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ABSTRACT

The article performs a generic comparison of integrator- and dif-
ferentiator based continuous-time systems as well as their discrete-
time models, aiming to answer the reoccurring question in the
music DSP community of whether there are any benefits in us-
ing differentiators instead of conventionally employed integrators.
It is found that both kinds of models are practically equivalent, but
there are certain reservations about differentiator based models.

1. INTRODUCTION

Discrete-time block diagrams are commonly used in DSP. Their
most common type of fundamental memory elements are z−1 (unit
delay) blocks. The commonly known direct filter forms I and II,
including their transposed versions, are built around z−1 blocks.

Certain systems are however expressed in terms of larger-scale
blocks, which are not fundamental. For example, the Moog ladder
filter is commonly understood as a feedback loop around a series
of four 1-pole lowpass filters [1]. In comparison, the state-variable
filter (SVF) is understood in terms of integrators [2]. An integra-
tor also provides a building block of a particular 1-pole lowpass
design, known as the “leaky integrator” (Fig. 1).

Integration is fundamentally a continuous-time phenomenon,
thus Fig. 1 can be understood as a continuous-time block diagram,
and so can be the block diagram of an SVF. In fact, continuous
time block diagrams are commonly used alongside discrete time
block diagrams in control theory. In the DSP field their use is tra-
ditionally somewhat less common, but can be encountered e.g. in
the area of virtual analog filters ([3], [4]), where they provide a
visual expression of differential equations describing the system
of interest. In continuous-time block diagrams integrators take the
role of fundamental memory elements. Since the transfer func-
tion of an integrator, expressed in terms of Laplace transform,
is H(s) = 1/s, the integrators are often notated as 1/s or s−1

blocks.
The idea of using differentiators instead of or in addition to

integrators when designing virtual analog systems has come up
regularly in the online music DSP discourse, as well as in some
academic works [5]. Whilst this topic has been touched upon in
existing system theory [6], this motivated the idea of attempting a
deeper discussion of the topic.

In terms of equations, the use of differentiation instead of inte-
gration is just a notational difference. However in continuous-time
block diagrams this already raises some questions. When these
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are further converted to discrete time, there is immediately a ques-
tion, whether the discrete-time systems obtained in two such ways
(using an integrator- or a differentiator based continuous-time pro-
totype) are equivalent.

In this paper we shall take a detailed look into the applicabil-
ity of differentiators in continuous-time block diagrams, as well
as the equivalence aspects of integrator- and differentiator-based
discrete-time models. We are going to show that the continuous-
time applicability occurs under a number of reservations, and so
does the discrete-time equivalence.

In Sec. 2 we discuss differentiation in continuous-time dia-
grams. In Sec. 3 we discuss the discrete-time differentiator-based
one-pole. In Sec. 4 we generalize to arbitrary linear systems. In
Sec. 5 we generalize to nonlinear systems, mixed integration and
differentiation, and arbitrary integration schemes.

2. CONTINUOUS-TIME DIFFERENTIATION

2.1. Continuous-time 1-pole

To illustrate the relationship between integrator- and differentiator-
based continuous-time systems we use a 1-pole lowpass filter. The
integrator-based version of this filter is shown as a block diagram
in Fig. 1, the detailed explanation can be found in [3] Ch.2.

+// // ∫// •//
−
OO

//x(t) y(t)
ωc

Figure 1: Integrator-based 1-pole lowpass filter.

The block diagram in Fig. 1 corresponds to the differential
equation:

ẏ(t) = ωc(t) · (x(t)− y(t)) (1)

where ωc(t) is the (potentially varying) cutoff frequency. This
can be more easily seen by integrating both parts of equation (1)
obtaining

y(t) =

∫ t

0

ωc(τ) (x(τ)− y(τ)) dτ (2)

where we assume a zero initial state at t = 0.
In order to obtain the differentiator-based counterpart of Fig. 1

we need to resolve the equation (1) with respect to y(t), which
gives

y(t) = x(t)− 1

ωc(t)
ẏ(t) (3)

Equation (3) can be expressed in the block-diagram form as shown
in Fig. 2.
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+// •// //

d
dt
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OOx(t) y(t)

1/ωc

Figure 2: Differentiator-based 1-pole lowpass filter.

Under the condition ωc ̸= 0, equations (1) and (3) are equiva-
lent, and so, upon the first look, must be the systems in Figs. 1 and
2 respectively.

2.2. Natural causality

There is however one important difference between equations and
block diagrams in that the latter also express causality (in the form
of directional connections: the upstream output defines the down-
stream input, not vice versa) [7]. This implied causality may also
have been the reason why delay-less loops were de-facto almost
taboo in DSP block diagrams for a long time. In comparison, equa-
tions are typically understood as simply statements that two sides
are equal, without implying which side defines the other, except
for fully explicitly resolved equations, which may be often under-
stood as the RHS defining the LHS, but do not necessarily imply
that.

Now, even though equations are not necessarily explicitly con-
taining any causality information, the associated causality can be
often derived from the context. For example, Ohm’s law U = IR
can describe a situation where the voltage defines the current or
vice versa. If a load is connected to a voltage source, then the cur-
rent is defined by the voltage, not the other way around. In fact, on
a finer time scale the current is not simply equal to U/R. Suppose
there is no voltage on a load and respectively no current flowing
through it, and then a voltage is suddenly applied. Since the elec-
trons have a mass, it will take a certain amount of time for the
electrons to start moving. Respectively, the current will gradually
grow until the electrons are finally moving at a speed such that the
applied voltage is fully balanced out by the resistance of the me-
dia. Thus, the current value given by U/R is not the instantaneous
one but rather the limiting one, which is attained after the system
stabilizes. Respectively, Ohm’s law gives an equation describing
the stablized rather than the instantaneous state. Typically we are
interested in time scales much larger than the characteristic time
of such stabilization and thus Ohm’s law provides an acceptable
simplification.

Certain equations unequivocally imply causal relationships.
E.g. the capacitor equation

q̇ =
d

dt
(CU) = I (4)

actually expresses the fact that the capacitor charge q = CU is
obtained as the accumulated current:

q = CU =

∫ t

0

I(τ) dτ (5)

that is, the capacitor charge is the result of accumulating the cur-
rent applied to the capacitor. Similarly the inductor current is the
result of accumulating the applied voltage.

Thus, in the causal sense, the capacitor and the inductor are
behaving as integrators rather than differentiators. It would be ap-
propriate therefore to represent them as integrators after converting

the circuit schematics to a (continuous-time) block diagram, and
conversely, representing them as differentiators would look like
ignoring their natural causality.

Since the capacitor and the inductor equations are the only
differential equations occurring in descriptions of typical simple
circuits, it follows that their block diagram representations would
naturally contain integrators, whereas differentiator forms would
be “causally unnatural”.

2.3. Differentiator lookahead

The formal definition of a derivative involves looking at the values
before and after the point of interest. Thus, differentiation (with
respect to time) implies (if only an infinitely small) lookahead, and
hence by definition is not causal.

This raises an interesting philosophical question - Maxwell’s
equations contain time derivatives of the strengths of electric and
magnetic fields, and, by the nature of those equations, this differ-
entiation must be causal. Without trying to get into further philo-
sophical depths, we would be happy just with pointing out this
difficulty, as well as with noticing that we could at least attempt to
amend the difficulty by understanding time derivatives as left-hand
derivatives.

2.4. Implied bandlimitedness

We are now going to highlight one further not so obvious aspect
of block diagrams: the causality of the connections also implies
their bandlimitedness. This aspect is typically irrelevant, how-
ever becomes somewhat important with instantaneous (delay-less
or integrator-less) feedback loops and even more important with
differentiators in feedback loops, so that it cannot be really ignored
anymore.

The concept of causality involves a time relationship between
two events: A must happen before B. In discrete-time block di-
agrams this manifests itself in the order of computations implied
by the directions of the connections. Discrete-time block diagrams
conceptually operate in an ideal world, where the time is “frozen”
during each sample, however within this “frozen time” there is a
“nested” time scale, on which the computations occurring within
this sample are ordered.

This nested time scale becomes crucial in causal treatment of
delay-less feedback loops. One way of understanding those, pro-
posed in [8], is to treat this nested scale as also discrete. For delay-
less feedback loops this conceptually implies introducing an “in-
finitely short” delay into the loop and running such loop infinitely
many times. In case the iterations converge, the limiting value is
taken as the value produced during the “primary time scale sam-
ple”. This approach however converges only for |g| < 1 where g
is the instantaneous loop gain.

An approach which converges ∀g < 1 (or ∀Re g < 1 if
g ∈ C) is to treat the nested time scale as a continuous time one.1

The details can be found in [3] Sec.3.13. This can be seen as in-
troducing a ”very high cutoff” causal lowpass filter instead of in-
troducing a ”very short” delay, thereby bandlimiting the loop. The
same approach can be also applied to continuous time block dia-
grams, where instead of a “nested time scale” it would be more
appropriate to talk of a “finer time scale”. Notice that this finer

1g ≤ −1 can particularly occur in trapezoidal integration at high cutoff
values. The divergence at g ≥ 1 corresponds to leaving the limits of the
integration scheme’s applicability.
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time scale idea is exactly the same one which we introduced in the
discussion of Ohm’s law in Sec.2.2, thus it has a 1:1 correspon-
dence to the behavior of real world systems.

For a loop containing an integrator this bandlimiting is irrel-
evant, because the loop gain of such loop at high frequencies is
very small anyway (from the time-domain perspective, an inte-
grator cannot change its value instantaneously, as long as its in-
put is finite). In pure algebraic instantaneous loops the gain is
frequency-independent, therefore it’s no longer small at high fre-
quencies. Bandlimiting of such loops simply allows their causal
treatment. For loops containing differentiators (and no integra-
tors) the gain indefinitely grows with frequency. A bandlimiting
filter with a stronger rolloff, and respectively stronger phase shift
in the transition and stop bands, will be therefore required, and
it’s difficult to say whether it will be always possible to ignore the
arising artifacts. Attempting a causal time-domain analysis of such
instantaneous feedback loop is also problematic as we will need to
infinitely differentiate rather than infinitely integrate the input sig-
nal, which creates difficulties with any kind of discontinuities in
the signal or its derivatives.

Thus, there are certain difficulties with continuous-time block
diagrams containing differentiators, and especially containing dif-
ferentiators in integrator-less loops. Ultimately all those difficul-
ties originate from the causal interpretation of continuous-time
block diagrams. The switch from integrators (s−1 blocks) to
differentiators (s blocks) can be compared to an attempt to use
z blocks instead of z−1 blocks in discrete-time block diagrams,
which would be a clear violation of causality.

3. DISCRETE-TIME 1-POLE

The situation looks notably different in the discrete-time case. The
main reasons for this are probably the causality of some of com-
monly used discrete-time differentiation schemes as well as the in-
herently limited bandwidth of the media. Respectively, with differ-
entiators in feedback loops we are going to get the usual (more or
less) delay-less feedback loops, like the ones occurring in implicit
integration methods. We will start the discussion by converting
the differentiator-based 1-pole (Fig. 2) to discrete time and com-
pare the conversion result to the conversion result of the integrator-
based 1-pole (Fig. 1).

3.1. Integrator-based discrete-time 1-pole

First, let’s establish the reference by converting the integrator based
1-pole to discrete time. The trapezoidal integration scheme is a
popular choice. In the equation form we would need to replace the
integration in equation (2) by the trapezoidal integration:

y[n] = y[n− 1] +
x[n] + x[n− 1]

2
(6)

(where we assume the unit sampling period and where x and y
stand for the integrator’s input and output signals respectively).
In block-diagram terms we can just replace the integrator block
in Fig. 1 by a discrete-time integrator implementing trapezoidal
integration. Taken literally, equation (6) implies a direct form I
integrator, however we can take any other structure implementing
the same discrete-time transfer function.2 A popular topology for

2Any integrator structure implementing the same transfer function is
going to result in the same behaviour of the entire system. This fact might

the trapezoidal integrator is the transposed direct form II (Fig. 3).
Compared to direct form I, this topology uses only a single z−1

block, while, compared to direct form II, the value stored in the
z−1 block’s memory is approximately equal to the integrator’s out-
put value. See [3] Sec.3.6 for an explicit derivation of Fig. 3.

// •// +// •// //

+//

z−1

OO

OO

oo

1
2

Figure 3: Transposed direct form II trapezoidal integrator.

Substituting Fig. 3 into Fig. 1 we obtain the block diagram in
Fig. 4.

+// // •// +// •// •// //

+//

z−1

OO

OO

oo

− ��
x[n] y[n]

ωc[n]
2

Figure 4: Integrator-based discrete-time 1-pole lowpass.

Let u[n] denote the input of the z−1 block in Fig. 4 at time
moment n. Respectively, the output of the z−1 block at the same
time is u[n − 1]. Effectively u[n − 1] is the system state at the
beginning of the n-th sample, and u[n] is the system state at the
end of the n-th sample.

Writing the equation for the main feedback loop we obtain

y[n] =
ωc[n]

2
(x[n]− y[n]) + u[n− 1] (7)

Following the discussion given in Sec. 2.4 the convergence condi-
tion for the instantaneous loop is that the loop’s gain must be less
than unity. By (7) the instantaneous loop gain (which is equal to
the coefficient at y[n] in the RHS) is −ωc[n]/2 and the loop con-
verges as long as −ωc/2 < 1, that is ωc > −2 (smaller values of
ωc break the applicability limits of trapezoidal integration).

be obvious with explicit integration schemes, where the integrator’s output
depends only on past input, and is also obvious in the LTI case, where we
can reason about the entire system in terms of transfer functions. Now
consider the case of an implicit scheme integrator in a non-LTI case. The
integrator itself is still LTI and can be associated with its transfer function
H(z). Since the scheme is implicit, H(z) is a nonstrictly proper rational
function of z. Rewrite it as a strictly proper function plus a constant term:
H(z) = G(z) + g. The term G(z) will define the explicit part of the
scheme and at each moment its output is determined solely by the past
history. The term g defines the integrator’s feedforward delay-less path’s
gain, which is solely responsible for making the scheme implicit. Since
H(z) is always the same, g is also always the same, and at each sample
we will be always arriving at the same implicit equation with the same
parameter values, thereby producing the same output and the same new
system state, no matter what the specific integrator structure is.
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Resolving with respect to the output signal y[n] we obtain

y[n] =

(
1 +

ωc[n]

2

)−1 (
ωc[n]

2
x[n] + u[n− 1]

)
(8)

The state update equation is obtained by writing the equation for
the trapezoidal integrator part:

u[n] = 2
ωc[n]

2
(x[n]− y[n]) + u[n− 1] (9)

We are going to use these equations as the reference to compare
the differentiator-based discrete-time lowpass to.

3.2. Differentiator-based discrete-time 1-pole

In order to obtain a differentiator-based discrete-time 1-pole we
need to substitute a “trapezoidal differentiator” into Fig. 2. The
difference equation for the trapezoidal differentiator can be ob-
tained by inverting the equation (6), yielding

y[n] = 2(x[n]− x[n− 1])− y[n− 1] (10)

(where we also swapped x and y notation, so that x is the differ-
entiator’s input and y is the differentiator’s output).

We could now use some standard topology to implement equa-
tion (10), but we also can simply do a minor tweak to the integrator
in Fig. 3 instead. Consider the transfer function of a trapezoidal in-
tegrator. Regardless of the implementation topology, the transfer
function is

H(z) =
1

2
· z + 1

z − 1
=

1

2
· 1 + z−1

1− z−1
(11)

(which is simultaneously the substitution formula for s−1 in the bi-
linear transform). Since differentiation is reciprocal to integration
in the s-domain, the transfer function of a trapezoidal differentia-
tor must be the reciprocal of equation (11):

H(z) = 2
z − 1

z + 1
= 2

1− z−1

1 + z−1
(12)

Comparing equation (12) to equation (11), we notice that the only
difference, besides the reciprocated gain, is that the sign of z−1

has been flipped everywhere. We can therefore simply take the
block diagram in Fig. 3 and invert the sign of the signal before or
after the z−1 block, obtaining the block diagram in Fig. 5, where
we also remembered to reciprocate the gain. We also moved the
gain from the input to the output position, this is purely a conve-
nience transformation, which we are going to appreciate a bit later
(it doesn’t affect the result, but it will be simpler to compare the
result to the reference).

•// +// •// // //

+//

z−1

OO

−
OO

oo

2

Figure 5: Trapezoidal differentiator.

Substituting Fig. 5 for the differentiator in Fig. 2 we obtain the
block diagram in Fig. 6.

••oo+ oo•oooo+
−oo//

+ oo

z−1

OO

−
OO

//

�� //x[n] y[n]
2

ωc[n]

Figure 6: Differentiator-based discrete-time 1-pole lowpass.

Again, let u[n] denote the input of the z−1 block in Fig. 6 at
time moment n. Writing the equation for the main feedback loop
we obtain

y[n] = x[n]− 2

ωc[n]
(y[n]− u[n− 1]) (13)

Resolving for y[n] we get

y[n] =

(
1 +

2

ωc[n]

)−1 (
x[n] +

2

ωc[n]
u[n− 1]

)
(14)

By multiplying the expressions in each pair of parentheses in (14)
by ωc[n]/2 we obtain equation (8). That is, the main feedback
equations for the integrator- and differentiator-based 1-poles are
equivalent, at least for ωc ̸= 0.

Now let’s write the state update equation by writing the equa-
tion for the differentiator part of Fig. 6:

u[n] = 2y[n]− u[n− 1] (15)

On the other hand, we have just established the equivalence of (14)
and (8). Respectively (13) and (7) are also equivalent and we can
substitute (7) into (15):

u[n] = 2

(
ωc[n]

2
(x[n]− y[n]) + u[n− 1]

)
− u[n− 1] (16)

It’s easy to see that (16) is equivalent to (9).
What is however not identical between the two versions are the

convergence conditions of the instantaneous feedback loop. As we
should remember, the convergence occurs when the instantaneous
loop gain is less than unity. By (13), the instantaneous loop gain
for Fig. 6 is −2/ωc, thus the convergence condition is −2/ωc < 1,
that is 1/ωc > − 1

2
, that is either ωc > 0 or ωc < −2. The instan-

taneous loop therefore fails to converge for −2 ≤ ωc ≤ 0. This is
different from the convergence condition of the instantaneous loop
in Fig. 4. The formal solution (8), (9) is the same for both filters,
however the applicability range is different. It is unlikely, though,
that the solution obtained for ωc < −2 is going to make much
sense, since this is the range where trapezoidal integration doesn’t
work well,3 and the solution formula is exactly the same for both
integration and differentiation.

Thus, the differentiator-based 1-pole lowpass in Fig. 6 is fully
equivalent to the integrator-based 1-pole lowpass in Fig. 4 only in
the range ωc > 0. For other values of ωc the equivalence is at least
questionable. Now was this equivalence occurring for ωc > 0 pure
luck or is this a general property?

3In continuous time the output is exponentially growing, in discrete
time the output is exponentially growing and alternating sign with each
sample, caused by a pole at z = (1− ωc/2)/(1 + ωc/2) < −1.
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4. ARBITRARY LINEAR SYSTEMS

4.1. Continuous-time prototypes

Let’s now suppose we are given an arbitrary integrator-based block-
diagram of a linear differential system. Pretty much any such block
diagram4 can be transformed into the generic state space block di-
agram form (Fig. 7).

•// // +//
∫// •// // +// //

//
��

oo
OO

D

A

B C

x y

Figure 7: A generic state-space block-diagram. All signals are
vectors (of potentially different dimensions) and all gains are ma-
trices.

As we did with the 1-pole in Sec.3, we would like to obtain a
corresponding differentiator-based block diagram. Following the
same steps as in Sec.3, we write the equations describing the sys-
tem in Fig. 7:

u̇(t) = A(t)u(t) +B(t)x(t)

y(t) = C(t)u(t) +D(t)x(t)
(17)

where u is the state vector. Just for the reference we can also
rewrite equations (17) in the explicit integrating form, similar to
(2):

u(t) =

∫ t

0

(A(τ)u(τ) +B(τ)x(τ)) dτ

y(t) = C(t)u(t) +D(t)x(t)

(18)

To obtain the equivalent equations in an explicit differentiating
form, we introduce u′ = u̇ as the new state variable.5 By the
first of equations (17)

u(t) = A−1(t)u′(t)−A−1(t)B(t)x(t) (19)

and it follows that

u′(t) = u̇(t) =
d

dt

(
A−1(t)u′(t)−A−1(t)B(t)x(t)

)
(20)

while by the second of (17)

y(t) = C(t)
(
A−1(t)u′(t)−A−1(t)B(t)x(t)

)
+D(t)x(t)

(21)
Introducing matrices

A′(t) = A−1(t)

B′(t) = −A−1(t)B(t)

C′(t) = C(t)A−1(t)

D′(t) = D(t)−C(t)A−1(t)B(t)

(22)

4The exceptions can occur in an exotic case of non-converging
integrator-less feedback loops with gains g ≥ 1.

5The prime sign here doesn’t denote a derivative, u′ is simply a differ-
ent variable than u.

we obtain the equations in the explicit differentiation form:

u′(t) =
d

dt

(
A′(t)u′(t) +B′(t)x(t)

)
y(t) = C′(t)u′(t) +D′(t)x(t)

(23)

The block diagram in Fig. 8 implied by (23) is fully analogous to
the one in Fig. 7.

•// // +// d
dt
// •// // +// //

//
��

oo
OO

D′

A′

B′ C′
x y

Figure 8: A generic state-space block-diagram in the
differentiator-based form.

Conversely, given a block diagram in the form of Fig. 8, we
can invert (22) to obtain the coefficients of the representation in
the form of Fig. 7:

A(t) = A′−1(t)

B(t) = −A′−1(t)B′(t)

C(t) = C′(t)A′−1(t)

D(t) = D′(t)−C′(t)A′−1(t)B′(t)

(24)

It follows that the block diagram in Fig. 7 can be equivalently
represented by the one in Fig. 8, provided A(t) is nonsingular at
all t. Conversely, the block diagram in Fig. 7 can be equivalently
represented by the one in Fig. 8, provided A′(t) is nonsingular at
all t. Thus, under the reservations discussed in Sec.2, we can con-
sider non-singular integrator- and differentiator-based state-space
forms as equivalent.6

4.2. Integrator discretization

We now wish to find out if this equivalence is preserved by time
discretization. For the sake of limited space we are going to use
the direct form I integration and differentiation topologies (Figs. 9
and 10) which are directly expressing the formulas (6) and (10),
thereby simplifying the algebraic transformations. The analysis of
the general case, which includes the use of arbitrary topologies is
done in Sec. 5.

•// +// // +// •// //

z−1//
OO

z−1 oo
OO

1
2

Figure 9: Direct form I trapezoidal integrator.

6Notably, a singular A(t) implies that one of the eigenvalues of A(t)
(which are the system poles) is zero, thus the system performs pure inte-
gration along the dimension of the respective eigenvector. Clearly, pure in-
tegration cannot be equivalently expressed via differentiation. Conversely,
a singular A′(t) would correspond to pure differentiation done along some
eigenvector of A′(t), which cannot be expressed via integration. As feed-
forward integration is rarely used in music DSP, this case is not important.
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•// +// // +// •// //

z−1// −
OO

z−1 oo−
OO

2

Figure 10: Direct form I trapezoidal differentiator.

Let’s first discretize the integrator form and use the result as
the reference. Algebraically, substituting Fig. 9 into Fig. 7 means
substitution of equation (6) into (18), yielding

u[n] = u[n− 1] +
1

2
(A[n]u[n] +B[n]x[n]

+A[n− 1]u[n− 1] +B[n− 1]x[n− 1])

y[n] = C[n]u[n] +D[n]x[n]

(25)

where the second of equations (18) is simply discretized naively.
The first of the equations (25) can be resolved in respect to u[n]
yielding

u[n] =

(
1− A[n]

2

)−1 ((
1 +

A[n− 1]

2

)
u[n− 1]

+
1

2

(
B[n]x[n] +B[n− 1]x[n− 1]

))
y[n] = C[n]u[n] +D[n]x[n]

(26)

4.3. Differentiator discretization

Substitution of Fig. 10 into Fig. 8 algebraically means substitution
of equation (10) into (23), yielding

u′[n] = 2
(
A′[n]u′[n] +B′[n]x[n]−A′[n− 1]u′[n− 1]

−B′[n− 1]x[n− 1]
)
− u′[n− 1]

ỹ[n] = C′[n]u′[n] +D′[n]x[n]
(27)

We denoted the output signal as ỹ[n] because at this moment we
don’t know yet whether the output signals of (25) and (27) are
identical.

Resolving the first equation in respect to u′[n] we obtain:

u′[n] =
(
1− 2A′[n]

)−1
(
2B′[n]x[n]− 2B′[n− 1]x[n− 1]

−
(
1 + 2A′[n− 1]

)
u′[n− 1]

)
ỹ[n] = C′[n]u′[n] +D′[n]x[n]

(28)

4.4. Equivalence

Expressing the second of the equations (28) in terms of matrices
A, B, C, D we obtain

ỹ[n] = C[n]A−1[n]u′[n] +
(
D[n]−C[n]A−1[n]B[n]

)
x[n]

(29)
We want to check if ỹ[n] = y[n]. By (29) and (26) this is equiva-
lent to

C[n]A−1[n]u′[n] +
(
D[n]−C[n]A−1[n]B[n]

)
x[n]

= C[n]u[n] +D[n]x[n]
(30)

or

C[n]A−1[n]u′[n]−C[n]A−1[n]B[n]x[n] = C[n]u[n] (31)

which holds if

A−1[n]u′[n]−A−1[n]B[n]x[n] = u[n] (32)

or
u′[n]−B[n]x[n] = A[n]u[n] (33)

or
u′[n] = A[n]u[n] +B[n]x[n] (34)

Let’s see if condition (34) holds. Suppose both systems are
starting from zero initial states u[n] = u′[n] = 0 ∀n ≤ 0 and
receive the same input signal x[n] starting with n = 1, while
x[n] = 0 ∀n ≤ 0. Apparently, (34) holds ∀n ≤ 0.7 We are
going to show by induction that (34) also holds ∀n > 0.

Suppose we are at a sample n > 0 and suppose (34) holds for
all previous samples. Taking the first of the equations of (28) and
expressing it in terms of matrices A, B, C, D, we obtain

u′[n] =
(
1− 2A−1[n]

)−1
(
− 2A−1[n]B[n]x[n]

+ 2A−1[n− 1]B[n− 1]x[n− 1]

−
(
1 + 2A−1[n− 1]

)
u′[n− 1]

)
(35)

Since (34) holds at n − 1 by our assumption, we can substitute it
for u′[n− 1], obtaining

u′[n] =
(
1− 2A−1[n]

)−1
(
− 2A−1[n]B[n]x[n]

+ 2A−1[n− 1]B[n− 1]x[n− 1]

−
(
1 + 2A−1[n− 1]

)(
A[n− 1]u[n− 1]

+B[n− 1]x[n− 1]
))

=
(
1− 2A−1[n]

)−1
(
− 2A−1[n]B[n]x[n]

−B[n− 1]x[n− 1]−
(
2 +A[n− 1]

)
u[n− 1]

)
=

(
A[n]

2
− 1

)−1
A[n]

2

(
− 2A−1[n]B[n]x[n]

−B[n− 1]x[n− 1]−
(
2 +A[n− 1]

)
u[n− 1]

)
=

(
1− A[n]

2

)−1 (
B[n]x[n] +

A[n]

2
B[n− 1]x[n− 1]

+A[n]

(
1 +

A[n− 1]

2

)
u[n− 1]

)
(36)

On the other hand, taking the RHS from the first equation of (26)

7In principle we can assume any other initial conditions, as long as they
satisfy (34) ∀n ≤ 0.
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and substituting it for u[n] into the RHS of (34) we obtain

A[n]u[n] +B[n]x[n] = A[n]

(
1− A[n]

2

)−1

×
((

1 +
A[n]

2

)
u[n− 1]

+
1

2

(
B[n]x[n] +B[n− 1]x[n− 1]

))
+B[n]x[n]

=

(
1− A[n]

2

)−1 (
A[n]

(
1 +

A[n]

2

)
u[n− 1]

+
A[n]

2

(
B[n]x[n] +B[n− 1]x[n− 1]

))
+B[n]x[n]

=

(
1− A[n]

2

)−1 (
A[n]

(
1 +

A[n]

2

)
u[n− 1]

+
A[n]

2

(
B[n]x[n] +B[n− 1]x[n− 1]

)
+

(
1− A[n]

2

)
B[n]x[n]

)
=

(
1− A[n]

2

)−1 (
A[n]

(
1 +

A[n]

2

)
u[n− 1]

+
A[n]

2
B[n− 1]x[n− 1] +B[n]x[n]

)
(37)

where we used the fact that matrices A and (1−A/2)−1 commute.
Now (36) and (37) provide expressions for the LHS and RHS of
(34) respectively. Since both expressions are identical, (34) holds
at sample n and ỹ[n] = y[n]. By induction, ỹ = y holds at any
n > 0 and therefore the formal solutions are 100% equivalent.

There is, however, again a reservation about instantaneous loop
convergence. By interpreting u[n] in the first of equations (25) in
the eigenbasis of A[n] we notice that the instantaneous loop gains
associated with each of the respective dimensions are the eigen-
values of A[n]/2. On the other hand, the instantaneous loop gains
in (27) are the eigenvalues of 2A′[n] = 2A−1[n], which are the
reciprocals of the eigenvalues of A[n]/2. The instantaneous loop
convergence is therefore identical only for eigenvalues in the left
semiplane (which correspond to stable filters).8

5. THE FULLY GENERAL CASE

We would have liked to perform the generalizations of the just ob-
tained results step by step, where the generalizations include mix-
ing of integrators and differentiators within one system, systems
with nonlinear waveshapers and arbitrary (but still mutually in-
verse) discrete-time integration and differentiation schemes. How-
ever for the sake of limited space we are going to do multiple gen-
eralization steps at once, leaving it to the reader(s) to fill in the
gaps, if desired.

8The discrete-time poles are at z = (1 + λi/2)/(1 − λi/2) where
|λi −A| = 0, so that alternating-sign growing exponential output occurs
for Reλi > 2. The divergence of the discrete-time instantaneous loop
occurs at Reλi ≥ 2 in the integrator case and at 0 ≤ Reλi ≤ 2 in the
differentiator case.

5.1. Continuous-time prototypes

Let’s split the state vector u in equation (18) into two vectors
which we denote u and v. The u components will be still ob-
tained by integration, while v components will be obtained either
by integration (in our reference system) or by differentiation.

Our reference (explicitly integrating) system is therefore

u(t) =

∫ t

0

F (u(τ),v(τ),x(τ), τ) dτ

v(t) =

∫ t

0

G(v(τ),u(τ),x(τ), τ) dτ

y(t) = H(u(t),v(t),x(t), t)

(38)

To obtain the mixed (integrating and differentiating) form, in-
troduce the new variable v′ = v̇. By (38):

v′(t) = v̇(t) = G(v(t),u(t),x(t), t) (39)

v(t) = G−1(v′(t),u(t),x(t), t) (40)
where the inversion of G is done in respect to the first argument
only, therefore the remaining arguments are considered as function
parameters. Introducing new function G′ = G−1

v(t) = G′(v′(t),u(t),x(t), t) (41)

Differentiating (41) in respect to t:

v′(t) = v̇(t) =
d

dt
G′(v′(t),u(t),x(t), t) (42)

Reexpressing the remaining 2 equations of (38) in terms of v′:

u(t) =

∫ t

0

F
(
u(τ), G′(v′(τ),u(τ),x(τ), τ),x(τ), τ

)
dτ

=

∫ t

0

F ′(u(τ),v′(τ),x(τ), τ) dτ (43)

y(t) = H
(
u(t), G′(v′(t),u(t),x(t), t),x(t), t

)
= H ′(u(t),v′(t),x(t), t) (44)

where we introduced two further functions F ′ and H ′. Ultimately
we obtain a mixed system:

u(t) =

∫ t

0

F ′(u(τ),v′(τ),x(τ), τ) dτ

v′(t) =
d

dt
G′(v′(t),u(t),x(t), t)

y(t) = H ′(u(t),v′(t),x(t), t)

(45)

which is mathematically equivalent to (38) under the assumption
of invertibility of G. Conversely, (45) can be equivalently con-
verted to (38), provided G′ is invertible.

5.2. Discrete-time integration and differentiation operators

In order to abstract our discussion from the specific integration and
differentiation schemes used, we need to introduce discrete-time
integration and differentiation operators.

Let I be an operator defining the discrete-time integration
scheme in question and D be the corresponding discrete-time dif-
ferentiation operator. E.g. the trapezoidal integration operator is
defined by (6), which in the operator notation takes the form

(Ix)[n] = (Ix)[n− 1] +
x[n] + x[n− 1]

2
(46)
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meaning that for an input sequence x[·] the operator I returns an
output sequence y[·] = (Ix)[·], such that x[·] and y[·] satisfy
(6). Similarly, the trapezoidal differentiation operator is defined
by (10).

In the discussion, which follows, the operators I and D can be
two arbitrary mutually inverse operators. Formally, their composi-
tion should produce an identity operator: DI = ID = 1.9 Thus
our discussion will be able to accommodate various discrete-time
integration schemes, but in principle the operators do not have to
be anything close to integration and differentiation. In order to
be usable in practice, both schemes need to be causal and imple-
mentable with a finite memory amount. The approach is thus re-
stricted to implicit schemes, as the inverse of an explicit scheme
is non-causal. In particular, the forward-difference Euler scheme
would be thereby excluded, as its discrete-time differentiation is
not causal.

5.3. Equivalence

Discretizing (38) we obtain

u[·] = IF (u[·],v[·],x[·], ·)
v[·] = IG(v[·],u[·],x[·], ·)
y[n] = H(u[n], [n],x[n], n)

(47)

while discretizing (45) we obtain

ũ[·] = IF ′(ũ[·],v′[·],x[·], ·)
v′[·] = DG′(v′[·], ũ[·],x[·], ·)
ỹ[n] = H ′(ũ[n],v′[n],x[n], n)

(48)

where we introduced variables ũ and ỹ, because we don’t know
yet whether they will be equal to u and y, this is what we want to
find out.

By the second of the equations (48)

Iv′[·] = G−1(v′[·], ũ[·],x[·], ·) (49)

Let ṽ[·] = Iv′[·], respectively v′[·] = Dṽ[·] (the idea of the
notation ṽ is that we hope that ṽ = v). The above equation turns
into

ṽ[·] = G−1(v′[·], ũ[·],x[·], ·) (50)

and further into

ṽ[·] = G−1(Dṽ[·], ũ[·],x[·], ·) (51)

Dṽ[·] = G(ṽ[·], ũ[·],x[·], ·) (52)

ṽ[·] = IG(ṽ[·], ũ[·],x[·], ·) (53)

On the other hand, by the first of equations (48) and by the intro-
duction of F ′ and G′

ũ[·] = IF ′(ũ[·],v′[·],x[·], ·)
= IF

(
ũ[·], G−1(v′[·], ũ[·],x[·], ·),x[·], ·

)
= IF

(
ũ[·], G−1(Dṽ[·], ũ[·],x[·], ·),x[·], ·

)
= IF (ũ[·], ṽ[·],x[·], ·) (54)

9It is not difficult to verify by induction that the operators defined by
(6) and (10) are mutually inverse.

Combining (54) and (53) we obtain an equation system

ũ[·] = IF (ũ[·], ṽ[·],x[·], ·)
ṽ[·] = IG(ṽ[·], ũ[·],x[·], ·)

(55)

which is identical to the first two equations of (47). It follows that
ũ = u and ṽ = v and it remains to show that ỹ = y.

Taking the third of the equations (48) we obtain

ỹ[n] = H ′(ũ[n],v′[n],x[n], n)

= H
(
ũ[n], G−1(v′[n], ũ[n],x[n], n),x[n], n

)
= H(ũ[n], ṽ[n],x[n], n)

= H(u[n],v[n],x[n], n) = y[n] (56)

where we used (50) to get rid of v′. Both systems thus have iden-
tical output. The instantaneous loop convergence is however still
subject to the usual reservations.

6. CONCLUSION

We have shown that continuous-time integrator- and differentiator-
based (as well as mixed) systems defined in terms of block dia-
grams are equivalent, with certain bandlimiting reservations aris-
ing from causality aspects implied with block diagrams contain-
ing differentiators. In discrete time the equivalence holds as well,
under reservations this time occurring with unstable differentiator-
based systems. For most practical purposes, integrator- and differ-
entiator based systems can be considered equivalent and there is
no immediate benefit in using differentiators.
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