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ABSTRACT

We release Amp-Space, a large-scale dataset of paired audio
samples: a source audio signal, and an output signal, the result of
a timbre transformation. The types of transformations we study
are from blackbox musical tools (amplifiers, stompboxes, studio
effects) traditionally used to shape the sound of guitar, bass, or
synthesizer sounds. For each sample of transformed audio, the
set of parameters used to create it are given. Samples are from
both real and simulated devices, the latter allowing for orders of
magnitude greater data than found in comparable datasets. We
demonstrate potential use cases of this data by (a) pre-training a
conditional WaveNet model on synthetic data and show that it re-
duces the number of samples necessary to digitally reproduce a
real musical device, and (b) training a variational autoencoder to
shape a continuous space of timbre transformations for creating
new sounds through interpolation.

1. INTRODUCTION

Major advances in machine learning often accompany the devel-
opment of important data resources. With state-of-the-art results
increasingly being achieved by general models trained on large
amounts of data1, it is often necessary to develop new datasets
to drive study into new areas. In the domain of musical instru-
ment audio, a notable example is NSynth[1], a dataset of 305,979
short sound samples from a diverse set of instruments and pitches.
The size of NSynth helped it serve as a suitable testbed for the
burgeoning field of neural generative audio models, and aided in
the development of temporal auto-encoders[1], disentangling fac-
tors for audio generation[2], and methods of timber transfer[3]. A
newly released dataset, synth1B1[4], uses a software implementa-
tion of modular synthesis to generate an additional billion samples
of synthesized audio, allowing for such research on an even greater
scale.

However, with the exception of these two examples, to the
best of our knowledge we are unaware of any other comparably
large-scale datasets of musical sounds (Table 1). And while the
aforementioned datasets are suitable for the study of sample-based
audio, there are other types of musical sound creation for which
large-scale datasets do not exist. Consider that the typical way
of interacting with sound samples is through a trigger: an event
occurs, typically described by a pitch and velocity, and the note

1http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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Devices Audio (hours)

Real This Work effectors >50
Schmitz [5] effectors <5

Mixed NSynth [1] instruments 333

Synthetic This Work effectors >500
synth1B1 [4] synthesizer 1111111

Table 1: Amp-Space (v1) dataset by the numbers. While we were
not able to obtain the Schmitz dataset[5], from the data description
we estimate that it would contain less than 5 hours of audio.

develops in response to it. Naturally the instruments most associ-
ated with sample-based music creation are keyboards and drums,
where the method of interaction (the press of a key or the hit of
a pad) provide all the necessary conditioning information (pitch
and velocity) to shape the resulting sound. But many instruments
are not played in strictly in this manner, such as stringed instru-
ments, where the player continuously shapes the sound during its
production. Describing the sound of these instruments using only
the pitch and velocity at the onset of the note would result in the
loss of much of the nuance and expressiveness of the performance.
How can we develop ML technologies for players of these instru-
ments? As all of these instruments are controlled in different ways,
we turn our attention to the attribute they all share: the production
of a waveform.

We introduce Amp-Space, a large-scale dataset of paired au-
dio samples. One sample is the waveform produced by a stringed
instrument (here, an electric guitar) and serves as the condition-
ing information the player provides in lieu of pitch and velocity.
The other is the result of processing the original waveform using
a black box musical tool or device. The types of devices we study
are those commonly used to produce the variety of guitar sounds
found in popular music. This includes devices such as amplifiers,
stompboxes (fuzzes, distortions), and studio effects (compressors),
which can be used to drastically sculpt the initial sound, to the ex-
tent that musicians are able to create their own signature sound
despite working with essentially the same basic components. Out-
side of a musical context, the differences in samples are often more
subtle than those found in existing datasets. Figure 1 illustrates
the way in which three perceivably distinct sounds yield compara-
tively similar spectrograms. Amp-space is designed to be a bench-
mark for modeling timbre transformations which are fine-grained
and proven to be musically useful.

Like NSynth, Amp-Space can be used to study instrument tim-
bre. But while samples of a single instrument in NSynth vary only
in terms of their pitch and velocity (with timbre remaining rela-
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Figure 1: Spectrograms of the original instrument audio (a), and of the transformed sounds after processing with a music effect (b and c).

tively consistent otherwise), each device in our dataset is highly
parameterized and capable of a wide range of sounds. This intro-
duces problems unique to this task, namely that the combinato-
rial nature of device settings creates an intractably large space of
sound. Even a relatively simple three-knob device would itself of-
fer 1,000 different timbres if discretizing the values of each knob
(1-10). In order to record sufficiently many samples of the devices
contained in the dataset, we utilize a combination of programmatic
manipulation of software device emulations, automated controls
on real devices (such as motorized faders), and robotic servo ma-
nipulation on actual physical devices. This enables us to release
the largest dataset of its type, containing over 500 hours of synthe-
sized audio and 50 hours of samples recorded from physical de-
vices (Figure 1), all in high-fidelity 44.1kHz monaural sound. We
provide the settings of these devices, as well as any known vari-
ables which may affect the sound (voltage, transistor type, record-
ing information, etc.), as an annotation with each pair of sounds.

Amp-space supports research into a variety of problems, in-
cluding but not limited to:

• Accurate and/or real-time modeling of a wide variety of
analog music devices, due to its abundance of real device
samples.

• New interfaces for exploring the sounds of these devices,
such as moving the position of a point in a projection of the
vector space, due to its large size.

• Predicting device parameters and source waveform from
audio samples, due its inclusion of parameter annotations.

• Generating new sounds by extrapolation, or by interpolat-
ing between samples from two different devices.

In Section 3 we describe the data collection procedure. We
then present two experiments (Section 4 and 5) utilizing the unique
properties of the data. First, we demonstrate the effectiveness of
pre-training on synthetic data by showing that it can significantly
reduce the data burden when adapting these models to real data
via transfer learning. Second, we show the potential for using the
data to construct a continuous space via variational auto-encoders,
enabling new sound creation via interpolation in the vector space.

2. RELATED WORK

2.1. Modeling of Amplifiers and Effects

Many approaches have been proposed for modeling audio circuits.
At the most fine-grained level, substantial literature exists on mod-
eling circuit components with traditional DSP methods[6], includ-

ing JFETs[7] and other parts commonly used in music device cir-
cuits. Abstracting slightly, gray box approaches model sections of
circuits with blocks of either linear models (LTI filters) or function-
specific non-linear models, depending on the behavior of the cir-
cuit section[8].

In our work we propose an entirely black box approach to
modeling, in which the inner workings of the devices are com-
pletely abstracted away, and replaced with a single function, in
this case a deep neural network. Previous work[9] has compared
different neural methods of guitar amplifier model, using typi-
cal feed-forward, CNN, and LSTM networks, on a comparatively
small set of recorded guitar amplifiers[10]. Other work examines
the use of RNNs and WaveNets for real-time generation[11]. Our
work extends on this, and in Section 4.1 we perform a parame-
ter search over benchmark models in high-fidelity audio synthesis
(WaveNets, SampleRNNs, etc.). A dilated convolutional architec-
ture with EMD loss is the best performing system on our data, but
we find that many architectures are capable of achieving similar
quality when trained on large data with good hyperparameters.

2.2. Vector Spaces of Timbre and Sound

In Section 5 we utilize a subset of Amp-Space to build a contin-
uous vector space of timber transfer sounds. While such vector
spaces are an increasingly active area of research, such spaces also
have a long history in audio research. Early studies of timbre relied
on visualization techniques like multidimensional scaling (MDS)
to arrange sounds in a vector space in according to their percep-
tual differences[12, 13]. In order to obtain the relative differences
of points in the space, human participants were asked to score the
similarity of pairs of sounds. With the advent of deep learning-
based approaches it became possible to utilize the latent spaces
induced by a neural model trained to perform a sound prediction
task, replacing human judgements as the organizing metric. Other
work has combined the two approaches, using data from human
studies to regularize the latent space of neural models[14].

An important consequence of constructing spaces with pre-
dictive models is the ability to synthesize sound from points in the
latent space. Dilated convolutional architectures, of the kind ex-
plored in this work, are a common choice for predicting the wave-
form directly[1]. Other options include recurrent networks, or pre-
dicting spectrograms[15]. A unifying theme of existing work is
how sound is generated from the latent vector, often conditioning
on other attributes such as pitch or velocity, and generating the en-
tire envelope of the timbre across time (sample-based generation).
Our work differs in this regard in that the model can condition on
an aligned waveform during generation. Thus it is more closely
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related in methodology to work in speaker voice transfer[16] or
singing voice conversion[17], where linguistic features or an input
waveform provide temporal information rather than encoding it in
the latent space. This distinction means that the latent space can
be solely devoted to encoding timbral characteristics of the sound,
and eschews the need to model time-sensitive dynamics. Indeed,
we find that a relatively small receptive field is capable of achiev-
ing high accuracy on the task (Section 4.1.1).

2.3. Datasets of Conditional Audio

Amp-Space is not the first dataset proposed for wave-conditional
modeling. Previous work on amplifier or effects modeling often
included a small dataset of similar input/output waveforms for the
purpose of evaluation. In addition, another dataset of paired DI and
output from real guitar amplifiers was developed previously[5],
consisting of samples of 5 amplifiers, across 10 stages of gain
(other parameters held fixed). In comparison, Amp-Space is or-
ders of magnitude larger both in terms of hours of audio and the
diversity of timbre represented, scaling the goals of previous work
to the size of the largest instrument audio datasets.

It could also be argued that synth1B1[4] is also a dataset of
wave-conditional audio. Although it is not presented in such a
manner and a conditioning wave is not provided, the waveform
produced by the oscillators could be considered as analogous to
the DIs used in this work. If the waveform of the oscillator is
extracted and paired with the waveform generated by the following
synthesizer modules, synth1B1 may be used as a complementary
dataset for wave-conditional modeling of synth sounds.

3. A DATASET OF WAVE-CONDITIONAL TIMBRE
TRANSFER

The dataset collection process can be summarized as (1) collect
raw guitar audio (known as direct input or DI) from recordings of
professional musicians and choose segments to reflect a diverse set
of DI sounds, (2) run the DI signal through a software simulation
or physical device, recording the output signal, and (3) periodically
adjust the parameters of the device, storing the parameter setting
and recording as a single item in the dataset. All audio is recorded
at 44.1kHz, 24bit, monaural.

DIs were obtained from professional recordings with permis-
sion of the artist, and divided into short samples, each containing
a distinct music passage with no overlap with other samples. Sam-
ples were chosen to maximize diversity in pitch, dynamics, and
style. The average length of a DI sample was approximately 10
seconds, and was chosen as a compromise between the brevity
necessary to potentially record thousands of samples of each de-
vice, while being sufficiently long enough for a human to be able
to evaluate it musically.

3.1. Large-Scale Synthetic Data

Improvements in modeling musical circuits in software have led
to the production of many high-quality component-level models
of amplifiers and other musical devices. In a component-level
model, the circuit of the device is traced, and each component
is individually measured and modeled. As a consequence, com-
ponent models are time-consuming and costly to create, but the
process ensures that each controllable parameter behaves similarly

field value

DI
ID ola_rhythm

start 0:53
end 1:03

DEVICE

name 5150-blockletter
brand Peavey

source real
pre-amp 5150-blockletter

power-amp 5150-blockletter
loadbox torpedo-reload-contour-5
cabinet none
channel lead

low 0.6
mid 0.6
high 0.6
gain 0.6

master 0.3
presence 0.5

power-tubes 6l6-Sylvania
power-tube-type 6L6

bias unknown
watt 120W
VAC 117V

wall-voltage 103V
time-delay 1.79ms

Table 2: A sample annotation. Some fields which are not pertinent
to this device are omitted for clarity.

to how it would on the real device. We acquire several commer-
cially available component models of musical devices (amplifiers
and stompbox-style effects) to use as synthetic data generators.

Data processing for the synthetic data is done in Reaper[18],
a digital audio workstation (DAW) with a full-featured API. Using
Reaper’s advanced scripting capabilities we automate changes to
the parameters of the software device (such as gain, bass, mid,
treble, presence, master, and bright/gain boost, etc.), sweeping
through parameter changes after every clip. We discretize each pa-
rameter, valued 1–10. While this level of discretization still yields
hundreds of thousands of training samples per device, rendering
samples of a software device can be performed faster than real-
time, making it tractable to produce thousands of hours of audio
for each device if necessary.

3.2. Sampling Physical Devices

While software simulations of devices have improved significantly
in recent years, accurately reproducing physical devices remains a
challenge. We acquire a number of physical devices, including 15
popular tube amplifiers and an additional 15 solid state devices.
Additionally, some devices are capable of reproducing a number
of traditional circuits. Using a recording interface, a DI is sent
to the device and its output is returned through the interface and
recorded. If the device is an amplifier, the output signal from the
device is first sent to a loadbox, in place of a traditional cabinet,
which removes the cabinet, micing, and room acoustics from the
dataset examples.

In contrast to software collection, all recording of physical de-
vices must be done in real-time. We accomplish this through vari-
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ous means. For some devices, digital control of device parameters
is possible (here via MIDI) and can be automated from a com-
puter. On devices without digital control, if the knobs are attached
to typical potentiometers it is sometimes possible to automate in-
teraction with the device by attaching specially-purposed servos to
the shaft of the potentiometers. In these cases, some device pa-
rameters can be manipulated from a computer via MIDI. For the
remainder of the devices, the knobs are operated manually. A nat-
ural consequence of manual operation is far fewer samples of each
device. In this cases we prioritize settings that sound most pleasing
by our own judgement.

3.3. Annotation

Each sound sample is annotated with the label of the DI track (and
corresponding start and end time) used to record it. From the de-
vice, all adjusted parameters and their values are labeled. Prop-
erties of the device type are also annotated to facilitate learning
generalities of these properties. This may include the tube-type or
wattage for an amplifier, or transistor type or bias for a fuzz pedal.
An example annotation is provided in Table 2.

3.4. Release Notes

Due to large size and diversity of the dataset, we deviate from stan-
dard dataset release practices in two ways. First, because there
are many research questions which might be pursued using this
dataset, we choose not partition the data into a standard train, de-
velopment, and test set. Section 4 illustrates how the dataset might
be partitioned in different ways to create test sets of varying dif-
ficulty levels. Second, we release all samples recorded from real
devices, but for practical purposes and because the synthetic data
is essentially unbounded, we limit the amount of synthetic data
samples we release. We instead make available the scripts and DIs
necessary to recreate the data, or generate entirely new samples.
Further details can be found on the data release page2, together
with the materials for data generation).

4. EXPERIMENT 1: SIM-TO-REAL TRANSFER

A long-standing hurdle to developing black box models of musical
devices is the sheer number of different possible parameter settings
on a typical device. If a human is required to change the device
parameters manually then the process of recording the device may
become very time-consuming. Therefore most research in this area
focuses on recreating only a small number of possible sounds per
device. However, results from the fields of computer vision[19]
and natural language processing[20] demonstrate the effectiveness
of pre-training a model on a large set of easily obtainable data
before fine-tuning it on additional (typically less available) data
for the desired task. We question whether the same strategy could
hold true for audio generation, pre-training on the synthetic data
partition from our proposed dataset.

Our task here is the same in both conditions (given an input
waveform and parameter settings, predict the output waveform),
but transferring from sim-to-real has been shown to be a diffi-
cult problem and may require additional modifications to work
successfully[21]. However, if the model can gain some predictive
understanding of how a particular control operates across many
synthetic devices via pre-training, it may be able to generalize how

2https://github.com/narad/amp-space

these controls should behave on a real device from only a few sam-
ples. This would in turn reduce the burden of extensive data col-
lection needed in order to recreate a real device.

We begin by performing an architecture search for effective
models of timbre transfer on the Amp-Space Dataset. We identify
the best performing model and train it on synthesized data, before
fine-tuning it on limited samples from a real device, and evaluate
its ability to predict the target waveform of the real device as the
parameters are adjusted away from observed values.

4.1. Models

As part of the preliminary exploration of the dataset, we perform a
large scale architecture and hyperparameter search on the timbre-
transfer task. We define the task as follows. Input x is the clean DI
signal, and output y is the transformed signal. We then quantize y
into µ-law 256 bins. A contextual feature vector c ∈ R|F |, where
|F | is the size of the feature set, represent the device settings and
other attributes included in the annotation fields. Knob settings are
represented as real-values [0, 1], while attributes are represented as
one-hot vectors concatenated together length-wise.

We compare wave-to-wave variants of RNNs, LSTMs[22], Di-
lated LSTMs[23], SampleRNN[24], and WaveNet[25]. Within
each model type, hyperparameters are searched using a flexible
and highly-parallelizable hyperparameter optimizer[26], and in-
clude important characteristics of the problem, such as the model
receptive field, depth, type of nonlinearity, and optimization
method. For succinctness, we describe in detail only our best per-
forming model architecture.

4.1.1. Wave2WaveNet

The best performing model in our architecture search is a dilated
convolutional architecture which we refer to as Wave2WaveNet,
mainly to emphasize that the expected input and output of the
model differ from that of WaveNet (and to avoid confusion with
later discussion which includes WaveNets), and that generation
does not occur in a truly autoregressive manner as there are no
dependencies on past outputs. As in a traditional conditional
WaveNet[25], features c are fed in as an auxiliary input and con-
catenated to to each layer of the network. A network depth of 20,
with a filter size of 3, yields a receptive field of 4093 samples. This
is relatively short for a WaveNet, supporting the hypothesis that the
properties of wave-conditional synthesis differ significantly from
those of text-to-speech. Difficult long-distance problems of high-
fidelity real audio prediction, such as phase information, are di-
rectly observable from the input waveform.

A novel finding gleaned from hyperparameter search is an im-
proved loss function. As described previously, we discretize the
target output (µ-law as used previously in WaveNet) representing
it as a one-hot vector, transforming the problem into one of classi-
fication. However, as the classification task in this case is ordered,
i.e. predicting a value adjacent to the target value is better than pre-
dicting one further away, we find that standard cross-entropy loss
function used in WaveNet[25] is not optimal. A more appropriate
loss takes into account these inter-class distances. Earth Mover’s
Distance (EMD), which computes the optimal transport between
the predicted distribution p over classes and the target distribution
p̂, is one such example.

We used a weighted EMD2 loss[27], which can be computed
efficiently in the 1-dimensional case as the L1 distance between

DAFx.4

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

60

https://github.com/narad/amp-space


Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Figure 2: A hypothetical black box approach for conditional timbre-transfer of musical device sounds. Sound samples from numerous
music devices and numerous settings are embedded into a single continuous vector space, and used as conditioning when generating new
samples. This allows for interpolation between settings, and for the production of sounds not seen during training. In this example, a
conditional Wave2WaveNet shapes the embedding space towards improving the task loss predicting the timbre transformation from DI
signal to the signal recorded from the output of the device. We discuss the practicality of this design in Section 5.

the two distributions’ CDFs[28]:

||CDF(p)− CDF(p̂)||1 (1)

As noted previously[27], this loss converges faster and is easier to
optimize if the absolute value in the L1 distance is replaced with
squaring. In addition, to combat the class imbalance present in the
data, we weight the loss at every sample with label i by weight wi,
which is inversely proportional to the frequency of the label in the
data Ni:

wi ∝ (
1

Ni
)σ (2)

where σ is an optimization parameter.
During generation, we further leverage this loss and the prop-

erties it imposes over the predicted distribution by calculating the
expected value rather than using the argmax of the distribution,
which (a) improves performance, and (b) allows generation of any
continuous value in the range [−1, 1], which negates the theoret-
ical minimal error which would be imposed by the discretization.
These changes yield significant performance improvements over
our implementations of previously proposed models[11].

4.2. Results on Gain Interpolation

For the purpose of this experiment we focus on one of the most
important traditional parameters of timbre control in devices like
amplifiers or distortion pedals: gain. Adjustments to gain vary the
amount of clipping and compression in the output signal, but the
precise nature of this effect varies significantly between devices.
For pre-training we sample a random synthetic device (which has a
gain control), and train on samples of the device until convergence
(∼18hrs on 2 Nvidia V100 GPUs). During training device pa-
rameters are sampled randomly, while the gain parameter is swept
across its full range of values. For fine-tuning, we select a real

Fine-Tune Gain Test Gain MSE (e-03)
Baseline Pretrain

5 5 0.05 0.005

5 {4, 6} 0.33 0.023
5 {3, 7} 0.81 0.017
5 {2, 8} 2.10 0.064

{3, 7} 5 0.08 0.011
{2, 8} 5 0.15 0.004

Table 3: Gain Interpolation Accuracy. Fine-tune Gain is the set of
gain settings sampled the target device recording and given to the
model for additional training. Test Gain is the set of gain values
which the model must infer and generate new audio.

device, and fine-tune with samples of a restricted range of gain
settings (each real device sample is approximately 120s). As gain
is represented as a real-value in the feature vector c, it can be mod-
ified even in models which are not exposed to different gain values
during training. We experiment with which gain settings are seen
during fine-tuning, and what gain setting(s) are used for evaluation
(Table 3). Our aim is then to test how well the fine-tuned model is
able to generalize to gain settings unseen during fine-tuning on the
real device, but whose general properties may have been learned to
some extent during pre-training on synthetic data. We contrast this
with the same Wave2WaveNet model architecture, trained solely
on the fine-tuned data.

Table 3 shows the results. First we compare (top row) a model
pre-trained on synthetic data and then fine-tuned on samples from
a single gain setting (gain=5), against a baseline model trained
solely on the fine-tuned data. Both models are then tasked with
converting new DI samples to match the timbre of the fine-tuned
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data. We measure an improvement in mean squared error (MSE)
when using the pre-trained model, but neither model makes errors
which are easily perceivable. This finding supports the results of
previous work which indicate that dilated convolutional networks
are capable of high accuracy on similar supervised timbre transfer
tasks[10, 11]. However, it is interesting to note that pre-training
does appear to provide some advantage even in the purely su-
pervised scenario when data is limited. The Wave2WaveNet is
a highly parameterized model, and it is possible that pre-training
provides a better initialization of the model weights in compari-
son to the baseline model, which must learn these weights from
scratch.

As the model is asked to generalize further (Table 3, rows 2-
4), the pre-trained model performs significantly better in all sce-
narios. By the point where the model is tasked with generalizing
to gain settings ≥ 2 points further from the original gain=5 set-
ting observed in the fine-tuning data, the performance of the base-
line model has decreased by nearly two orders of magnitude. The
difficulty of the task also has an effect on the pre-trained model,
but only to the extent that it performs comparably to the baseline
model in the fully supervised setting. We believe this is an impor-
tant result as it establishes that large-scale pre-training on synthetic
device audio is beneficial to digitally recreating real devices, and
demonstrates the potential for pre-trained black box models to in-
fer missing parameter values.

5. EXPERIMENT 2: A CONTINUOUS SOUNDSPACE

In Section 4 we experimented with pre-training techniques for the
dilated convolutional architectures commonly used for audio gen-
eration in the waveform domain. By adjusting the real-valued fea-
tures in the conditional Wave2WaveNet model, we were able to
interpolate (or extrapolate) sounds not seen during training. How-
ever, the parameter space implied by the conditioning features may
be arranged in a way which is disjoint, and there is no explicit pres-
sure for interpolations in these values to produce realistic audio. To
examine this issue further we perform another experiment where
we interpolate between two amplifier models.

Consider a collection of audio samples from two amplifiers
A and B, denoted Ya and Yb, and corresponding to the input DI
X , which is the same 4-second clip of audio for all samples in
this dataset partition. The first model for comparison is the same
Wave2WaveNet model where the device type feature is [0, 1] for
amplifier A and [1, 0] for amplifier B. We train on the provided
data and predict an interpolation of amplifier A and B using the
conditional device type feature values [0.5, 0.5], analogous to the
approach used in Section 4, while holding other parameters fixed.

We compare this to a variational autoencoder (VAE) model
that explicitly regularizes the latent space. Traditional autoen-
coders are a type of neural model consisting of an encoder and
decoder, which aim to learn a compressed representation of the
input while being trained to accurately construct the input. VAEs
extend AEs by assuming the data is generated by a directed graph-
ical model P (z|X), and is approximated by the network. We use
the typical isotropic multivariate Gaussian prior, and optimize the
negative log-likelihood of the reconstruction with regularization
which encourages the latent space to be more continuous.

In order to train the VAE efficiently, we opt to utilize Mel spec-
trogram representations (with 2048 FFT bins, 256 Mel filters, and
a hop length of 256). Mel spectrograms have been utilized in many
timbre-transfer models, or in circumstances where timbral charac-

Figure 3: Mean opinion scores for perceived quality of modeling
amplifier A, and modeling the interpolation of amplifier A and B
in identical settings.

teristics of a sound sample (for instance, a speaker) are used else-
where in the model. Using spectrograms in this scenario requires
that all data samples be aligned (as y is used as input and output;
the DI waveform is ignored), whereas the Wave2WaveNet need
only aligned input/output for each instance, and thus it is worth
noting that this method is not suitable for generalizing to timbre
transfer on new DI waveforms. However, it allows us to utilize a
simpler model architecture. The VAE encoder consists of four lay-
ers of 1D convolutions and pooling operations (the decoder con-
tains analogous 1D deconvolutions), predicting the mean and vari-
ance of the latent distribution (3-dimensional) from an encoded
representation of size 512 for each factor. The spectrograms pre-
dicted by the model are converted to waveforms for evaluation via
the Griffin-Lim method.

5.1. Results

We perform a small user study, soliciting the participation of 10
musicians from an online guitar community (average experience
with music creation was approximately 8 years). We present four
waveforms in random order over an online form. Participants were
asked to score the quality of each on a scale from 1 to 5, un-
aware of the method which generated them. The results are pre-
sented as mean opinion score (MoS) in Fig. 3. Unsurprisingly, the
Wave2WaveNet outperforms the spectrogram-based VAE model
on modeling timbre transfer in the supervised setting. Griffin-Lim
is known to perform poorly on predicted spectrograms, and it is
possible that some of this performance drop could be mitigated by
training a WaveNet-based vocoder specifically for this domain.

In the interpolation setting, the Wave2WaveNet model quality
suffers significantly, while the strength of the VAE model at inter-
polating between sounds becomes apparent. Neither VAE-based
result is of exceptionally high quality (lower than Wave2WaveNet
on in-domain data), but it is more consistent across both scenar-
ios. While this is only a preliminary finding, it is supported by
other work on variational timbre spaces (Section 2.2) and hints at
the notion that a single latent space could represent encodings of
multiple timbre transformations, where the types of transforma-
tions common in musical devices could explored and created by
operations in a vector space.
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6. DISCUSSION

6.1. Future Directions

We have shown the usefulness of this dataset in two separate sce-
narios. Other lines of research which may benefit from such data
are discussed below.
Remaining challenges for modeling musical devices. In terms of
accuracy, we notice all models evaluated in this work have difficul-
ties in some scenarios. In particular, gated fuzzes seem especially
problematic. Notably the bias of the transistors in these circuits is
set precisely for them to function like a threshold, which can create
a sound sometimes described as “choppy” or as a “sputter”. Such
sounds are uncommon but represent a challenging goal to address
in future models. In order to aid researchers in identifying remain-
ing challenges, we provide a table of the performance of our model
on individual device categories on our data release page.
Novel interfaces for music creation. A main motivation in devel-
oping this work is to enable new interfaces for controlling tradi-
tional music device sounds. Existing device controls are inspired
more by their role in the circuit than by the user’s goal, which
makes their precise meaning differ from one circuit to another. For
instance, a “mid” control for adjusting middle frequencies may be
defined in an entirely differ manner from one device to the next,
both in terms of what frequencies are affected, its Q-function, and
the effect on other knobs or frequencies (interactive EQ). Such
inconsistencies increase the learning curve to effectively operate
these devices and craft the desired sounds. We showed how one
model, a VAE, could interpolate between observed sounds to cre-
ate new ones, but gaining a better understanding of this latent space
is left for future work. As more data is used to train the model,
an interesting question is how sound is arranged in the latent space
and if the salient dimensions in its organization reflect common de-
vice controls, or perhaps other more abstract characteristics which
are important to musicians. Similarly, if a user finds a sound in the
latent space, the model can teach the user how to achieve it on the
device via nearest neighbor search.
Timbre and equalization. A choice was made in this work to
model each sound sample strictly as a black box function of its pa-
rameters and input waveform. However, a great deal of the sonic
diversity found in this dataset is the direct result of changes in the
EQ parameters on the devices. This raises the question of whether
equalization is better handled as a pre-processing step, where the
transformation from clean signal to modeled output signal first ad-
justs for the EQ of the target sound, then applies the timbre transfer
function, thus factorizing EQ out of the latent space.
Circuit design in the Latent space. In early work in distributed
semantics with neural language models[29], algebraic operations
in the vector space were shown to capture meaningful relation-
ships. For instance, the vector operations king - man + woman
predict approximately the vector for queen. Could the same types
of regularities arise in vector spaces of sounds? If so, new devices
could be designed by movements in the vector space. The Amp-
Space dataset provides two important characteristics for support-
ing research on this topic: (1) sound samples are annotated with in-
dividual components whose contributions to the overall sound may
be learned by the model (e.g., power tube type in a vacuum tube
amplifier), and (2) sound samples taken at various places along
the signal chain. For instance, multiple samples might be taken
from amplifiers with similar poweramps, isolating the effect of the
preamplifier in the chain. If an understanding of the sonic prop-
erties of each major component can be isolated, they may also be

interchanged, and new circuits defined in this manner.

6.2. Shortcomings

We present Amp-Space as a useful resource for the study of mu-
sic effects and fine-grained timbre transformations, but it is by no
means complete. The space of music device timbre is far too vast
to incapsulate in a single fixed resource, and for practical purposes
some decisions were made that may ultimately warrant new sam-
ples. For instance, the use of a small fixed set of DIs could not
cover the scope of possible techniques and frequencies, and could
limit modeling accuracy in situations which differ significantly
from the training data. The importance of diversity in source wave-
forms in device modeling is not yet well understood. The use of a
single loadbox, a single interface, and other possible confounding
factors of dataset creation currently pose no issues, but may need
to be remedied in the future. However, a guiding principle of this
work is that the generalization power of large neural models and
big data will help to ensure that existing data and resources are still
useful even if future versions are adapted to address new concerns.

7. CONCLUSIONS

In this paper we present Amp-Space, a new large-scale dataset for
the study of fine-grained music timbre transformations. In com-
parison to other music audio datasets it is a unique resource due its
combination of unprecedented size, its focus on conditional trans-
formations, and its close connection to the tools of professional
musicians. Importantly, the way we define and partition the syn-
thetic component of this dataset is only one such example of how
it might be constructed. We release all data generation code, en-
abling researchers to instantiate the data in different ways to ad-
dress the specific needs of each study.

We present two experiments in which we leverage the size
of the dataset, first to pre-train conditional generative models of
audio, and then to construct a rich embedding space of condi-
tional sound transformations. The former approach solves a prob-
lem of practical importance, demonstrating that synthetic data and
the pre-train/fine-tune paradigm can be utilized effectively when
replicating a physical device from limited data. This may enable
black box models to be constructed more efficiently than hand-
engineered component models. We hope this dataset facilitates
further research into these areas.
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