by
a study into the impact of zero-padding on spectral estimation via
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parabolic interpolation under log and power scaling. Finally, con-
clusions and perspectives are presented.

2. SPECTRAL ESTIMATION

Let us consider the discrete-time cisoid (i.e., complex sinusoid)

c (n) = a0 e
j(2πν0 n+ϕ0). (1)

where n is the sample index, a0 is the amplitude, ν0 is the normal-
ized frequency, and ϕ0 is the initial phase in radians. The sampling
period Ts = 1/fs, where fs is the sampling frequency, provides the
connection between discrete-time samples n and time in seconds.
So tn = nTs are discrete-time values in seconds and f0 = ν0 fs
is the fundamental frequency in Hertz. Since c (n) has infinite sup-
port, let us consider further x (n) = w (n) c (n), where w (n) is
a window function with M non-zero samples. The discrete-time
Fourier transform (DTFT) of x (n) is

X (ν) = a0 e
jϕ0 W (ν − ν0) , (2)

which is the DTFT of w (n) shifted in frequency by ν0 and scaled
by the complex amplitude a0e

jϕ0 . Fig. 2 shows the main lobe of
the Fourier transform of the Hann window modulated by a sinusoid
with a0 = 1 and f0 = 2100Hz. The solid line in Fig. 2 is the
magnitude of X (ν) w-normalized by W (0) =

∑M−1
0 w (n).

Since ν is a continuous variable in eq. (2), the estimations ν̂0 and
â0, of ν0 and a0 respectively, can be easily found at the maximum
of |X (ν)| and lead to the unbiased values ν̂0 = ν0 and â0 = a0.
However, the practical use of the discrete Fourier transform (DFT)
only provides samples of X (ν) at discrete normalized frequencies

νk =
k

N
, k = 0, . . . , N − 1; (3)

where N is the size of the DFT (N ≥ M ) and k is the discrete
frequency index also called frequency bin. From now on we will
consider the magnitude spectrum S defined as S (k) = |X (νk)|,
where fk = νkfs = k

N
fs is the frequency in Hz. Fig. 2 shows the

w-normalized DFT samples S (k) as *, |X (ν)| as the solid line,
and the frequency bins k as the vertical dotted lines.

2.1. Nearest Neighbor Estimation

As shown in Fig. 2, ν0 and a0 can be estimated from the discrete-
frequency spectrum S (k) as a spectral peak (i.e., a local max-
imum). A local maximum of S (k) is found at km whenever
S (km − 1) < S (km) > S (km + 1). Then, ν̂0 = νkm and
â0 = S (km) are the nearest neighbor estimates of ν0 and a0.
The maximum of |X (ν)| actually lies at ν0 in between two DFT
samples. So, using eq. (3), it can be written as

ν0 =
km + δkm

N
=

k0
N

, (4)

where km is an integer bin number and δkm is the correction term
called bin offset that, when added together, result in the fractional
bin k0. The estimation errors εν and εa are defined as

εν (ν0) = ν0 − ν̂0, (5)

εa (a0) =
a0 − â0

a0
. (6)

So, according to eq. (4), nearest neighbor estimation yields
εν (ν0) = δkm/N with |δkm| ≤ 0.5.

2.2. Parameter Estimation by Parabolic Interpolation

Parabolic interpolation improves the estimation by fitting a
parabola to the main lobe of |X (ν)| to estimate δkm from km
and its immediate neighbors km−1 and km+1. Fig. (2a) illus-
trates parabolic interpolation with the dashed line resulting from
the fit of the parabola to the three points surrounding the maxi-
mum Pkm−1 , Pkm , Pkm+1 , where point Pki = (ki, S (ki)).

Given the shape of W (ν) for each window, the logarithm of
the magnitude spectrum usually results in a better fit. Fig. (2b)
illustrates such a case where a parabolic interpolation is performed
after a logarithmic scaling of S (k), i.e. on log10 S (k). Note how
the parabola fits the main lobe better than in the linear case shown
in Fig. (2a). However, there are still errors in frequency ν̂0 and
amplitude â0 estimates.

To further improve the parabolic fit, Werner and Germain [1]
showed that a well-chosen power scaling of the magnitude spec-
trum S (k) leads to better estimations of ν̂0 and â0. They heuristi-
cally found the values of power p that distort the main lobe of the
spectrum of the window W (ν) to make its shape more parabolic
and thus decrease the estimation error εν . However, p depends on
the window type and window size M and the optimization pro-
cedure is complex and computationally demanding, requiring pre-
computation of p for practical use. For example, Table 1 lists the
optimum value of p for four windows of different sizes as found
by Werner and Germain [1]. Fig. (2c) illustrates parabolic interpo-
lation with power scaling, where the parabola is fit to Sp (k) with
p taken from Table 1.

Table 1: Optimum power scaling factor p for four window sizes M
(in samples) and four window types. Values reproduced from [1].

M 512 1024 2048 4096

Hann 0.22903 0.22911 0.22915 0.22917

Gaussian 0.12024 0.12074 0.12099 0.12112

Blackman-Harris 0.08552 0.08553 0.08553 0.08554

Dolph-Chebychev 0.08403 0.08403 0.08404 0.08404

Note that the mathematical operation denoted exponentiation
written as f (β, p) = βp, where both β and p are real positive
values, has an opposite effect whether β ∈ [0, 1] or β ∈ (1,∞)
for a given value of p. Thus, we ensure that S (k) lies in the in-
terval [0, 1] after being w-normalized. Since p ∈ [0, 1] (cf. Ta-
ble 1), Sp (k) systematically bends outward above the identity line
g (β) = β for β ∈ [0, 1].

2.3. Analysis Windows and Parabolic Estimation

The shape of the main lobe of the DTFT W (ν) of a window has an
important impact on the parabolic fit, which, in turn, impacts the
estimation. For example, the DTFT WG of a Gaussian window
wG is also Gaussian. So its main lobe on a logarithmic scale is
a prefect parabola and thus parabolic interpolation of log(|WG|)
is the best possible fit [17, 18]. However, wG has infinite support
and thus must be truncated in practice. This truncation distorts the
parabolic shape of the main lobe of log |WG|. Another important
example is the rectangular window wR, whose main lobe width
only spans two frequency bins when N = M . Since parabolic
interpolation requires three samples, the use of wR with parabolic
estimation should be avoided unless a zero-padding step is added.
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(a) Linear scaling.
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(b) Logarithmic scaling.
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(c) Power scaling.

Figure 2: Parabolic interpolation for multiple scalings. The figure shows the main lobe of a N = 512 DFT of the Hann window with
M = 512 samples modulated by a sinusoid with a0 = 1 and f0 = 2.1 kHz, (fs = 44.1 kHz). Table 1 shows the value of p used in Fig. (2c).

Finally, the estimation of multiple sinusoids is achieved simply by
independently estimating the parameters of each sinusoid [7, 17]
provided that the spectral peaks are properly resolved [23, 7, 17].

The choice of the windows for this study used two of the many
possible features of the windows (see [23] for details), namely the
width of the main lobe and the height of the side lobes. Thus,
we considered the Hann window for its relatively narrow main
lobe, the (truncated) Gaussian window (σ2 = 2.5) for the theo-
retically approaching parabolic shape on a log scale, the minimum
four-sample Blackman-Harris window for its very low side-lobe
structure (-92 dB), and the Dolph-Chebychev window for the same
reason (-100 dB for the chosen one).

2.4. Estimation Bias

In the absence of noise, the only source of error εa and εν is the
bias of the estimator, which is the systematic error due to its struc-
ture. Fig. 3 shows the estimation bias for εa and εν respectively
as a function of the bin offset |δkm| ≤ 0.5 for the log and power
parabolic estimators using the Hann, Gaussian, Blackman-Harris,
and Dolph-Chebychev [23] windows. We can see that both ampli-
tude and frequency bias vary smoothly. Note the different orders
of magnitude for the log and power cases, indicating an increasing
order of estimation accuracy. Finally, these curves are independent
of the values of ν0 and a0, and also of M as long as N = M .

The estimation bias curves shown in Fig. 3 allow us to define
the maximum estimation error ε̃ as

ε̃ = max
δk∈[0, 0.5]

|ε (δk)|, (7)

where the interval for δk is restricted to [0, 0.5] because the esti-
mation bias curves are symmetrical around 0. Note that the defini-
tion of the maximum estimation error is the same for the amplitude
error ε̃a and the frequency bin error ε̃ν . Additionally, the mean es-
timation error ε̄ is given as

ε̄ = 2

∫ 0.5

0

|ε (δk)| dδk. (8)

Fig. 3 shows ε̃ and −ε̃ as solid horizontal lines delimiting the
range of εν and of εa, and ε̄ as the dashed horizontal line.

3. POWER SCALE FOR ANY WINDOW SIZE

As already mentioned, Werner and Germain [1] provide the power
scaling factors p shown in Table 1, evaluated via an optimization

process for a few window sizes. Consequently, estimation with
power scaling is currently constrained to the four tabulated win-
dow sizes M . They speculated that p depends on M in a struc-
tured way, as shown in Fig. 4 reproduced from [1]. Fig. 4 shows
four curves p (M) corresponding to the the maximum frequency
estimation error ε̃ν , the maximum amplitude estimation error ε̃a,
the mean frequency estimation error ε̄ν , and the mean amplitude
estimation error ε̄a for the Hann window. The horizontal axis of
Fig. 4 is labeled with values of M but varies linearly in octaves
as m = log2 M . They also suggested to use piece-wise linear
interpolation of p (M) for values of M not found in Table 1.

We note, however, that the curves in Fig. 4 visually resem-
ble the step response of a first order linear time-invariant system.
Therefore, in this work, we propose to model p(m) as

p (m) = ατ

[
1− e

(
−m−m0

τ

)]
, (9)

parameterized by the arbitrary constants m0, τ , and α. In general
terms, m0 shifts the curves along the horizontal axis, τ controls
the rate of growth and ατ determines the horizontal asymptote.
The next step is to fit the curve in eq. (9) that models p (m) to get
an estimate of the optimal p for any window size M (not limited
to the tabulated values) without having to perform the costly opti-
mization. We propose to first reformulate the relationship between
p and M into a linear expression, and then perform a linear fit of
the form y = ax+ b whose coefficients would allow us to predict
p for arbitrary window sizes.

3.1. Linear Regression

As noted above, the horizontal axis is linearized by

m = log2 (M) . (10)

If we assume that the general expression of eq. (9) appropriately
models p (m), we can rewrite it as

ln

[
1− p (m)

κ

]
= am+ b, (11)

where a = − 1
τ

, b = m0
τ

, and κ = ατ . We will fit a straight line
to the relationship in eq. (11) by considering observed values of p
and M as the ones from Table 1. However, eq. (11) depends on an
unknown constant κ. In this study, we will determine the optimal
value of κ as the one that best explains the linear dependence that
links the values as in eq. (11). In what follows, we describe how κ
is empirically determined to fulfill this constraint.
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Figure 3: Amplitude and frequency estimation bias for log scaling (top) and power scaling (botom) with optimal value of p.

Figure 4: Original curves p (M) from [1]

We know from eq. (9) that κ is the upper asymptote of p(m),
thus κ > p (m). Note, that this is also the condition that keeps the
argument of the logarithm in eq. (11) strictly positive. Therefore,
we seek the value of κ > p (m) that maximizes the linearity of
eq. (11). The empirical method relies on the use of the coefficient
of determination R2 to measure the linearity of the model. This is

performed by sweeping the value of κ (starting at κ = p (12)+µ,
with µ arbitrarily small) and selecting the one that corresponds to
the highest R2 for each window in Table 1. The solid line in each
panel of Fig. 5 is R2 (κ) and the vertical dashed line indicates the
value of κ that maximizes R2 listed in the first column of Table 2.

Fig. 5 reveals that R2 (κ) for the Hann and Gaussian win-
dows have a clear maximum, whereas R2 (κ) has no clear max-
imum for the Blackman-Harris and Dolph-Chebychev windows.
For Blackman-Harris, R2 (κ) reaches a plateau at approximately
R2 = 0.9, suggesting that increasing κ above an initial threshold
does not improve the linearity of eq. (11). For this window, Table 2
shows the highest value of κ used in the sweep, but Fig. 5 sug-
gests that any κ > 0.1 would suffice. For the Dolph-Chebychev
window, we get a similar behavior than the one observed for the
Blackman-Harris window, with a R2 (κ) that is constant at around
R2 = 0.8 with respect to κ. These low R2 values for the two last
windows suggest that the model of p(m) might be different from
the one proposed in eq.(9), as discussed below.

Table 2 shows the values of κ that maximize the linearity of
eq. (11) and the corresponding a and b for the estimated model of
p (M). Using eq. (9) and eq. (10), the final model be written as

p (M) = κ
[
1− e(a log2(M)+b)

]
. (12)

Fig. 6 shows the line fit on the top panel and the corresponding
p (m) on the bottom panel. The dots are predicted by the model
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Figure 5: R2 as a function of κ for the windows under investigation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.15

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-0.3
-0.2
-0.1

0
0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.726

0.727

0.728

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.08548
0.0855

0.08552
0.08554
0.08556
0.08558

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4.35

4.4

4.45

4.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.084

0.08405

Figure 6: Interpolation of optimal p for the windows under investigation. The top panel shows the line fit with the corresponding R2 and
the 95% confidence interval. The bottom panel shows the curve fit p (m). The optimal values of p from Table 1 are marked as * whereas
the values predicted by the model are represented with dots.

Table 2: Line fit parameters for the windows under investigation.

Window κ a b

Hann 0.22919 -0.69315 -1.0288

Gaussian 0.12125 -0.67356 1.2765

Blackman-Harris 0.16554 −7.4991× 10−5 -0.72627

Dolph-Chebychev 0.085039 −3.9824× 10−3 -4.3969

whereas * represents the optimal p data from Table 1. The top
panel in Fig. 6 also shows the 95% confidence interval (solid lines)
around the linear fit. Note that p (M) is an analytic function of M ,
allowing to get p for any M , not only between tabulated values
(interpolation) but also beyond them (extrapolation), as shown in
Fig. 6. Naturally, the prediction power of p (M) for each window
depends on the line fit. The values of R2 can be interpreted as an
indication of how well p and M in Table 1 fit the model of eq. (9),
or how well p (M) in eq. (9) using values from Table 2 captures

the relationship between the optimal values of p and the tabulated
values of M in Table 1.

Fig. 6 shows that the Hann window fits the model perfectly
while the Gaussian window has nearly perfect fit. However, the
Blackman-Harris and Dolph-Chebychev windows have lower fits,
which can be visually confirmed on the top panel of Fig. 6 by in-
specting the alignment of *. Additionally, a for the Blackman-
Harris and Dolph-Chebychev windows are respectively 4 and 2
orders of magnitude smaller than those for the Hann and Gaussian
windows. Note that a = −1/τ , so a is inversely proportional to the
rate of growth τ in eq. (9). Given the poor fit (low R2 and a) to the
model of eq. (12) for the Blackamn-Harris and Dolph-Chebychev
windows (see Fig. 6), we conclude that a linear model of p(m) is a
better fit for these two windows. This conclusion is confirmed by
visual inspection of p(m) on the bottom panel of Fig. 6.

Although not formally proven, analyses performed on other
types of windows seem to confirm that windows with a Fourier
transform that exhibits a narrow main lobe fit well the model of
eq. (12) while those that exhibit a wide main lobe and a low side-
lobe structure fit a linear model better than the one in eq. (12)
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in the considered range of M (≤ 220). See the results for all
12 windows at https://marcelo-caetano.github.io/
dafx2021.html, which also contains sound examples.

4. IMPACT OF ZERO-PADDING

This section reports on the impact of zero-padding for the estima-
tion of frequencies and amplitudes of sinusoids via parabolic in-
terpolation for logarithmic and power scale. We perform parabolic
interpolation of the three consecutive bins corresponding to the
spectral peak of the scaled and zero-padded magnitude DFT. More
specifically, we want to compare the use of zero-padding and power-
scale for the quality of the estimation.

As is widely known and briefly reviewed at the beginning of
Sec. 2, the DTFT of a signal x of duration M is X(ν), and its DFT
for a size N ≥ M is simply the sampling of X(ν) at evenly spaced
frequencies νk = k

N
with 0 ≤ k < N . Increasing N results in

a finer sampling of the same shape X (ν) and provides spectral
samples that are closer together. This is known as zero-padding
due to its practical implementation by padding a vector of M non-
zero samples with M−N zeroes before computing the DFT on the
resulting vector of size N . Overall, we expect to get better results
for higher values of N as the three points used for the parabolic
interpolation get closer to the maximum, and consequently are a
better fit to a Taylor expansion of order 2 around 0 of a scaled
version of X (ν).

In theory, we can make εν and εa arbitrarily small by increas-
ing N via zero-padding while holding M fixed. However, even if
we use the FFT algorithm, this brute force nearest-neighbor esti-
mator will become too computationally demanding as N grows.
In practice, it is common to combine zero-padding with parabolic
interpolation [16].

Defining L = N/M as the zero-padding factor, Smith and
Serra [16] suggest to use L ≈ 5 and a parabolic interpolation on
the log-scaled magnitude spectrum to achieve values of εν of the
order of 0.05% of the width of the main lobe. Hereafter, this esti-
mator will be denoted ZP-Log-PI for the sequence of operations:
Zero-Padding, Log scaling, and Parabolic Interpolation. By exten-
sion, the estimator ZP-Pow-PI uses power scaling. Additionally,
the absence of the prefix ZP will denote PI when N = M . For
example, Pow-PI denotes the parabolic interpolation with power
scaling and no zero-padding (N = M ) as proposed by Werner
and Germain [1]. Next, we determine the zero-padding factor L
for ZP-Log-PI that results in performance comparable to Pow-PI.

4.1. Zero-Padding and Log-Scaled Parabolic Interpolation

In this section, we will determine how much zero-padding is re-
quired by the ZP-Log-PI estimator to get estimation errors below
those of Pow-PI. The motivation is to decide whether ZP-Log-PI
can be a practical substitute for Pow-PI. For such, we calculate εν
and εa for ZP-Log-PI as a function of L and compare with Pow-
PI, as illustrated in Fig. 7 for the Hann window. The solid line in
Fig. 7 is εa as a function of L for ZP-Log-PI and the horizontal
dashed line is εa for Pow-PI when N = M (so L = 1). Note how
zero-padding dramatically decreases the estimation error εa for the
Hann window. As the figure shows, εa for ZP-Log-PI goes below
that of Pow-PI for L ≈ 2. Therefore, we need to set N ≥ 2M to
guarantee that parabolic interpolation on a log scale will result in
εa below the one obtained with power scaling when N = M .

2 4 6 8 10 12 14 16
0

0.005
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0.015
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0.03

Figure 7: Maximum amplitude estimation error as a function of the
zero-padding factor for the Hann window. The figure illustrates
how to determine the minimum amount of zero-padding with the
ZP-Log-PI estimator to achieve estimation errors below those of
the Pow-PI estimator.

Table 3: Minimum zero-padding factor where ZP-Log-PI results
in estimation error below that of Pow-PI.

Window minL for εa minL for εν

Hann 2 6

Gaussian 3 9

Blackman-Harris 4 > 16

Dolph-Chebychev 4 > 16

Table 3 shows the minimum value of L for which ZP-Log-
PI results in εa and εν below those of Pow-PI. Firstly, notice that
the values of L for the amplitude error are consistently smaller
than those for the frequency error. Additionally, we note that the
Blackman-Harris and Dolph-Chebychev windows require L > 16
for εν , making ZP-Log-PI an impractical alternative to Pow-PI
when we require comparable frequency estimation errors. Natu-
rally, we must use the value of L for εν if we want to guarantee
that both εa and εν for ZP-Log-PI will fall below those of Pow-PI.
In that case, ZP-Log-PI is not a beneficial alternative for Pow-PI
for the windows shown in Table 3. Both Blackman-Harris and
Dolph-Chebychev require L > 16, which is impractical in most
situations. The Gaussian window requires L = 9, which is also
rather impractical. For the Hann window, L = 6 would result
in fairly high N depending on the minimum required value for
M . For example, the analysis of a C3 note corresponding to a
fundamental frequency f0 ≈ 131Hz using a window that spans
approximately 3T0 to get enough frequency resolution, requires
M > 1000 samples when fs = 44.1 kHz, which, in turn, requires
a DFT with N > 6000 for ZP-Log-PI with the Hann window to
achieve performance similar to Pow-PI with M = N = 1024.

Finally, we note that the errors εa and εν have different orders
of magnitude depending on the chosen window. Table 4 shows εa
and εν for Pow-PI when N = M = 512. Firstly, notice that the
Blackman-Harris and the Dolph-Chebychev windows yield esti-
mation errors below of those for the Hann and Gaussian windows.
Consequently, using ZP-Log-PI to match εν with Pow-PI for the
Blackman-Harris and Dolph-Chebychev windows requires a larger
L to decrease εν sufficiently. This observation is consistent with
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the pattern of minimum L in Table 3 because, in general, L for
ZP-Log-PI must be higher to match a lower ε̃ for Pow-PI. A prac-
tical strategy to achieve lower estimation errors is then to select
the windows appropriately. According to Table 4, the Blackman-
Harris window is the best choice and the Hann window should
be avoided. However, zero-padding may also be combined with
power-scaling parabolic estimation (ZP-Pow-PI). The next section
investigates the impact of zero-padding in parabolic interpolation
over power-scaled samples of the magnitude spectrum.

Table 4: Maximum amplitude and frequency estimation errors for
power scaling parabolic interpolation when N = M = 512.

Window εa εν

Hann 9.6417× 10−4 3.2654× 10−4

Gaussian 2.1980× 10−4 9.9713× 10−5

Blackman-Harris 1.0921× 10−5 8.1425× 10−6

Dolph-Chebychev 1.6889× 10−5 1.2056× 10−5

4.2. Zero-Padding and Power-Scaled Parabolic Interpolation

In this section, we will investigate the impact of zero padding on
the power-scaled parabolic interpolation. As before, we measure
εa and εν as a function of L for the four windows, as shown in
Fig. 8. The motivation is to visualize the behavior of ZP-Pow-PI
and understand whether zero-padding is also beneficial for parabolic
estimation with power-scaling. Otherwise, we are constrained to
the condition N = M of Pow-PI. Additionally, we aim to com-
pare the estimation performance using the model p (M) of eq. (12)
against the original optimal values of p from Table 1. Fig. 8 shows
εa (L) and εν (L) for three values of M corresponding to different
conditions, namely extrapolation (M = 500) and interpolation
(M = 600) using eq. (12), as well as tabulated p (M = 512).
Firstly, we note that the errors have different orders of magni-
tude depending on the window as shown in Table 4. Additionally,
we note that the curves for tabulated (M = 512), extrapolation
(M = 500) and interpolation (M = 600) present comparable val-
ues across L for all windows except for interpolation (M = 600)
for the Gaussian window, which deviates slightly from the others
(around the maximum between L = 1 and L = 1.5).

More importantly, the curves εa (L) and εν (L) do indicate
that zero-padding decreases further the estimation error for parabol-
ic estimation with power scaling. However, comparing Fig. 7 with
Fig. 8 reveals a different behavior of ZP-Log-PI and ZP-Pow-PI.
The error decreases monotonically for ZP-Log-PI as L increases,
whereas ZP-Pow-PI has a range of values of L for which the error
increases after an initial steep decline. For the Hann and Gaus-
sian windows, this increase remains below the initial value of ε, so
zero-padding is always beneficial (even if not monotonically de-
creasing with L). However, zero-padding can worsen the estima-
tion performance for the Blackman-Harris and Dolph-Chebychev
windows depending on L. For these windows, the condition L > 3
always results in beneficial estimation performance, so a suggested
rule of thumb is 4 ≤ L ≤ 5.

The implementation of the sinusoidal model available at https:
//github.com/marcelo-caetano/sinusoidal-model
includes power-scaling estimation of the sinusoidal parameters with
the model p (M) described here.

5. CONCLUSIONS

The estimation of the amplitudes and frequencies of sinusoids em-
bedded in a signal mixture is an important topic in several appli-
cations of signal processing, and more specifically in audio pro-
cessing. Sinusoidal parameter estimation classically requires es-
timating both the position and the height of local maxima of a
scaled version of the magnitude spectrum. This typically relies on
a parabolic interpolation. In this paper, we propose a few improve-
ments and further characterization of a method recently developed
by Werner and Germain [1], who worked on a power-scaled mag-
nitude spectrum. They heuristically determined the power scale p
for each window type and a few window sizes. In this article, we
propose a simple model to get the power-scaling factor p for any
window size M . Parameters of the model of p are derived from
the original optimal tabulated values of p available in [1].

We further re-visited the role of zero-padding in this context
to see how much zero-padding a parabolic estimation performed
on log-magnitude peaks requires presenting performance compa-
rable to parabolic estimation of power-scaled peaks without zero-
padding. We found that the Hann window requires the lowest zero-
padding factor (L = 2 for amplitude and L = 6 for frequency)
while both Blackman-Harris and Dolph-Chebychev windows re-
quire L > 16 getting comparable results. Additionally, we verified
that zero-padding also decreases the estimation error for parabolic
estimation of power-scaled peaks. However, L > 3 must be satis-
fied to ensure that zero-padding is beneficial for any window.

We also found two groups of windows with different behav-
ior. The Hann and Gaussian windows consistently behave compa-
rably, so do the Blackman-Harris and Dolph-Chebychev windows.
This different behavior seems to be linked to their main features in
terms of width of the main lobe, and height of the side-lobes. It ap-
pears that the wider the main lobe and the lower the side lobes, the
more linear the evolution of p (M) is (e.g. for Blackman-Harris
and Dolph-Chebychev). Conversely, the narrower the main lobe
and the higher the side lobes, the better p (M) fits the shape of a
unit step response to a first order filter (for Hann and Gaussian).

Finally, there are conditions that change the shape of the main
lobe of the window, such as additive noise, adjacent sinusoidal
peaks, and non-stationary sinusoids. Among those, future work in-
cludes investigating the robustness of the method to non-stationary
sinusoids.
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