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ABSTRACT

The recently proposed antiderivative antialiasing (ADAA) tech-
nique for stateful systems involves two key features: 1) replac-
ing a nonlinearity in a physical model or virtual analog simulation
with an antialiased nonlinear system involving antiderivatives of
the nonlinearity and time delays and 2) introducing a digital filter
in cascade with each original delay in the system. Both of these
features introduce the same delay, which is compensated by adjust-
ing the sampling period. The result is a simulation with reduced
aliasing distortion. In this paper, we study ADAA using equivalent
circuits, answering the question: “Which electrical circuit, dis-
cretized using the bilinear transform, yields the ADAA system?”
This gives us a new way of looking at the stability of ADAA and
how introducing extra filtering distorts a system’s response. We
focus on the Wave Digital Filter (WDF) version of this technique.

1. INTRODUCTION

Aliasing mitigation is a central issue in virtual analog modeling.
The simplest way to mitigate aliasing is to oversample [1]. Be-
cause this can be expensive, research often seeks to reduce over-
sampling requirements [2]. The earliest work on antialising in vir-
tual analog considered antialiased oscillators [3], a research thread
which continues today [4, 5]. These techniques have also been ap-
plied to antialias memoryless nonlinear waveshapers [6]. Parker et
al. recently proposed an antialiasing technique called antideriva-
tive antialiasing (ADAA), which involves approximating the pro-
cess of upsampling, distorting, and downsampling using antideriva-
tives of a nonlinear waveshaping functions [7], originally using
1st- and 2nd-order filter kernels. 1st-, 2nd-, and 3rd-order filter
kernels are reformulated and discussed by Bilbao et al. in [8]. Es-
queda et al. showed these techniques applied to case studies: the
classic Lockhart and Serge wavefolder circuits [9]. Alternative
kernels optimized for spectral flatness are discussed in [10].

For physical systems with memory/state, antialiasing tech-
niques are quite complex [11]. [7] showed one example of how to
apply ADAA to a stateful system. Paschou et al. showed [12] how
to apply this technique to the classic Moog ladder filter [13–16].
Holters formalized this further to handle circuits written in the
state-space formalism, using 1st-order ADAA [17, 18]. Carson
extended this to 2nd-order ADAA and proposed a way to handle
two-port nonlinearities [19]. Albertini et al. [20] applied ADAA
to the Wave Digital Filter (WDF) [21–23] modeling formalism.

In applying ADAA to stateful systems, we introduce filters
into feedback paths, so must consider stability. Holters [17, 18]
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showed that the 1st-order ADAA filter in a state-space model pre-
serves stability, since for a linear system the mapping can be ex-
pressed as an inwards contraction of the z-plane.

This raises the question: If we can analyze this part of ADAA
as a deformation of the z-plane, could we also analyze it as a de-
formation of the original continuous-time circuit? This paper finds
the equivalent circuits corresponding to capacitors and inductors
treated with 1st- and 2nd-order ADAA filters.

WDF modeling involves replacing electronic circuit elements
with discrete-time models [21]. Equivalent circuits appear through-
out WDF theory, for instance in deriving scattering matrices of
multiport adaptors [23], studies of higher-order linear multistep
discretization methods [24], interpreting different discretization
methods as the addition of electrical circuits [2], and Runge-Kutta
methods [25,26]. This paper hence connects to a tradition of using
equivalent electronic circuits to analze digital systems.

In the rest of this paper, we review some preliminaries (§2),
convert an ADAA’d capacitor (§3) and inductor (§4) to electronic
circuits, discuss (§5), and conclude (§6). Two Appendices (§§A–
B) present an alternate synthesis perspective, and illustrate how to
apply Brune synthesis (to the 1st-order ADAA’d capacitor).

2. REVIEW

2.1. Wave Digital Filters

The Wave digital Filter (WDF) [21] approach to circuit modeling
involves two key features. First, a transformation at every port of
the circuit of the port voltage v and port current i to an “incident
wave” a and “reflected wave”1 according to

a = v + ZPi
b = v − ZPi

⇐⇒ v = (a+ b)/2
i = (a− b)/2ZP

, (1)

where ZP ̸= 0 is a free parameter called “port resistance.” Second,
derivatives in reactance (inductor and capacitor) constitutive equa-
tions, represented by the Laplace transform variable s, are approx-
imated in discrete-time using the bilinear transform (BLT) [27,28]

s =
2

T

1− z−1

1 + z−1
⇐⇒ z =

2 + Ts

2− Ts
or z−1 =

2− Ts

2 + Ts
, (2)

where z−1 is the discrete delay operator of the Z-transform and
T = 1/fs is the sampling period (reciprocal of the sampling rate
fs). A full review is given in the literature [21–23].

2.2. Antiderivative Antialiasing (ADAA)

Consider a memoryless nonlinear function that produces an out-
put y(t) from an input x(t), of the form y(t) = F0(x(t)). N th-
order ADAA involves replacing F0 with a function of its first N

1We use classic “voltage waves,” though many other wave types exist.
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antiderivatives, F1 through FN , that form a finite-difference ap-
proximation. For instance, 1st-order ADAA is

y[n] = (F1(x[n])− F1(x[n− 1])) / (x[n]− x[n− 1]) (3)

and 2nd-order ADAA is

y[n] =
2

x[n]− x[n− 1]

(
F2(x[n])− F2(x[n− 1])

x[n]− x[n− 1]
. . . (4)

−F2(x[n− 1])− F2(x[n− 2])

x[n− 1]− x[n− 2]

)
.

Various strategies are given for how to handle the case of numerical
ill-conditioning [7, 8, 19], e.g., x[n] ≈ x[n− 1].

For small signal levels, or a linear circuit [19], 1st- and 2nd
order ADAA are equivalent to the FIR filters

HAA,1(z) = Y (z)/X(z) = (1 + z−1)/2 (5)

HAA,2(z) = Y (z)/X(z) = (1 + z−1 + z−2)/3 . (6)

When applying ADAA to stateful systems, the delays are also cas-
caded with one of these filters (5)–(6), to match the delay that the
the normally memoryless nonlinearity experiences [17–20]. In this
paper, we study 1st- and 2nd-order ADAA, in the linear case only,
investigating their effect on linear reactances in circuits.

2.3. Positive real immitances and Brune network synthesis

An immitance (impedance or admittance) W (s) is called “positive
real” (p.r.) if it has the following properties

ℜ{W (s)} > 0 if ℜ{s} > 0 (7)
ℑ{W (s)} = 0 if ℑ{s} = 0 . (8)

A p.r. immitance written as a ratio of polynomials in s must have
all real and positive coefficients, with possibly only a leading or
trailing coefficient in the numerator or denominator equal to zero,
with the order of the numerator and denominator differing by no
more than one [29]. Crucially, a p.r. immitance is realizable as
a one-port circuit network of passive linear elements: resistors,
capacitors, inductors, transformers.

One way of finding this circuit is Brune’s method [29, 30]. It
starts with the so-called “Foster preamble,” which involves succes-
sively removing series or shunt reactances (or pairs of reactances)
from an immitance function, reducing the order of its numerator
or denominator each time. Upon arriving at a circuit with no poles
or zeros at s = 0 or s = ∞, you then remove the minimum
resistance or conductance, then more complicated multi-element
two-ports involving reactances and transformers; the process re-
peats until nothing is left. In this paper, we coincidentally never
need to extract any multi-element two-ports.

3. ANTIALIASED CAPACITOR AS CIRCUIT

In this section, we’ll derive electrical circuits corresponding to 1st-
and 2nd-order ADAA filters applied to a capacitor.

3.1. WDF Leaf Capacitor

First, we’ll consider a “adapted” WDF capacitor [21, 22].
The constitutive equation for a time-invariant capacitor is

V (s) = (1/Cs)I(s) , (9)

where V is the port voltage, I is the port current, C is the capac-
itance, and s is the Laplace differentiation variable. Put another
way, the capacitor’s impedance ZC(s) is

ZC(s) = V (s)/I(s) = 1/Cs . (10)

An impedance Z(s) = V (s)
I(s)

is related to a wave-domain reflectance

R(s) = B(s)
A(s)

, where the wave variables are defined as in (1), by

R(s) =
B(s)

A(s)
=

ZC(s)− ZP

ZC(s) + ZP
(11)

or conversely

Z(s) =
V (s)

I(z)
=

1 +R(s)

1−R(s)
ZP . (12)

Using (11), we can find the continuous time reflectance as

RC(s) =
B(s)

A(s)
=

1− CZPs

1 + CZPs
. (13)

The BLT (2) converts this to a discrete-time reflectance

RC(z) =
B(z)

A(z)
=

(T − 2CZP) + (T + 2CZP)z
−1

(T + 2CZP) + (T − 2CZP)z−1
. (14)

To “adapt” this WDF capacitor—that is, to set the leading numer-
ator term T − 2CZP to zero—we set the free port resistance pa-
rameter to ZP = T

2C
, giving an adapted discrete-time reflectance

RC(z) = z−1 . (15)

3.2. 1st-order ADAA

1st-order ADAA puts an additional filter HAA,1(z), as defined in
Eqn. (5), in cascade with this reflectance. This cascade yields

R̃C(z) = RC(z)HAA,1(z) =
(
z−1 + z−2) /2 . (16)

Now we arrive at a central question of the paper: Which analog
circuit, discretized with the BLT, would have yielded the discrete-
time reflectance (16)? We can approach this question by running
the steps that we took to get from the original capacitor circuit to
the adapted WDF capacitor, in reverse.

First, we comment on the port resistance. Along with treating
the nonlinearity and filtering the states with HAA,1(z), Albertini et
al. [20] adopt the same approach of Holters [17, 18], replacing the
sampling period T with T̃ = 3

2
T (or, the sampling rate f̃s =

2
3
fs),

as part of synchronizing the states with the nonlinearities that have
picked up some extra delay.

We can observe that the only place T really appears in WDFs
is the port resistance of an adapted capacitor (ZP = T

2C
) or an

adapted capacitor (ZP = 2L
T

). In each case, it appears in the same
expression as the capacitance C or inductance L, which also only
occur in the port resistance equations. So, is there any particular
reason that we should interpret the adjustment as a change to T
(resp. fs) instead of an adjustment to C or L? For the moment, we
will hedge our bets, and replace the port resistance ZP = T/2C

with a modified port resistance Z̃P = T̃ /2C̃, where both the sam-
pling period T̃ and capacitance C̃ have been modified in some way,
without making any particular claim about which one (or both?) is
modified, and without defining T̃ = 3

2
T .
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Figure 1: Synthesizing two possible circuits from the continuous-
time capacitor impedance resulting from 1st-order ADAA.

Now, we can use the inverse BLT (2) on (16), again replacing
T by T̃ , to obtain a continuous-time reflectance

R̃C(s) =
B̃(s)

A(s)
=

4− 2T̃ s

4 + 4T̃ s+ T̃ 2s2
. (17)

Now, we can use (12) to find the continuous-time impedance

Z̃C(s) =
8 + 2T̃ s+ T̃ 2s2

6T̃ s+ T̃ 2s2

(
T̃

2C̃

)
. (18)

Even before finding a circuit that goes along with this impedance,
we can see that it represents a passive impedance, because it is p.r..

Unlike in the forwards direction, where we associated a capac-
itor of value C with an impedance ZC = 1

Cs
by inspection (since

the relationship is true by definition!), here we are faced with
a much more complicated network synthesis problem to solve:
Which electrical circuit has the impedance Z̃C(s) shown in (18)?

We can answer this question with the classical Brune synthe-
sis [29, 30] reviewed in §2.3. Fig. 1 shows two possible outcomes
of Brune synthesis on (18). A detailed walkthrough of this proce-
dure is given in Appendix A. The two possible networks that result
each comprise two resistors, a capacitor, and an inductor.

An alternative approach is given in Appendix B. This deriva-
tion relies on an intuitive recognition of known WDF elements, but
yields a network that involves an uncommon circuit element—a
circulator—so it will likely be less useful that the derivation yield-
ing a circuit comprising only one-port RLC elements.
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Figure 2: Synthesizing circuit from capacitor impedance resulting
from 2nd-order ADAA.

3.3. 2nd-order ADAA

2nd-order ADAA instead puts the filter HAA,2(z), as defined in
Eqn. (6), in cascade with the reflectance (15), yielding

R̃C(z) = RC(z)HAA,2(z) = (z−1 + z−2 + z−3)/3 . (19)

Just as in the 1st-order case, we obtain a continuous-time reflectance

R̃C(s) =
B̃(s)

A(s)
=

24− 12T̃ s+ 2T̃ 2s2 − T̃ 3s3

24 + 36T̃ s+ 18T̃ 2s2 + 3T̃ 3s3
. (20)

Using (12), we find the continuous-time impedance

Z̃C(s) =
24 + 12T̃ s+ 10T̃ s2 + T̃ 3s3

(24 + 8T̃ s+ 2T̃ 2s2)T̃ s

(
T̃

2C̃

)
. (21)
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Brune synthesis yields the circuit shown at the bottom of Fig. 2.

4. ANTIALIASED INDUCTOR AS CIRCUIT

The derivation for the WDF inductor with 1st or 2nd-order ADAA
proceeds similarly to the capacitor.

4.1. WDF Leaf Inductor

The constitutive equation for a time-invariant inductor is

V (s) = Ls I(s) , (22)

where L is the inductance. Its impedance is

ZL(s) = V (s)/I(s) = Ls . (23)

Using the BLT (2), (11), and setting port resistance ZP = 2L
T

to
adapt the inductor gives us a discrete-time reflectance

RL(z) = −z−1 . (24)

4.2. 1st-order

For the inductor, 1st-order ADAA (defining ZP = 2L̃

T̃
) yields the

reflectance

R̃L(z) = RL(z)HAA,1(z) = −
(
z−1 + z−2) /2 . (25)

The inverse BLT (2) yields the continuous-time reflectance

R̃L(s) =
B̃(s)

A(s)
=

−4 + 2T̃ s

4 + 4T̃ s+ T̃ 2s2
. (26)

Now, we can use (12) to find the continuous-time impedance

Z̃L(s) =
(6s+ T̃ s2)T̃

8 + 2T̃ s+ s2T̃ 2

(
2L̃

T̃

)
. (27)

Brune synthesis yields the two circuits shown in Fig. 3.

4.3. 2st-order ADAA

For the inductor, 2nd-order ADAA yields the reflectance

R̃L(z) = RL(z)HAA,2(z) = −
(
z−1 + z−2 + z−3) /3 . (28)

The inverse BLT (2) yields the continuous-time reflectance

R̃L(s) =
B̃(s)

A(s)
=

−24 + 12T̃ s− 2T̃ 2s2 + T̃ 3s3

24 + 36T̃ s+ 18T̃ 2s2 + 3T̃ 3s3
. (29)

Now, we can use (12) to find the continuous-time impedance

Z̃L(s) =
(24 + 8T̃ s+ 2T̃ 2s2)T̃ s

24 + 12T̃ s+ 10T̃ 2s2 + T̃ 3s3

(
2L̃

T̃

)
. (30)

Brune synthesis yields the dual of the circuit shown in Fig. 2.

5. DISCUSSION

5.1. Duals

The ADAA’d capacitor and inductors are duals, just like standard
capacitors and inductors. That is, all of the following pairs trade
places: currents and voltages, capacitances and inductances, series
and parallel connections, and impedances and admittances.
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Figure 3: Synthesizing two possible circuits from the continuous-
time inductor impedance resulting from 1st-order ADAA.

5.2. Stability

In all of the presented circuits, since T̃ > 0, positive capacitances
C > 0 (resp. inductances L > 0) treated with 1st- and 2nd-order
ADAA yield networks with positive electrical elements, meaning
that these networks are passive, and hence stable. We can also
confirm that the networks are passive because their impedances are
all p.r. This confirms Holters’ reasoning [17, 18] (on the z-plane),
extending it also to 2nd-order ADAA.

5.3. Asymptotic circuits

Do these circuits, like many digital models, converge to anything
in particular as the fs −→ ∞ (T −→ 0)? In all of the presented
circuits, the first extracted reactance does not depend at all on T̃ .
In the 1st-order ADAA’d cases, it is easy to see which resistors turn
into shorts and which into open circuits as T shrinks, which shows
that the capacitor converges to a capacitor 3

2
C̃ and the inductor

to an inductance 3
2
L̃. Considering also that inductors look like

shorts near DC, and capacitors like open circuits, we can see that
for 2nd-order ADAA, the capacitor converges to a capacitor 2C̃
and the inductor to an inductance 2L̃ as T shrinks.
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Figure 4: Impedance of a standard capacitor, a capacitor treated with 1st-order ADAA, and a capacitor treated with 2nd-order ADAA.
Capacitor value is C = 1 µF, sampling rate is fs = 44100 Hz. Magnitude is shown in the top two panes, and phase is shown in the
bottom two panes. The left two panes show continuous-time responses, and the right two panes compared discrete-time responses of the
ADAA-treated filters to the ideal continuous-time response.

5.4. What changes, T or C (resp. L)?

Now, we revisit C̃ (resp. L̃) and T̃ . These should be set so that
the “asymptotic” circuit as T −→ 0 matches the original ca-
pacitor C (inductor L), i.e., that the low-frequency impedance is
correct. To illustrate this, Fig. 4 shows the magnitude and phase
of the 1st-order ADAA’d capacitor (red, labelled “1st”) and 2nd-
order ADAA’d capacitor (blue, labelled “2nd”). Notice that setting
C̃ = C (dashed red line) has a significant magnitude mismatch
against the ideal capacitor (Z = 1/Cs) at low frequencies, which
is corrected by setting C̃ = 2

3
C (solid red line) resp. C̃ = 1

2
C

(solid blue line). This choice does not affect the impedance phases.
Hence, we argue that for 1st-order ADAA we should set ca-

pacitances to C̃ = 2
3
C (inductances to L̃ = 2

3
L), for 2nd-order

ADAA should set capacitances to C̃ = 1
2
C (inductances to L̃ =

1
2
L), and that in all cases, we should have T̃ = T .

Previous work that applied ADAA to stateful systems [17, 18,
20] instead argued that the sampling period T is adjusted by the in-
troduction of ADAA, reasoning from the perspective of matching
delays. We offer the discussion in this paper as an alternate expla-
nation that is more tightly coupled to reasoning about an analog
circuit prototype, that holds in the limit as T −→ 0 (where argu-
ments about adjusting T would not hold), and that has the addi-
tional benefit of allowing us to still think in terms of the standard
BLT, without considering any frequency warping in particular.

5.5. 1st-order vs. 2nd-order

It is known from the ADAA literature that 2nd-order ADAA sup-
presses aliasing more than 1st order [17, 18, 20]. Can we say any-
thing about the linear behavior? Looking again at Fig. 4, it is worth
mentioning that the 2nd order ADAA’d reactance diverges from

the ideal at a lower frequency, and has more inflections in the mag-
nitude and phase responses (possibly leading to more undesirable
resonances). This means that 2nd-order ADAA probably requires
more oversampling that 1st-order ADAA, and that any artifacts
may be qualitatively different between the two flavors.

6. CONCLUSION

In this paper, we derived electronic circuits representing 1st- and
2nd-order antiderivative antialiasing, operating in the linear regime,
applied to reactances. This gives a new analytical tool for studying
ADAA filters, confirms the stability proof of [17, 18] from a new
angle while extending it to 2nd-order, and gives a new perspective
on warping circuit values rather than the sampling period. Future
work could investigate higher-order ADAA [8, 10] or apply these
concepts to state-space modeling.
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A. APPENDIX: BRUNE SYNTHESIS

In this paper, we’ve synthesized various RLC circuits from
continuous-time impedances using Brune’s method [29,30]. To il-
lustrate the process, we’ll work one of these synthesis procedures
in detail.

Recall the WDF capacitor with added ADAA filter derived in
§3.2. Here, we’ll illustrate the circuit synthesis procedure shown
in Fig. 1. We start with an impedance

Z̃C(s) =
8 + 2T̃ s+ T̃ 2s2

6T̃ s+ T̃ 2s2
T̃

2C̃
. (31)

Z̃C(s) has a pole at s = 0, telling us we can extract a series ca-
pacitor, which we’ll call C∗, leaving behind a reduced impedance
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Figure 5: Alternate ways of synthesizing a circuit from the wave-domain ADAA capacitor or inductor.
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− termination resistor

(a) Capacitor.

4+T̃ s
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2L̃
T̃

)
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T̃2
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− series capacitor

− termination resistor

(b) Inductor.

Figure 6: Synthesizing a circuit from the wave-domain ADAA filter
for a capacitor and inductor (on their own, without the capacitor
or inductor themselves).

Z̃C,1(s). The relationship between these impedances is

Z̃C,1(s) = Z̃C(s)−
1

C∗s
(32)

=
8C∗ + 2C∗T̃ s+ C∗T̃

2s2 − 12C̃ − 2C̃T̃ s

12C̃C∗s+ 2C̃C∗T̃ s2
. (33)

The numerator order of Z̃C,1(s) can be reduced by solving

8C∗ − 12C̃ = 0 , (34)

which is accomplished by C∗ = 3
2
C̃. Extracting the series capac-

itor C∗ leaves behind the impedance

Z̃C,1(s) =
2 + 3T̃ s

18 + 3T̃ s

T̃

2C̃
. (35)

Z̃C,1(s) now has no zeros or poles at s = 0 or s = ∞, meaning
it’s time to extract either a series or parallel resistor. We’ll handle
the two cases separately, in the following two subsections.

A.1. Extracting shunt resistor

The shunt resistor option is shown on the left side of Fig. 1. Ex-
tracting a shunt resistor R∗ leaves behind an impedance Z̃C,2(s).
The relationship between these impedances is

Z̃C,2(s) =
R∗Z̃C,1(s)

R∗ − Z̃C,1(s)
(36)

=
2R∗T̃ + 3R∗T̃

2s

36C̃R∗ + 6C̃R∗T̃ s− 2T̃ − 3T̃ 2s
. (37)

The denominator order of Z̃C,2(s) can be reduced by solving

6C̃R∗T̃ s− 3T̃ 2s = 0 , (38)

which is accomplished by R∗ = T̃

2C̃
. Extracting the shunt resistor

R∗ leaves behind the impedance

Z̃C,2(s) =
2 + 3T̃ s

16

T̃

2C̃
. (39)

Z̃C,2(s) has a pole at s = ∞, telling us we can extract a series
inductor, which we’ll call L∗, leaving behind a reduced impedance
Z̃C,3(s). The relationship between these impedances is

Z̃C,3(s) = Z̃C,2(s)− L∗s (40)

=
2T̃ + 3T̃ 2s− 32C̃L∗s

32C̃
. (41)

The numerator order of Z̃C,3(3) can be reduced by solving

3T̃ 2s− 32C̃L∗s = 0 , (42)

which is accomplished by L∗ = 3T̃2

32C̃
. Extracting the series induc-

tor L∗ leaves behind the impedance

Z̃C,3(s) =
1

8

T̃

2C̃
. (43)

Z̃C,3(s) has no dependence on s, so it is a termination resistor of
value T̃

16C̃
. This concludes the synthesis procedure.
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A.2. Extracting series resistor

The series resistor option is shown on the right side of Fig. 1. As an
alternative to extracting the shunt resistor, we can extract a series
resistor R∗, leaving behind an impedance Z̃C,2(s). The relation-
ship between these impedances is

Z̃C,2(s) = Z̃C,1(s)−R∗ (44)

=
2T̃ + 3T̃ 2s− 36C̃R∗ − 6C̃R∗T̃ s

36C̃ + 6C̃T̃ s
. (45)

The numerator order of Z̃C,2(s) can be reduced by solving

2T̃ − 36C̃R∗ = 0 , (46)

which is accomplished by R∗ = T̃

18C̃
. Extracting the series resis-

tor R∗ leaves behind the impedance

Z̃C,2(s) =
8T̃ s

54 + 9T̃ s

T̃

2C̃
(47)

Z̃C,2(s) has a zero at s = 0, telling us we can extract a shunt
inductor, which we’ll call L∗, leaving behind a reduced impedance
Z̃C,3(s). The relationship between these impedances is

Z̃C,3(s) =
L∗Z̃C,2(s)s

L∗s− Z̃C,2(s)
(48)

=
8L∗T̃

2s2

108C̃L∗s+ 18C̃L∗T̃ s2 − 8C̃T̃ 2s
. (49)

The denominator order of Z̃C,3(s) can be reduced by solving

108C̃L∗s− 8C̃T̃ 2s = 0 , (50)

which is accomplished by L∗ = 2T̃2

27C̃
. Extracting the series induc-

tance L∗ leaves behind the impedance

Z̃C,3(s) =
8

9

T̃

2C̃
. (51)

Z̃C,3(s) has no dependence on s, so it is a termination resistor of
value 4T̃

9C̃
. This concludes the synthesis procedure.

B. APPENDIX: ALTERNATIVE WDF DERIVATION

In §§3–4, we used the wave variable transformation and inverse
BLT to find a continuous-time impedance function corresponding
the ADAA’d WDF capacitor, then finding a corresponding RLC
circuit using Brune synthesis. This Appendix presents an alter-
native perspective, based on recognizing common one- and three-
port WDF building blocks, and still a little bit of Brune synthesis.
Here we only consider 1st-order ADAA for brevity.

B.1. Alternative capacitor derivation

Taking the ± as a + and the port resistance as T̃

2C̃
, Fig. 5a shows

the signal flow graph of a WDF capacitor with an applied 1st-order
ADAA filter. We know already this is formed by cascading an
adapted WDF capacitor (a unit delay z−1 with port resistance T̃

2C̃
)

with the ADAA filter from Eqn. (5).

Recognizing that Fig. 5a has the structure of two cascaded fil-
ters of wave variables, we can pull out the cascading operation
itself as a three-port element, as shown in Fig. 5b (again, taking
the ± as a + and the port resistance as T̃

2C̃
). Then, we can ask

ourselves: “What does cascading look like in the wave domain?”
In fact, there is a standard three-port electrical element that does
this: a circulator with identical port resistance at all three ports.
The port resistance at the external port is already set to T̃

2C̃
, which

constrains its other two ports to have the same port resistance. This
immediately gives us an interpretation of the unit delay as a capac-
itor of value C̃, discretized with the BLT.

Now, how can we interpret the ADAA filter, with port resis-
tance T̃

2C̃
? We again use the Brune synthesis procedure, as il-

lustrated in Fig. 6a. Using the inverse BLT (2) on (5) yields a
continuous-time reflectance

HAA(s) =
2

2 + T̃ s
. (52)

Recalling that the port resistance ZAA = T̃

2C̃
, we can use (12) to

find the continuous-time impedance

ZAA,C(s) =
4 + T̃ s

T̃ s

(
T̃

2C̃

)
. (53)

We now apply Brune synthesis, yielding the series combina-
tion of capacitor 1

2
C̃ and resistor T̃

2C̃
shown in Fig. 6a.

So, finally, we have found that the WDF capacitor plus ADAA
filter can be viewed as a circulator terminated on a capacitor C̃
on one port, and the series combination of a capacitor 1

2
C̃ and

a resistor T̃

2C̃
on the other port.2 A disadvantage of this deriva-

tion, compared to the one presented in §3.2, is that it involves the
slightly unusual electrical element of the circulator, which perhaps
only microwave engineers are comfortable reasoning with. But,
it has the advantage that it makes a clear distinction between the
original capacitor (C̃) and the circuit elements that are added by
the ADAA filter (the circulator, capacitor 1

2
C̃, and resistor T̃

2C̃
),

whereas in our earlier derivation, they are inextricable mixed to-
gether. Thinking back to our earlier discussion on how T̃ and C̃
should be set, this adds another layer of richness—because the ca-
pacitor and resistor that are part of the ADAA filter depend on the
original capacitor C̃, it would appear that there is no adjusting the
ADAA filter without adjusting the original capacitor itself.

B.2. Alternative inductor derivation

The inductor derivations shown in Fig. 5a–5c (taking the ± as a
− and the port resistance as 2L̃

T̃
) and Fig. 6b, proceeds exactly

as for the capacitor. The derivation of the circuit for the ADAA
filter itself starts identically, since it is the same filter as for the
capacitor. Beyond the continuous-time reflectance, the different
port resistance comes into play, and the Brune synthesis yields a
different circuit, as illustrated in Fig. 6b. In fact, it is identical
except that all the impedances are just scaled by 2L̃

T̃
/ T̃

2C̃
= 4C̃L̃

T̃2 .
However, despite this scaling, the filter still comprises a resistor
and a capacitor—it is not the dual of the ADAA filter as applied
to the capacitor. Still, when all four elements are combined (the
two capacitors, resistor, and circulator), the resulting impedance is
indeed the dual of the ADAA’d capacitor.

2From here we can derive the same continuous-time impedance (18).
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