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ABSTRACT

It is difficult to adjust the parameters of a complex synthesizer to
create the desired sound. As such, sound matching, the estima-
tion of synthesis parameters that can replicate a certain sound, is
a task that has often been researched, utilizing optimization meth-
ods such as genetic algorithm (GA). In this paper, we introduce a
novelty-based objective for GA-based sound matching. Our con-
tribution is two-fold. First, we show that the novelty objective is
able to improve the quality of sound matching by maintaining phe-
notypic diversity in the population. Second, we introduce a qual-
ity diversity approach to the problem of sound matching, aiming
to find a diverse set of matching sounds. We show that the nov-
elty objective is effective in producing high-performing solutions
that are diverse in terms of specified audio features. This approach
allows for a new way of discovering sounds and exploring the ca-
pabilities of a synthesizer.

1. INTRODUCTION

Recently, the advent of software synthesizers has made the use
of synthesizers prevalent in musical production. However, there
is still great difficulty in manually adjusting the parameters of a
synthesizer to obtain a desirable output. It is common for music
producers to simply rely on presets, i.e. parameter settings crafted
by sound designers. The full creative potential of synthesizers has
been out of reach of most producers. Thus, there have been many
efforts to alleviate the difficulty of using synthesizers. A common
approach is sound matching, estimation of synthesis parameters
that closely replicate the target sound.

In one of the earliest examples of sound matching, genetic al-
gorithm (GA) was used to optimize some parameters of frequency
modulation (FM) synthesis to match a target spectrum [1]. Histori-
cally, FM synthesis had been viewed as a way to create emulations
of natural sounds, but finding such parameters manually required
time and effort. Similarly, GA has been applied to estimate the
physical modelling parameters of plucked strings [2].

More recently, there have been attempts to estimate the pa-
rameters of conventional software synthesizers. Such synthesizers
feature many parameters, and include not only parameters related
to the static nature of the timbre but also parameters that modulate
these parameters, such as LFO rate. Techniques such as linear re-
gression [3], multi-objective GA [4], and neural networks [5], [6],
[7] have been applied to multitude of synthesizers with varying de-
grees of complexity. Previous work has found that it is difficult to
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match a target sound even if the target sound was produced by the
same synthesizer [5]. This difficulty can be attributed to the com-
plexity of the synthesis algorithm and the vastness of the search
space.

One fundamental question that must be addressed is whether
we actually need to match a sound with a synthesizer. One motiva-
tion for early work in FM synthesis sound matching was that FM
synthesis can provide a computationally efficient replacement for
realistic sounds [1]. In modern music production where samplers
have become computationally inexpensive and adequately expres-
sive, this is no longer a valid reasoning for sound matching.

We argue that the objective for sound matching is to assist
the user during the sound design process. The user can query the
system with a target sound that is vaguely similar to the real in-
tention. The system should then provide an intuitive way to adjust
the sound further. Some methods have been proposed to assist
the user in such a way. Relevance feedback from the user can ac-
count for the gap between the intended sound and the target sound
[8]. A variational autoencoder model can not only perform sound
matching but also provide the user with alternative controls for a
synthesizer [6].

In this paper, we solve this problem by finding solutions that
are spread out in terms of audio features that the user can specify.
The user can then choose the sound closest to their intention from
a variety of matching sounds. Specifically, the contributions of this
study are as follows:

• We show that incorporating a novelty objective can improve
the performance of GA-based synthesizer sound matching.
In recent evolutionary computation literature, novelty ob-
jectives have been shown to effectively maintain phenotypic
diversity and improve the performance of GA in difficult
domains [9]. For the first time, we apply novelty objective
to the problem of synthesizer sound matching.

• We introduce the idea of quality diversity (QD) to the prob-
lem of synthesizer sound matching. The idea is to obtain
not only the single best solution, but many interesting solu-
tions spread across a space of audio descriptors. We show
that standard GA fails to produce such diverse output, but
introducing a novelty objective can help in finding a diverse
set of solutions.

This paper is structured as follows. Section 2 explains the ba-
sics of GA and introduces the concept of novelty search and quality
diversity. In Section 3, we explain the synthesizer sound matching
method and the definition of audio novelty. In Section 4, the ex-
periment setup details regarding the optimization algorithms and
the synthesizer are described. We report and discuss the results of
the experiment in Section 5 and conclude the paper in Section 6.
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2. BACKGROUND

2.1. Genetic Algorithms

Genetic algorithm (GA) is a metaheuristic optimization algorithm
that takes inspirations from mechanisms of biological evolution.
In GA, an individual consists of a genotype and a phenotype. The
genotype of an individual corresponds to the genomes of an organ-
ism and is subject to the genetic operators such as crossover and
mutation. The genotype is usually an array of binary or real-valued
numbers. The phenotype corresponds to the observable traits and
physical form of the organism. The phenotype is what decides the
fitness values of each individual.

In GA, an initial population of individuals is randomly gener-
ated. Then, the phenotype of each individual is evaluated against a
problem, and each individual is assigned a fitness value. Individ-
uals are then stochastically selected from the population, favoring
those with higher fitness value. Genetic operators such as mu-
tation and crossover are performed on the genotypes of selected
individuals to create the new generation of solutions. This process
is repeated for a fixed number of generations.

When applying GAs to a problem, it is important to consider
the design of the genetic encoding. In binary encoding, the most
traditional encoding type in GA, each genotype is an array of bits
(0 or 1). While this allows for simple genetic operators and is
suitable for some type of problems, it is difficult to apply this to
problems with real-valued inputs. Real-valued encoding is more
common in such cases, but more sophisticated crossover methods
such as blend crossover or simulated binary crossover [10] should
be used with real-valued encoding.

2.2. Multi-objective Genetic Algorithms

While standard GAs maximize a single fitness value, multi-objec-
tive GAs (MOGAs) optimize multiple objectives at once. This is
different from simply adding multiple objective functions together.
Multi-objective GAs aim to find a set of Pareto-optimal solutions.
A solution is Pareto-optimal when it is not dominated (i.e. beaten
in every objective) by any other solution. The set of Pareto-optimal
solutions is called the Pareto-front.

NSGA-II [11] is one of the most popular algorithms for solv-
ing multi-objective problems. NSGA-II performs non-dominated
sorting, where least dominated solutions are given a high rank. Bi-
nary tournament selection is used for the selection of parents in
NSGA-II. More specifically, two individuals are compared, and
the one with the higher rank is selected. When the two individuals
are of the same rank, the crowding distances are compared, favor-
ing the individual in less crowded area of the Pareto-front. This
crowding distance acts as a diversity-preserving mechanism along
the Pareto-front.

2.3. Novelty Search

In GAs, progress is measured with the fitness function, but in de-
ceptive domains, this can misdirect the search. Novelty search
abandons the fitness objective and searches only for novel behav-
iors [12]. Novelty search is surprisingly effective in solving decep-
tive problems like maze navigation, where fitness-based GA often
leads evolution to a dead end.

Novelty of an individual is defined as how different an individ-
ual is from other individuals. This is calculated as the sparseness

ρ of a point x, i.e. the average distance to its k-nearest neighbors:

ρ(x) =
1

k

k∑
i=0

dist(x,µi), (1)

where µi is the ith-nearest neighbor of x, using the distance metric
dist. Usually, Euclidean distance is used as the distance metric.

Since the phenotype itself is complex and high-dimensional,
the novelty is calculated from a compact representation of the phe-
notype, commonly referred to as the behavior characterization
(BC). The BC should describe salient aspects of an individual’s
phenotype as a vector. For example, in the case of maze naviga-
tion, it is common to use the final position of the navigating robot
as the BC. By rewarding the robot for reaching new areas, the robot
should eventually reach the goal.

In the most simple approach for novelty search, novelty of an
individual is calculated using k-nearest neighbors in the current
population. However, this is known to cause a cycling behavior,
where the population moves from one area of the phenotype space
and to a new area and back again [13]. Since the algorithm has
no memory, regions already explored may be visited again in later
generations.

To suppress this cycling behavior, an archive of individuals
is kept over generations. The nearest neighbor search for nov-
elty calculation is performed against the union of this archive and
the current population. Every generation, some individuals from
the current population are added to the archive. While it is com-
mon to add only the individuals with novelty score above a certain
threshold value, recent study has shown that adding a fixed number
of individuals randomly is just as effective in improving solution
quality [14].

The effectiveness of novelty search can be attributed to the
fact that novelty search asymptotically behaves as a uniform ran-
dom search process in the phenotype space [15]. This is different
from a random search in the genotype space. The phenotype space
is often more compact than the genotype space and thus uniform
search in the phenotype space is more effective.

In domains where the phenotype space is large, novelty search
alone cannot reach an adequate solution. In such cases, a nov-
elty objective can be combined with a fitness objective. A multi-
objective GA such as NSGA-II can then be used to optimize both
fitness and novelty. In difficult domains such as bipedal locomo-
tion, using a novelty objective alongside fitness has been shown to
improve solution quality compared to using fitness alone [9]. This
can be attributed to the fact that the novelty objective maintains a
phenotypic diversity, keeping many stepping stones that lead to the
objective.

Phenotypic diversity should not be confused with genotypic
diversity. In fact, much of research on diversity mechanisms in
evolutionary algorithms focused on maintaining diversity in the
genotype space, such as fitness sharing [16]. However, in many
problems, points in the genotype space often collapse into a single
phenotype. For example, in case of synthesizer sound matching,
many parameter settings actually result in the same sound. In such
cases, it may be more effective to explicitly maintain phenotypic
diversity using a novelty objective.

So far, novelty search has seen little application to music and
audio. A blog post describes a project in which novelty search
was applied to Ableton Live set parameters in order to find mu-
sical inspirations [17]. However, the novelty of each individual
was calculated from the genotype, not the phenotype. Thus, the
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creative capabilities of this project is similar to that of parameter
randomization features commonly found in creative software. In
fact, it would be very time consuming to render each individual
and evaluate their phenotypic novelty using Ableton Live.

2.4. Quality Diversity

Quality diversity (QD) algorithms aim to find a collection of solu-
tions that are diverse and high-performing [18]. The idea of QD
followed naturally from methods optimizing both novelty and fit-
ness, since optimizing both objectives leads to the discovery of a
wide range of solutions. However, optimizing fitness still imposes
a global competition among the individuals, which leads to the al-
gorithm preferentially exploring certain regions of phenotype char-
acteristics that gives the best fitness. This is beneficial for finding
the best single solution, but it may be more beneficial to explore
other regions to discover a diverse set of solutions.

Subsequent research in QD algorithms focused on exploring
the entire phenotype space uniformly. Novelty search with local
competition (NS-LC) replaces the fitness value with a local com-
petition score (LC score) [19]. The LC score is calculated as the
number of individuals with inferior fitness value in the k-nearest
neighbors. If this number is high, then the individual is high-
performing compared to other individuals in the same niche. This
mechanism leads to the discovery of high-performing solutions in
many different niches.

Another popular QD algorithm is MAP-Elites [13]. MAP-
Elites uses an archive which explicitly defines the niches in the
BC. The BC is discretized to form a grid, and each bin on the
grid can hold a fixed number of individuals. The selection oper-
ator selects bins from the grid with uniform probability and then
selects individuals from the bin to produce offspring. The BCs
of the offspring are calculated, and the offspring are added to the
corresponding bin.

QD algorithms have been applied to fields such as procedural
content generation, where game stage designs are automatically
generated [20]. In this case, the BC is the aesthetics of the stage or
the moves required to beat it. The quality of a stage is how well an
A* agent can beat it (i.e. playability). By generating a diverse set
of solutions spread along a specified dimension, the user can easily
pick an appropriate solution. To our knowledge, QD methods have
yet to be applied to the field of sound design.

3. PROPOSED METHOD

3.1. Synthesizer Sound Matching

In GA-based synthesizer sound matching, the genotype is the syn-
thesizer parameters and the phenotype is the synthesized audio, as
shown in Figure 1. The genotype is an array of real-valued num-
bers. This is fed into the synthesizer as the synthesis parameters to
produce an audio output. The fitness of the individual is calculated
by how well the synthesized audio matches the target sound.

Several loss functions for measuring the match quality have
been used in previous work, such as spectrogram loss [4] and mel-
frequency cepstrum coefficients (MFCC) loss [5]. Preliminary ex-
periments found that MFCC loss gave subpar matches, often re-
sulting in sounds with pitch different from the original. This is
due to the fact that MFCC only captures the overall shape of the
spectral envelope. This property is ideal for applications such as
speech recognition, but unsuitable for sound matching. Thus, we
calculate match loss using the spectrogram.

Filter 1 freq: 56
Attack 1: 32
Decay 1: 24
Sustain 1: 65
Release 1: 52

...

Genotype

Synthesizer

BC

[Centroid,
Flatness]

Match
Loss

(Fitness)

Phenotype

Output
Audio

Figure 1: The genotype-phenotype relation in synthesizer sound
matching. Expression of the genotype corresponds to playing the
synthesizer. The phenotype, or output audio is used to calculate
fitness and behavior characterization.

Algorithm 1 Proposed method (fitness & novelty)

Input: Target, Synthesizer
Initialize Population as list of random Individuals
Initialize Archive as empty list
for gen = 1, · · · , Ngen do

for ind ∈ Population do ▷ Evaluation of Individuals
audio← Synthesizer(ind.gtype)
ind.fitness← −LSD(Target, audio)
ind.bc← BC(audio)

for ind ∈ Population do ▷ Novelty calculation
distances← kNN(ind.bc,Population ∪Archive)
ind.novelty← 1

k

∑
distances

Offspring← SelectionNSGAII(Population)
for i = 0, · · · , Npop/2− 1 do ▷ Genetic operators

inda, indb ← Offspring[2i],Offspring[2i+ 1]
Mutate inda, indb at mutation rate pmut

Crossover inda and indb at crossover rate pcx
Population← Offspring
Add λ Individuals from Offspring to Archive at random

A pseudocode of the proposed method can be written as Algo-
rithm 1. The initial population is generated randomly by sampling
uniformly from the parameter ranges. The genotypes of the indi-
viduals in the population are fed into the synthesizer as synthesis
parameters to synthesize audio. STFT is then calculated for the
synthesized sounds to extract the spectrogram, and the log-spectral
distance (LSD) is measured between the synthesized and target au-
dio. LSD of two power spectra is calculated as:

LSD(P, P̂ ) =

√√√√∑
ω

10 log10

(
P (ω)

P̂ (ω)

)2

. (2)

The average value of LSD over frames is used as a measure of
quality of the match. Note that since tournament selection is used
in NSGA-II, the scaling of this fitness value has no effect on the
selection probability.

Then, behavior characterization (BC) of the synthesized audio
is calculated from the spectrogram. Novelty of the individual is
calculated by the mean of Euclidean distances in BC space from
the k-nearest neighbors in the current population or the archive.
NSGA-II selection is used to select the individuals, whose geno-
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types are then mutated and crossed-over to create the new popu-
lation. From the new population, λ randomly selected individuals
are added to the archive. This process is repeated for Ngen gener-
ations. We also implement novelty search with local competition
(NS-LC) by replacing the fitness value with a local competition
score.

3.2. Behavior Characterization

The novelty of an individual is calculated from not the synthesized
audio itself but the BC of the audio. This representation should
be compact and interpretable. We chose the following spectral
features for the BC:

• Spectral Centroid is the center of mass of a spectrum. It
has been shown to be correlated with the perceived bright-
ness of a sound. When the spectral centroid is high, the
sound is perceived as bright.

• Spectral Flatness describes how noise-like a sound is. A
spectrum with high flatness is similar to white noise, while
a spectrum with low flatness is similar to a pure tone.

The spectral features are calculated for every frame, and weighted
mean with regards to RMS of the frame is used as the BC. Novelty
objective encourages diversity along these features, so we expect
to obtain sounds that are differing in brightness and noisiness.

4. EXPERIMENTS

4.1. Optimization Methods

We implemented standard genetic algorithm (fitness only, GA),
novelty search with global competition (fitness & novelty, NS-
GC), and novelty search with local competition (local competi-
tion score & novelty, NS-LC). All synthesizer parameters used in
this experiment were continuous values. Thus, we used genetic
operators for real-valued GA. In all algorithms, simulated binary
crossover and polynomial mutation was used, with crossover prob-
ability pcx = 0.75, mutation rate pmut = 0.05 for each attribute,
and crowding degree of 5. These values were chosen after pre-
liminary experiments on the standard GA baseline. For standard
GA, we used binary tournament selection to align with the selec-
tion mechanism of NSGA-II (as explained in Section 2.2) used in
the latter algorithms. All algorithms were run for 200 generations
with population size of 200 individuals.

In NS-GC and NS-LC, λ = 5 individuals from the population
were added randomly to the archive every generation. The nov-
elty is measured using k = 15 neighbors. We found that using
local competition resulted in slow progress, due to the algorithm
dropping the individuals with the best fitness from the population.
Thus, we use elite selection to always keep 10 individuals from the
last generation with the best fitness.

For comparison, we implement a synthesizer parameter esti-
mator using an LSTM network similar to [5]. This network takes
log-spectrograms as input and outputs the synthesizer parameters.
The network consists of 2 LSTM layers with a hidden size of 256
and a dropout probability of 0.1, followed by a linear layer. This
model was trained on 60,000 randomly generated parameter-audio
pairs with MSE loss for the estimated parameters. Monitoring the
parameter loss on the validation set, we found that this network
quickly overfitted. This is due to the fact that the network tries
to predict a single set of parameters from a sound, even though

the same sound can be derived from different parameter setting.
Already, we see that optimizing for parameter loss is problematic.

4.2. Synthesizer

To measure the effectiveness of the black-box sound matching
methods, Dexed1 and Diva2 VSTi synthesizers were used for this
experiment. Dexed is an emulation of the Yamaha DX7, an FM
synthesizer with 6 operators, and Diva is a virtual analogue synthe-
sizer. These two synthesizers were chosen because most of their
parameters were controllable through MIDI CC. We expect that
the sound matching will be easier for Diva, since it is a subtractive
synthesizer that can be controlled more intuitively.

Certain sets of parameters were optimized, and other parame-
ters were set to a fixed value during the experiments. For Dexed,
the most notable fixed parameter is the ALGORITHM parame-
ter, which modifies the routing of the FM operators. Automatic
design of synthesizer structure is a separate problem that should
be dealt with using methods like genetic programming [21]. For
Diva, oscillator and filter model types were fixed, and the effects
were turned off. 32 parameters used during sound matching with
Diva include envelope and LFO parameters that modulate ampli-
tude and filter cutoff, oscillator tuning and mix parameters, and
filter feedback/resonance/cutoff parameters.

We tested Dexed with various numbers of parameters to op-
timize. The 3-ops setting used 30 parameters, including parame-
ters of 3 operators. The other 3 operators were turned off. Next,
the 6-ops setting used 61 parameters including parameters of all 6
operators. It can be hypothesized that optimization is more diffi-
cult when there are more parameters to optimize. Features such as
pitch envelope and LFO were turned off for this experiment, as it
was mostly unnecessary for matching natural sounds.

For rendering audio from VSTi, RenderMan [5] was used.
RenderMan is a python package that enables control of MIDI CC
parameters and recording of MIDI notes significantly faster than
realtime. For each sound, a MIDI note with pitch of C4 and ve-
locity value of 80 lasting 3 seconds was recorded for 4 seconds to
capture the release of the sound. The sample rate was set to 22,500
Hz for the Dexed synthesizer and 44,100 Hz for the Diva synthe-
sizer, since Diva did not function properly in lower sampling rates.
We use an FFT size of 2048, and an STFT hop size of 1024 sam-
ples. Librosa [22] was used for calculation of spectral centroid and
flatness. These values are then clipped to be within [300, 4500]Hz
and [−85,−30]dB respectively. These limits were chosen accord-
ing to the distribution of the typical musical sounds included in the
test set. Lastly, the values were both normalized to be within [0, 1]
before calculating novelty.

4.3. Test Set

To evaluate our methods, we prepared two test sets: in-domain
and out-of-domain. Each test set consists of 30 sounds. In-domain
consists of sounds created using the same synthesizer. For creating
this dataset, presets for each synthesizer were collected from the
Internet and the built-in preset library. Certain parameter values
were fixed to a default value to match the parameter optimization
setting, Thus, it is theoretically possible to match the sounds per-
fectly, although previous work has found this task to be challeng-
ing for the Dexed synthesizer [5]. These presets were rendered

1https://asb2m10.github.io/dexed/
2https://u-he.com/products/diva/
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Table 1: Comparison of sound matching results. Values shown are the mean log-spectral distance (the smaller the better) across each type
of test set with different synthesizer settings. Standard deviation is noted in parentheses.

In-domain Out-of-domain
Diva Dexed 3-ops Dexed 6-ops Diva Dexed 3-ops Dexed 6-ops

GA 11.47 (7.89) 22.22 (15.19) 30.50 (10.47) 11.73 (4.47) 36.20 (16.59) 32.93 (14.14)
NS-GC 9.55 (5.64) 18.71 (13.47) 27.91 (10.72) 11.45 (4.35) 32.26 (14.66) 31.19 (14.91)
NS-LC 10.71 (6.83) 19.03 (12.98) 29.92 (11.00) 11.78 (4.48) 32.87 (14.89) 32.68 (14.71)
LSTM 22.77 (13.83) 43.45 (22.86) 70.47 (33.74) 19.52 (6.55) 55.22 (24.03) 54.73 (23.24)

with the same MIDI note used in the optimization. Out-of-domain
consists of musical sounds that would actually be used as a query
to the system in real usage. This includes sounds produced from a
diverse range of acoustic and electronic instruments. These sounds
were taken from the Nsynth Dataset [23]. The test set was ex-
tracted to be well spread out in terms of instrument type. These
sounds are also in the same pitch as the MIDI note used in the
optimization.

5. RESULTS AND DISCUSSION

In Section 5.1, we show the effects of novelty objective in im-
proving the quality of synthesizer sound matching. In Section 5.2,
we evaluate the sound matching evolution from a quality diversity
perspective. Finally, we discuss a possible creative application of
the proposed method and its challenges in Section 5.3. Further
experiment results including output audio and animations of the
evolution have been uploaded to the accompanying web page 3.

5.1. Sound Matching

In Table 1, we show the results of sound matching, in regards to
the best solutions found by the evolution for GA-based methods.
For the estimation of in-domain sounds, NS-GC (novelty & fit-
ness) found significantly better solutions than standard GA in all
settings, Diva, Dexed 3-ops, and Dexed 6-ops (p = 0.004, p <
0.001, p = 0.006, Wilcoxon signed-rank test). This shows that
the preservation of phenotypic diversity was beneficial for sound
matching. Despite only optimizing for local competition score,
NS-LC seemed to perform just as well as standard GA in terms
of the best solution found. For the out-of-domain dataset, NS-GC
found significantly better solutions than standard GA in the more
difficult settings, Dexed 3-ops and Dexed 6-ops (p < 0.001, p <
0.001, Wilcoxon signed-rank test). Standard deviation of the result
is high for all settings, owing to the fact that the test set contains
sounds of various characteristics. Sounds with simple timbre and
fast decay tend to be easier to match and therefore result in better
match scores, while longer, complex sounds result in worse match
scores.

We found that LSTM performed poorly in comparison to GA-
based methods. One possible cause for this is that it is hard for
the model to learn properly while minimizing a loss of synthesis
parameters, when the same sound can come from different synthe-
sis parameter settings. What the model learned as the “ground-
truth” synthesis parameter setting to a certain sound can be con-
tradicted by another setting resulting in the same sound. Another
problem is the quality of the training data. The training data for
the LSTM model is generated by uniformly sampling in the pa-
rameter space, but randomly setting the parameters of a complex

3https://hyakuchiki.github.io/QDSynthWebpage/

synthesizer often results in an unorthodox and non-musical sound.
Using hand-crafted presets as training data can possibly improve
the performance of the model, but a large collection of presets is
usually unavailable for most synthesizers. However, one merit of
using neural network-based methods is that once the network is
trained, inference can be performed quickly. GA-based methods
require playing the synthesizer to obtain evaluate the individuals,
taking a much longer time (see Section 5.3 for further discussion
of run time).

For the in-domain dataset using Dexed, the more difficult 6-
ops setting resulted in poorer match quality. This can be attributed
to the increase in complexity of both synthesis algorithms and tar-
get sounds 4. Interestingly, the more difficult parameter setting
often resulted in better matches for out-of-domain dataset, sug-
gesting that the optimization algorithms were able to utilize the
more complex and powerful synthesis algorithms.

5.2. Quality Diversity

In a quality diversity (QD) problem setting, the objective is to ob-
tain not only the best match, but a set of solutions spread across
the specified audio features. For evaluation of QD, it is useful to
discretize the behavior characterization (BC) space. We split each
dimension of BC into 20 divisions to create a 2D grid with 400
bins. In a manner similar to MAP-Elites, every individual found
during the evolution is assigned to a bin according to its BC. We
denote the maximum match quality of individuals assigned to the
ith bin as Qi. This match quality was calculated as the reciprocal
of log-spectral distance (the higher the better).

The distribution of Qi in BC space for a typical run (out-of-
domain sound, Dexed 6-ops) is shown in Figure 2. This illustrates
how each algorithm exploited the niches in BC space. The stan-
dard GA only explored some regions in the BC space, while NS-
GC and NS-LC explored a wider region and found high quality so-
lutions in many bins. Since the target sound was an electric bass,
regions with lower spectral centroid tended to have a better fitness.

A comparison of the algorithms in terms of various QD met-
rics (coverage, exploration uniformity, QD score) is shown in Fig-
ure 3. These metrics were calculated from and averaged over runs
with out-of-domain dataset and Dexed 6-ops setting. In the follow-
ing paragraphs, we will explain each metric in detail and discuss
the performance of each algorithm with regards to these metrics.

As a measure of diversity of individuals found during the evo-
lution, the coverage of the evolution is calculated as the proportion
of bins with 1 or more individuals assigned. The coverage of each
algorithm is shown in the leftmost column of Figure 3. Standard
GA has poor coverage, failing to reach many regions of the BC

4Target sounds for the in-domain dataset were changed according to
parameter settings, so that they can theoretically be matched perfectly by
optimizing the parameters.
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Figure 2: Comparison of quality distribution from a typical run. Lighter colors indicate that high-performing individuals were found in
the bin. Bins with no assigned individual were colored white. The target sound was an electric bass sound from the NSynth dataset.
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Figure 3: Comparison of QD metrics. Coverage values close to 1 indicate that the algorithm explored most of the bins in the BC space.
For exploration uniformity, values close to 1 indicate that the individuals found during the evolution follow a uniform distribution in the
BC space. Higher QD-scores indicate that the evolution was able to find a diverse set of high-performing solutions.

space, while algorithms with novelty objective reach most of the
BC space.

To gain insights about the dynamics of the evolution, we ana-
lyzed the exploration uniformity, as introduced in [14]. Let φ be
the set of all individuals found during a run and Ii be the num-
ber of individuals assigned to ith bin. The exploration uniformity
U(φ) is calculated from Jensen-Shannon divergence between the
distribution Xφ of all individuals and the uniform distribution Y
in the BC space:

U(ϕ) = 1− JSD[Xφ||Y ], (3)

where

Xφ =

(
I1
|φ| , · · · ,

I400
|φ|

)
, (4)

Y =

(
1

400
, · · ·×400

)
. (5)

The exploration uniformity of each algorithm is shown in the cen-
ter column of Figure 3. The results show that by removing global
selection pressure, NS-LC explores the BC space more uniformly
than NS-GC.

Finally, QD-score is often used in QD literature as a single
measure of both quality and diversity. QD-score is calculated as
the sum of maximum quality achieved in each bin:

QDScore =
400∑
i=1

Qi, (6)

where Qi = 0 for bins with no assigned individual. The QD-
scores of each algorithm is shown in the rightmost column of Fig-
ure 3. While standard GA can find a single high quality solution,
it fails to find a diverse set of solutions.

Surprisingly, NS-LC did not achieve a higher QD-score than
NS-GC, despite having higher exploration uniformity. This result
can be explained by the alignment of the BC with the quality.
A BC is said to be highly aligned with the quality, when certain
regions in the BC space correspond to a narrow range of fitness
values [18]. The BC in this experiment is fairly aligned with the
match quality. If a sound has the same BC values as the target
sound, the spectrograms are similar and the match quality tends
to be high. When the alignment of BC is high, finding novelty
will help the evolution find regions in the BC space with higher
fitness. This can perhaps explain the results in Section 5.1, where
the novelty helped in finding solutions with high fitness. On the
other hand, only a certain region can achieve the highest fitness
values, so it may be better to exploit that region to achieve a high
QD-Score. We can speculate that NS-GC was the best balance
between the exploitative and exploratory behavior in the case of
sound matching.

In most application of QD, the BC is unaligned with the qual-
ity, since the dimensions we want to find diversity in is often un-
related to the quality. However, in the case of sound matching, the
BC is somewhat aligned with the match quality, because the target
sound can also be assigned to a point in the BC space. Having the
same BC values as the target sound leads to better fitness score. We
argue that is still useful to find diversity in this BC space because
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Figure 4: Sounds contained in the BC map obtained from a typical run. The x axis is the spectral flatness which corresponds to the
“noisiness” of a sound, and the y axis is the spectral centroid which corresponds to the “brightness” of a sound. The position of the best
matching individual is marked in red. We display the waveform and melspectrogram of individuals with lower spectral flatness (“Pure”,
purple), higher spectral flatness (“Noisy”, cyan), and higher spectral centroid (“Bright”, yellow) and mark the positions in BC space. In
this run, NS-GC was used with the 6-ops parameter setting to match a trumpet sound.

the target sound may differ from the user’s true intentions.

5.3. Creative Applications

We propose that the product of each run is not just the best match
or the final population, but all the individuals found during the pop-
ulation. As shown in Section 5.2, a map of BC space can be used
to visualize the spread of individuals in terms of the specified au-
dio features. We visualize the BC map and the sounds it contains
in Figure 4. Bins away from the best matching individual in the
BC map also holds individuals with similar structure, but differ-
ing in the spectral features specified as the BCs. For example, the
“Noisy” individual is similar to the best match but features more
partial, and in the “Pure” individual, a single partial is emphasized.
When utilizing this method to assist sound design, a user can au-
dition the best individuals in each bin to find sounds similar to the
query sound but with a certain quality.

One challenge for applying the proposed method to a practi-
cal application is the run time. Matching a sound with 200 gen-
erations, population size of 200, and audio length of 4.0s using
Dexed took about 20-25 minutes on a standard desktop CPU (Intel
i7-6700). Diva took approximately an hour with the same setting,
as it could not be run in lower sample rates and features compu-
tationally expensive analogue emulation. This run time may be
considered as reasonable, considering that previous work in GA-
based sound matching took several hours to match a single sound
using a computing cluster [4]. Still, this is prohibitively long for
interactive use in a creative application.

Profiling of the program revealed that approximately 95% of
the elapsed time was spent on synthesizer rendering, while the cal-
culation of novelty added little processing time. Thus, in order for
GA-based synthesizer sound matching to be useful, the synthesis
process needs to be optimized.

Since RenderMan did not allow for hosting of multiple VSTis,
the rendering of the population was not done in parallel. A VST
host software capable of hosting multiple plugins must be devel-
oped to speed up the rendering. Ideally, the synthesizer software
itself should be optimized to allow for a faster batch rendering of
presets. Alternatively, the parameters of the evolution can be op-
timized further for faster convergence, and the evolution can be
ended early when a stopping criteria is met. Finally, surrogate
models are often used as a way to alleviate the need for compu-
tationally expensive evaluations [24]. A surrogate model for the
synthesizer can potentially approximate the fitness and the behav-
ioral characteristics of an individual.

6. CONCLUSIONS

In this paper, a genetic algorithm with novelty objective was ap-
plied to the problem of synthesizer sound matching. Synthesized
sounds were characterized by spectral features, and the novelty
objective encouraged diversity along these features. We showed
that the novelty objective can improve the performance of sound
matching. We also introduced a quality diversity (QD) approach
to the problem of synthesizer sound matching, seeking out a set
of solutions that are high-performing and diverse. The novelty ob-
jective was shown to be effective in exploiting many niches in the
phenotype space. This QD approach allows for a novel, intuitive
way to discover sounds and explore the capabilities of a synthe-
sizer.
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