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ABSTRACT

Air absorption effects lead to significant attenuation in high frequen-
cies over long distances and this is critical to model in wide-band
virtual acoustic simulations. Air absorption is commonly modelled
using filter banks applied to an impulse response or to individual
impulse events (rays or image sources) arriving at a receiver. Such
filter banks require non-trivial fitting to air absorption attenuation
curves, as a function of time or distance, in the case of IIR approx-
imations, or may suffer from overlap-add artefacts in the case of FIR
approximations. In this study, a filter method is presented which
avoids the aforementioned issues. The proposed approach relies on a
time-varying diffusion kernel that is found in an approximate Green’s
function solution to Stokes’ equation in free space. This kernel acts
as a low-pass filter that is parametrised by physical constants, and can
be applied to an impulse response using time-varying convolution.
Numerical examples are presented demonstrating the utility of this
approach for adding air absorption effects to room impulse responses
simulated using geometrical acoustics or wave-based methods.

1. INTRODUCTION

Air absorption leads to significant dissipation in high frequencies
over long distances and it is crucial to include these effects in wide-
band virtual acoustic simulations for auralization [1], artificial re-
verberation [2], and auditory research [3]. In wave-based simulation
methods, air absorption may be simulated directly from lossy wave
models [4, 5, 6], but computational complexity must naturally in-
crease over lossless models – e.g., at least a 50% increase in memory
in time-domain methods [7] – and computational costs are already
quite high when the aim is to accurately simulate high frequencies.
In geometrical acoustics methods – which are more commonly used
for virtual acoustics [8] – and in delay networks for artificial re-
verberation [9, 10, 11], air absorption is typically modelled using
digital filters. However, any filter approach is complicated by the fact
that air absorption is a distance-dependent effect that does not triv-
ially translate to simple filter structures. When separate frequency-
band geometrical simulations are run, one can apply distance-based
energy-attenuation to image sources or rays, and subsequently re-
combine band-specific simulation outputs with appropriate filter
banks [12, 13, 8]. Alternatively, one can fit low-order IIR low-pass
filters to air absorption data and apply them to individual rays or
image sources [14, 15] that make up an impulse response.
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Rather than apply air attenuation to each image source or ray, one
can also simulate lossless sound propagation in air and post-process
resulting impulse responses with time-varying low-pass IIR filters,
using non-linear optimisations against air absorption curves at each
time-sample to obtain filter coefficients [16]. Similarly, window-
method-designed FIR filters can be used in an overlap-add time-
frequency modification framework [17, 18] and this has the advan-
tage that air absorption attenuation curves may be sampled directly in
the frequency-domain. The overlap-add FIR approach is straightfor-
ward, but inherent are the usual time-frequency resolution trade-offs
(high frequency resolution requires long time windows) and possible
phase incoherences at frame overlaps [19]. Processing of individual
image sources or rays would also be possible with window-method
FIR filters [20, 21] but – for computational efficiency reasons – is
less common than the use of low-order IIR filters [15].

In this paper, an alternative approach is proposed which side-
steps all of the aforementioned issues. From a high level, this method
is another time-varying filter method applied to a room impulse re-
sponse simulation without air absorption. However, the proposed
method does not suffer from the usual time-frequency artefacts and
does not require IIR filter fitting. It is expressed as a convolution
with a time-varying smoothing kernel derived from a physical model
for classical air absorption, with an efficient discrete implementation.
Numerical experiments are presented to show the effectiveness of
the proposed method in the context of geometrical and wave-based
simulations.

2. BACKGROUND

2.1. Air absorption model

The standard model of air attenuation due to atmospheric effects can
be described by the frequency-dependent attenuation factor coeffi-
cient α(ω), which appears in a distance-based exponential damping
applied to an otherwise lossless plane wave; i.e.:

p(x, t) = e−α(ω)xei(kx−ωt) ⇒ |p(x, t)| = e−α(ω)x|p(0, t)| ,
(1)

with real-valued angular frequency ω and wavenumber k, and wave-
quantity p (e.g., pressure). According to the literature [22], α(ω)
can be expressed as:

α(ω) =
γω2

2c︸︷︷︸
αcl

+
∑
ν

(ανλ)m
πc

ω2τν
1 + (ωτν)2︸ ︷︷ ︸
αν

, (2)

where c is the sound speed (assumed constant), γ is a time constant
related to viscothermal effects, (ανλ)m represents the maximum
absorption per wavelength associated with the ν-type relaxation
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Figure 1: Distance attenuation in dB/m as a function of frequency, for air
conditions of 20◦C and 50% relative humidity.

process, and τν is the associated relaxation time. Conventionally we
consider two relaxation processes: one from oxygen molecules and
one from nitrogen molecules (ν ∈ {O2,N2}). The associated phase
speed is frequency-dependent in theory, but typically varies from c
by less than 0.04% across audible frequencies [22]. The constants
in (2) depend on temperature and humidity, for which the full details
may be found in the literature (e.g., [23, 24]).

The air absorption model in (2) has three parts: the first term,αcl,
represents classical power-law absorption (αcl ∝ ω2), which comes
from viscothermal effects [22] and which been included in wave-
based room simulation models [5, 7, 25]. Additionally there are two
relaxation effects αν ∈ {αO2 , αN2}. These relaxation effects have
the following behaviours:

αν(ω) ≈ ω2 (ανλ)mτν
πc

, ω ≪ 1/τν (3a)

αν(ω) ≈
(ανλ)m
πcτν

, ω ≫ 1/τν (3b)

In other words, below the associated relaxation frequency, fν =
(2πτν)

−1, a relaxation effect tends to contribute a power-law absorp-
tion, and a constant absorption above the relaxation frequency. A
graphical representation of these three effects is shown in Fig. 1 for
typical indoor air conditions.

It is worth pointing out that, as can be seen in Fig. 1, air atten-
uation can vary by large amounts within octave bands. For example,
one finds a variation of 39dB/km and 143dB/km across upper and
lower edge-frequencies of the 4kHz and 8kHz octave bands, respec-
tively for these air conditions. Thus, it is problematic to only use one
averaged air attenuation coefficient per octave band. Not surprisingly,
this common practice has been shown to lead to incorrect predic-
tions [26]. Using third-octave band data would lead to improvements,
but errors are still bound to increase with increasing frequency bands
and could potentially exceed masking thresholds [27].

Fig. 1 also shows that, at least for this choice of indoor conditions,
absorption from oxygen molecules is the dominant effect in high
frequencies (below the audible limit), and that is mostly a power-law
effect. Looking towards lower frequencies, the behaviour deviates
from a power law near the relaxation frequency of nitrogen, but this

is already at a point where the effect of air absorption starts to be neg-
ligible in the context of room acoustics (e.g., 1.5dB attenuation per
km at fN2 ). It is therefore reasonable to model only the power-law ab-
sorption from oxygen, as in [7]. As such, for the proposed approach
we rely on the following assumption for audible frequencies:

α(ω) ≈ α̃O2(ω) , α̃O2(ω) = ω2 (αO2λ)mτO2

πc
(4)

2.2. Stokes’ equation

The proposed method is primarily based on Stokes’ equation [28],
which can be written in the inhomogeneous form:

1

c2
∂2
t g −∇2g − γ′∂t∇2g = δ(t)δ(x) (5)

Here, g = g(t,x) is the Green’s function for (5), t is time, x is a
3-D spatial coordinate, ∂t is a temporal partial derivative, ∇2 is the
3-D Laplacian operator, δ(t) is the Dirac delta in time, and δ(x) is
a 3-D Dirac delta in space. The constant γ′ is a time-constant and
is typically on the order of one nanosecond (for indoor air). Without
loss of generality, the source term is centered at the origin so that any
receiver will be at distance R = ∥x∥. In the case of γ′ = 0, Eq. (5)
reduces to the wave equation in inhomogeneous form. In Stokes’
original formulation γ′ only included viscous effects [28], but one
can lump in thermal effects as well [22].

It is straightforward to check that the dispersion relation for the
homogeneous form of (5) (with right-hand side equal to zero) is:

k̂ =
ω

c
√
1− iγ′ω

(6)

where k̂ is a complex wavenumber. When ωγ′ ≪ 1, one has the
approximation:

k̂ ≈ ω

c
+ i

γ′ω2

2c
(7)

While the real part of the above is clearly the dispersion relation of
the wave equation, the imaginary part describes a distance-based
attenuation coefficient. Normally then one would set γ′ = γ and this
would reproduce the classical air absorption coefficient, αcl (with,
e.g., γ = 3.2× 10−10 s for the air conditions in Fig. 1). However,
under the assumption (4) we instead take the following value:

γ′ =
2

π
τO2(αO2λ)m =

(αO2λ)m
π2fO2

(8)

As such, we will have ℑ{k̂(ω)} ≈ α̃O2(ω), linking Stokes’ equa-
tion to our choice of a simplified model of air absorption (as in [7]).
Expressions for (αO2λ)m and fO2 are left out for brevity but may
be found in [23]. With the air conditions in Fig. 1, one arrives at
γ′ = 3.0× 10−9 s.

3. APPROXIMATE GREEN’S FUNCTION METHOD

3.1. Approximate Green’s function

Returning to the inhomogeneous form of Stokes’ equation, in the
case of γ′ = 0, Eq. (5) has a well-known Green’s function solu-
tion [29] g = g□, where:

g□(t,x) =
δ(t−R/c)

4πR
(9)

Here, R = ∥x∥, and because of the inherent symmetry in this
problem it also makes sense to henceforth write g□ = g□(t, R).1

1The “box” symbol (□) represents the d’Alembert operator.
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(a) R = 0.1m (b) R = 10m (c) R = 1000m

Figure 2: Evaluation of reference solution g and approximations g̃ and ĝ for distances as indicated. Top: signals, bottom: errors

With γ′ > 0 a closed-form expression for the Green’s function
g is currently not available. Fortunately, a close approximation is
available in closed-form [30, 31, 32], which is useful for small γ′

and large times t [32]. For this we can write g ≈ g̃, where:

g̃(t, R) =
u(t)

4πR
√
2πtγ′ exp

(
− (t−R/c)2

2tγ′

)
(10)

Here, u(t) is the Heaviside function, which is included for causality.
It is also useful to express this approximate Green’s function as the
following non-stationary convolution:

g̃(t, R) = g□(t, R)⊗ g△(t, t′) =

∫ ∞

−∞
g□(t− t′, R)g△(t, t′)dt′

(11)
where now:

g△(t, t′) =
u(t)√
2πtγ′ exp

(
− t′2

2tγ′

)
(12)

Thus, g̃ is equal to a convolution between the Green’s function for the
lossless wave equation and g△, a Gaussian smoothing kernel whose
variance, tγ′, increases with time. In other words, g△ is responsi-
ble for the effect of a distance-dependent loss in high frequencies,
where distance is simply linked to time through the speed of sound
c. Similarly, it can be noted that g△ is itself the Green’s function
to a one-dimensional heat equation with t′ representing a spatial
coordinate [32].

3.2. Evaluation of approximation

While the accuracy of the approximation (10) has been evaluated
in [32], this was done for viscosity and distance values in the context
of soft tissues. In room acoustics, distances are longer and viscosity
constants are smaller. A complete validation of this approximation
in all air conditions and distances possible for room acoustics is
outwith the scope of this paper, so only the conditions in Fig. 1 will
be evaluated in this section for brevity, and the same methodology
(coming from [32]) can be applied to other parameter combinations
if so desired.

Considering then air conditions of 20◦C and 50% relative humid-
ity, with an associated sound speed of 343.2 m/s, we can calculate
a reference solution using the inverse Fourier transform and the

dispersion relation (6):

g(t, R) =
F−1

(
e−ℑ{k̂}Re−iℜ{k̂}R

)
4πR

(13)

where k̂ = k̂(ω) and the above is evaluated with regularly-spaced
samples in time and frequency, and F−1(·) is carried out using an
inverse DFT. Comparisons of g and g̃ (sampled in the time-domain)
are shown in Fig. 2 for distances R ∈ {0.1, 10, 1000}m. It can
be seen that in these cases g and g̃ are indistinguishable (ĝ will be
defined and discussed shortly), and errors are small relative to sig-
nals. In these examples, signal-to-noise (SNR) ratios are -55dB,
-74dB, and -94dB, respectively. It is important to note that while
one can reasonably expect distances between source and receiver to
be greater than 10 cm in room acoustics scenarios, errors will tend
to increase as distances between source and receiver decrease (as
expected). It is also worth mentioning that air absorption can be, and
is generally, completely ignored over short distances.

3.3. Further approximations

There are two minor issues to deal with for practical use of this
Gaussian kernel: a) it is infinite in extent and b) the “variance” is
a function of time, so one cannot directly calculate a suitable trun-
cation point (e.g., in terms of a dB drop relative to peak). While
root-finding methods could be employed to find truncation points,
it is straightforward apply a further simplification that avoids these
extra steps. To this end, we expand (11) as:

g̃(t, R) =

∫ ∞

−∞

δ(t− t′ −R/c)

4πR

u(t)√
2πtγ′ exp

(
− t′2

2tγ′

)
dt′

(14)
By the sifting property of the Dirac delta, the terms inside the integral
are only contributing at local times t = t′+R/c, but since we expect
t′ ≪ R/c at those local times, we can also make the approximation
t ≈ R/c where t appears in the denominator (leaving u(t) intact).
With this we arrive at the following approximation:

ĝ(t, R) =
u(t)

4πR
√
2πtRγ′ exp

(
− (t− tR)

2

2tRγ′

)
(15)

where tR = R/c. From another point of view, the variance tγ′ can
be assumed to be constant over the short local time support of the
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Gaussian, even for long times t (within reason for room acoustics)
because γ′ ≪ 1. As we have replaced the time-varying variance,
tγ′, with a constant variance tRγ′, this allows for a simple evalua-
tion of a truncation point for the smoothing kernel. For a relative
truncation level of −NdB relative to its peak, one can then calculate:

∆t =
√

0.1 ln(10)NdBtRγ′ (16)

and the kernel need only be evaluated in the range [tR−∆t, tR+∆t].
This truncated approximation has also been evaluated for air

conditions of 20◦C and 50% relative humidity, which can be seen
in Fig. 2 for distances R ∈ {0.1, 10, 1000}m and with NdB = 120.
It can be seen that g and ĝ are indistinguishable, and errors are small
relative to signals, but truncation points become apparent in error
signals after long times (and, as would be expected, sooner if NdB is
less). With this approximation, SNRs are -56 dB, -75 dB, and -95 dB,
respectively. While ĝ happens to give a slightly better approximation
here than g̃, it is expected that as distances increase g̃ will be the
more accurate approximation for a given NdB as truncation errors
become more significant.

4. USE IN ROOM ACOUSTICS SIMULATIONS

So far we have only considered a single impulsive sound event in
free space. In the context of room acoustics, the sound arriving at
a receiver is comprised of a multitude of arriving wavefronts, with
additional frequency-dependent dissipation due to wall reflections.
Within geometrical acoustics simulations, where wavefronts are
taken to be carried by rays coming from virtual image sources, one
can simply replace the usual lossless Green’s function g applied
to each ray or image source [8] with the dissipative ĝ, and wall
reflections may be applied as usual.

Along these lines, a time-domain room impulse response x(t)
could be viewed as the following discrete sum of convolutions:

x(t) =
∑
i

∫ ∞

−∞
hi(τ)g□(t− τ,Ri)dτ =

∑
i

hi(t−Ri/c)

4πRi

(17)
where hi(t) is the filter response attributed to ith arriving wavefront
– taking into account total contributions of frequency-dependent
reflections or diffraction (e.g.) – and g□ is the Green’s function
of the lossless wave equation parametrised with the total distance
Ri travelled by that wavefront through the room (starting from the
source). The precise combination of filters hi is not important and
does not have to be unique for this point of view, but in the context
of geometrical acoustics each filter would characterise the sound
travelling along a ray coming from an image source (undergoing
various wall reflections and/or diffractions).

In order to apply air absorption to x(t), we replace g□ with g̃ to
get a new signal y(t):

y(t) =
∑
i

∫ ∞

−∞
hi(τ)

∫ ∞

−∞

δ(t− τ −Ri/c− t′)

4πRi
g△(t, t′)dt′dτ

(18a)

=

∫ ∞

−∞

∑
i

hi(t−Ri/c− t′)

4πRi
g△(t, t′)dt′ (18b)

=

∫ ∞

−∞
x(t− t′)g△(t, t′)dt′ (18c)

Thus, if it is possible to represent a room impulse response simulated
without air absorption as (17), we can simply apply the diffusion ker-
nel g△ through a time-varying convolution as shown above to add air

absorption. We note that implicit here would be the assumption that
air absorption has negligible effects at wall reflections (i.e., the filters
hi(t) are unchanged in the presence of air absorption). However, this
is a rather weak assumption since we know that air absorption will
not cause significant relative changes over short time scales (e.g., the
instant of a reflection).2 Indeed, this is the same reasoning behind the
use of ĝ as an approximation for g, which showed a good agreement
with g in free space.

To summarise, the methodology for using this air absorption
filter in room acoustics simulations is as follows:

1. Simulate room acoustic impulse responses with wall absorp-
tion and lossless air.

2. Post-process each impulse responsex(t)with the time-varying
convolution y(t) = x(t)⊗g△(t, t′) to get an output impulse
response y(t) with air absorption applied.

In discrete form, and taking into account the truncated approximation
ĝ, this convolution can be expressed as:

y[n] =

⌈∆n⌉∑
n′=−⌈∆n⌉

x[n− n′]
u[n]√

2πnTsγ′ exp

(
− (n′Ts)

2

2nTsγ′

)
Ts

(19)
where u[n] is the unit step and ∆n = Fs∆t. Finally, it is suggested
to set y[n] = x[n] for n < Ts

2πγ′ , during which time the diffusion
kernel has an effective time support smaller than Ts. Since the
sample index relates directly to a distance travelled, any “pre-delay”
should be removed from x[n] prior to filtering.

5. NUMERICAL EXPERIMENTS

Numerical experiments are conducted in this section to illustrate the
use of the proposed air absorption filter in the context of geometrical
acoustics simulations and wave-based simulations. Sound examples
are provided at the accompanying website [33].

5.1. Image source simulation - simple shoebox room

We start with a simple simulation of a shoebox room using the
traditional image-source method [34]. We consider a room with
dimensions 7.0× 5.0× 2.8, in metres, with a Sabine absorption co-
efficient of 0.03 on all walls. The source is at position (6.1, 2.0, 1.5),
in metres, and the receiver at (3.2, 2.0, 1.5), in metres. The room is
illustrated in Fig. 3. The speed of sound is set to c = 343.2m/s and
γ′ = 3.0 ns, according to air conditions of 20◦C and 50% relative
humidity. The corresponding impulse response, calculated with
320 orders of image sources, has a spectrogram shown in Fig. 4,
without air absorption (top) and with air absorption applied using
the proposed method (middle).3 Additionally, the Python pack-
age pyroomacoustics [13] is used to simulate the same scene with
distance-based air attenuation applied to image sources and the result
is shown in the bottom spectrogram in Fig. 4.4

The effect of applying the air absorption filter is clearly seen in
comparing the first two spectrograms in Fig. 4. Additionally, one

2Entropy and vorticity modes and boundary-layers effects are also
present [22], but these are typically neglected in the context of room acoustics
(e.g., as in [25]).

3Spectrograms are computed with 1024-sample Hann-windowing and
75% frame overlap.

4Octave-band coefficients are derived from (2) and used in place of default
attenuation parameters selected by pyroomacoustics for these air conditions.
See [33] for supplementary results with default selected parameters.
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Figure 3: Shoebox room setup

can clearly see the “stairstep” effect of assuming one attenuation co-
efficient per octave band in the bottom spectrogram, with attenuation
deviating from the expected power-law, especially in the upper two
octave bands where air attenuation is most significant.

5.2. Wave-based simulation - simple shoebox room

Having shown how the filtering approach may be used with geomet-
rical acoustics simulations, we also show it can be used with wave-
based simulations, using a finite-difference time-domain (FDTD)
method. The intention here is not to compare image-source outputs
to FDTD outputs, but rather to compare FDTD outputs with and with-
out air absorption, using the filter approach and using a viscothermal
FDTD scheme (i.e., via direct simulation of Stokes’ equation) [5, 7].

In this example we consider a normal-incidence absorption coef-
ficient of 0.04 on all walls in the otherwise identical room setup. We
use the simplest finite-difference time-domain (FDTD) simulation
for the lossless wave equation [35], computed in double precision
with a grid spacing chosen for 7.5 points per wavelength (PPW) at
the wavelength corresponding to fmax = 11 kHz, such that numer-
ical dispersion error is less than two percent under fmax [36], which
ultimately requires 24 GB of computer memory. The time-step is set
to the Courant limit (1/Ts ≈ 294 kHz), and the output impulse re-
sponse is resampled to 48 kHz. The same room is also simulated with
a viscothermal wave equation FDTD scheme (after [37]), which sim-
ulates α̃O2(ω) through Stokes’ equation directly, for which 36GB
of memory is required in this case (a 50% increase). Spectrograms
of the resulting signals are shown in Fig. 5: without (top) and with
(middle) the air absorption filter applied; and using the viscothermal
scheme (bottom). It can be seen that the use of the air absorption
filter reproduces the same behaviour as the viscothermal scheme,
while using 33% less memory.5

It is also worth comparing the time-domain signals of the im-
pulse responses which include air absorption. These are shown in
Fig. 6, where y1 is the result of the lossless FDTD scheme with the
air absorption filter, and y2 the result of the viscothermal scheme.
It can be seen that there are indeed differences between the signals,
as show in the bottom frame of Fig. 6. These discrepancies are due
to the approximate nature of the filter, and to the fact that the air
absorption component in the FDTD scheme suffers from numerical
dissipation error (as analysed in [7]), while the air absorption filter
does not. This can lead to small phase errors that can give rise to
seemingly large time-domain residuals, but this does not imply that
such errors are perceptible.6

5See [5, 7] for more on viscothermal FDTD simulation costs.
6Readers are invited to listen to audio examples at [33].

Figure 4: Room impulse response spectrograms. Top: image source method
(ISM), without air absorption; middle: ISM + air absorption filtering;
bottom: ISM computed with the Python package pyroomacoustics with air
absorption [13].

For another point of comparison, we calculate the signals’ sim-
ilarities in the frequency domain using the following metric which
measures geometric similarity between complex STFT frames:

σs(t) =
∥Y1(t, ω)Y

∗
2 (t, ω)∥ω

∥Y1(t, ω)∥ω∥Y2(t, ω)∥ω
(20)

Here Y1(t, ω) and Y2(t, ω) represent the STFTs of y1(t) and y2(t)
(e.g., those shown in (6)), and the Euclidean norms are calculated
across the frequency-dimension. This similarity metric – which is
less susceptible to phase differences than taking time-domain resid-
uals – returns a real value between zero and one as a function of time
(STFT frame times). We plot log10(1− σs) in Fig. 7, where we see
that the STFT frames are generally more than 99% similar across the
signals’ durations. This indicates that the signal differences in Fig. 6
could be negligible. It is important to remember that phase errors as
large as two milliseconds may not be audible (see, e.g., [38]).

5.3. Wave-based simulation - complex shoebox room

The previous example with wave-based simulations shows that the
proposed method works with a simple shoebox room with frequency-
independent impedance boundary conditions. However, that does
not necessarily imply the technique works in a more complex room
scene. To this end, we test a similarly-sized room with the same
source and receiver positions, but now with diffusive irregularities in-
troduced at one wall, as pictured in Fig. 10. Additionally, frequency-
dependent, complex impedance boundary conditions are used in
place of frequency-independent ones, following the viscothermal
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Figure 5: Room impulse response spectrograms. Top: lossless FDTD
(without air absorption); middle: lossless FDTD + air absorption filtering;
bottom: viscothermal FDTD.

FDTD scheme detailed in [37]. Passive impedances [25] are cho-
sen such that per-octave-band Sabine absorption coefficients vary
in the range 0.02–0.04. The diffusing elements introduce diffrac-
tion/scattering into the room response, which tests the methodology
laid out the previous section. Using the same analyses as before,
results are shown in Figs. 8 and 9. Fig. 8 shows the spectrograms of re-
sults from the lossless wave equation without (top) and with the air ab-
sorption filter (middle), and that from the viscothermal scheme (bot-
tom). In this case temporal signals including air absorption are not
shown for brevity, but their spectral similarities are shown in Fig. 9.

As expected, these figures show that the use of the filter returns
similar decay behaviour to that from the viscothermal scheme. Thus,
despite the added effects of diffraction and frequency-dependent
wall impedances, the air absorption filtering approach shows good
agreement to the viscothermal FDTD output, with STFTs again
showing, generally, similarities of at least 99%.

It is worth pointing out that in the preceding examples, the per-
fect symmetry of a rectangular room gave rise to sweeping echoes,
which are visible in Figs. 4 and 5 as slight diagonal lines representing
linear chirps, as predicted by theory [39]. In this case, the effect
of diffusing/scattering elements prevents sweeping echoes from
appearing (see Fig. 8).

6. CONCLUSIONS AND FINAL REMARKS

In this paper, a method for including air absorption in room acous-
tics simulations was presented, which is based on an approximate
Green’s function solution to Stokes’ equation. This approximate

Figure 6: Room impulse responses simulated using FDTD methods: y1 the
lossless scheme + air absorption filter; y2 the viscothermal scheme.

Figure 7: Room impulse response differences (one minus similarity between
zero and one), computed using STFT frame similarity (20).

Green’s function was parametrised to reproduce the oxygen relax-
ation effect in air absorption, which is the dominant effect for com-
mon indoor conditions. A further truncated and symmetric approx-
imation was provided, and a discrete implementation was laid out.
Numerical experiments were conducted to demonstrate the utility of
this approach in both geometrical and wave-based simulations, with
accompanying sound examples available at [33].

The proposed filtering approach is advantageous for wave-based
FDTD simulations because it leads to at least a 33% decrease in mem-
ory usage over viscothermal FDTD schemes [7], thereby bringing
down costs of simulation-based case studies (e.g., [40]). Addition-
ally, numerical dissipation error can be avoided [7]. In the context of
geometrical acoustics simulations, this method could be a preferable
alternative to existing approaches, as it avoids the need for filter
fitting, and the entire approach is parametrised by a few physical
parameters (and a truncation level NdB).

An important limitation of the proposed method is that it ap-
plies only to impulse response simulations, which, by definition,
includes static monopole point sources and receivers. Since only the
distances travelled by sound waves matter for air attenuation and not
directions of propagation (air absorption is isotropic), this approach
could also be used with directional point-sources [41], directional
point-receivers [42], and in the far field of distributed sources [43].

Another limitation of this method is the suitability of power-
law air attenuation to a chosen set of air conditions. If variations
from power-law attenuation due to the relaxation effects need to be
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Figure 8: Room impulse response spectrograms. Top: lossless FDTD
(without air absorption); middle: lossless FDTD + air absorption filtering;
bottom: viscothermal FDTD.

Figure 9: Room impulse responses differences (one minus similarity
between zero and one), computed using STFT frame similarity (20).

modelled, this approach may not be appropriate. For such cases,
options include using filter-based approaches to post-process room
impulse responses (e.g., applying attenuation via short-time Fourier
transform [18]), or developing wave-based room acoustic models
with full air absorption effects (e.g. building on [44]).
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