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ABSTRACT

Decomposition of sounds into their sinusoidal, transient, and noise
components is an active research topic and a widely-used tool in
audio processing. Multiple solutions have been proposed in recent
years, using time–frequency representations to identify either hor-
izontal and vertical structures or orientations and anisotropy in the
spectrogram of the sound. In this paper, we present SiTraNo: an
easy-to-use MATLAB application with a graphic user interface for
audio decomposition that enables visualization and access to the
sinusoidal, transient, and noise classes, individually. This applica-
tion allows the user to choose between different well-known sep-
aration methods to analyze an input sound file, to instantaneously
control and remix its spectral components, and to visually check
the quality of the separation, before producing the desired output
file. The visualization of common artifacts, such as birdies and
dropouts, is demonstrated. This application promotes experiment-
ing with the sound decomposition process by observing the effect
of variations for each spectral component on the original sound
and by comparing different methods against each other, evaluating
the separation quality both audibly and visually. SiTraNo and its
source code are available on a companion website and repository.

1. INTRODUCTION

Sound decomposition into sinusoidal, transient, and noise com-
ponents1 has been a topic of interest for many years now. It has
proved itself as an useful tool in many application, such as beat
tracking and tempo estimation [4], tonality estimation [5], spectral
complexity reduction in cochlear implants [6], virtual bass sys-
tems [2], restoration of drum sounds and other music information
retrieval tasks [7]. The sines–transients–noise (STN) separation is
also applied in time-scale modification methods [8], having lately
been combined with fuzzy logic to improve [1, 9] or evaluate time–
stretching performance [3].

The idea behind STN separation is that any audio signal can be
described as a sum of tonal events (sines), impulsive events (tran-
sients), and a residual part that does not clearly belong to either

1In recent literature, these components have been often referred to as
“Harmonic–Percussive–Residual”, but this terminology can be misleading,
as the first class aims at identifying sinusoidal structures more than har-
monical ones. For this reason, the authors prefer the “Sines–Transients–
Noise” definition, following the Sines+Transients+Noise model formula-
tion and being consistent with previous publications [1, 2, 3].
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one of the other two classes (noise). Verma and Meng [10] first
introduced the idea of a three-way decomposition, motivating that,
in the context of signal analysis and synthesis, the cemented sines
+ noise model could highly benefit from the inclusion of a third
component, transients. The motivation was to counter the transient
smearing that was typically leading to mediocre sound quality in
sines + noise modeling [10]. The sines + transients + noise model
was also used by Levine and Smith [11] for data compression and
for time and pitch scale modification.

Fitzgerald showed that it was possible to extract spectral masks
via horizontal and vertical median filtering of the STFT (Short-
Time Fourier Transform) to decompose an audio signal into its
sinusoidal and transient component [12]. Later, Driedger et al. up-
dated Fitzgerald’s technique by introducing again a noise class to
retrieve spurious information from the other two [13]. A follow-
up method involving the use of spectral tensors to find predomi-
nant orientation angles and anisotropy in the time-frequency sig-
nal representation has been proposed by Füg et al. to improve the
separation quality when sinusoidal structures with vibrato are in-
volved [14]. More techniques for sines–transients separation have
been recently proposed, with different approaches based on kernel
additive matrix [15], non-negative matrix factorization [16], sinu-
soidal modelling [17, 18], and neural networks [19]. However,
these methods do not involve a third class for the noise compo-
nent.

While both [13] and [14] applied hard binary masks to de-
fine the sines, transients, and noise classes, STN decomposition
was extended with the concept of fuzzy logic by Damskägg and
Välimäki [1] in the context of time-scale modification. Fuzzy clas-
sification allows spectral bins to contribute simultaneously to the
three classes, hence providing a more refined basis for the sepa-
ration. This decomposition method was then developed by Mo-
liner et al. [2] to retrieve perfect reconstruction by ensuring that
the three spectral masks sum up to unity.

Typically, STN-decomposed sound quality is degraded by leak-
age in-between different components, loss of sinusoidality, or other
artifacts, e.g. musical noise. To evaluate the quality of STN sepa-
ration, common metrics for blind audio source separation perfor-
mance assessment such as SDR (Signal-to-Distortion Ratio), SAR
(Signal-to-Artifacts Ratio), and SIR (Signal-to-Interference Ratio)
have often been used [13, 14, 20]. However, this evaluation pro-
cess presents substantial drawbacks. Tests usually require at least
three different sources to be mixed into one which is subsequently
decomposed again for the separation quality assessment: this pre-
vents non-synthetic audio inputs, e.g. music or speech, to be put
under test. Also, unless dealing with perfectly sinusoidal / impul-
sive / noisy sources, the input sounds themselves are a composition
of unknown sinusoidal, transient, and noise parts. While listening
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tests are uncommon and other objective measures have not been
proposed yet, matching visual and sound comparison of the sepa-
ration outputs can be a suitable way to investigate and conduct a
lead-in evaluation of these decomposition techniques.

In this work, we propose a MATLAB application designed for
this specific purpose. Named SiTraNo after the sines + transients
+ noise model, this toolbox enables instantaneous control over the
desired separation method and the amount of sines, transients, and
noise in the audio input. The graphical user interface (GUI) shows
the current output waveform based on the chosen mix of spectral
components and features a selection of spectral tools, such as a
spectrum analyzer and the individual spectrograms for each of the
three classes. A simple visual detection of artifacts in sinusoidal
and transient classes based on small local maxima in the time-
frequency representation is implemented to provide visual infor-
mation to match the audible cues used to subjectively assess the
quality of the decomposition. While sines–transients separation is
already available in open–source libraries and applications, such as
Librosa [21], Zen [22] or the TSM Toolbox [23], SiTraNo stands
out for its goal of providing a visual tool for decomposition that is
immediate and both education- and evaluation-oriented.

The remainder of this paper is structured as follows. In Section
2, methods available in SiTraNo for STN decomposition are briefly
reviewed. Section 3 shows the GUI of the MATLAB application,
its functionalities, controls, plots and related user-controlled pa-
rameters. Some applications for which SiTraNo can be used are
described in Section 4. Finally, Section 5 concludes this paper
with a summary and general remarks.

2. SEPARATION METHODS

The separation methods implemented in SiTraNo are based on a
time-frequency representation of the input signal. For this reason,
the STFT of the audio signal x is computed as:

X(m, k) =

M/2∑
n=−M/2

x(n+mH) w(n) e−jωkn, (1)

where x(n) is the input signal, w(n) is the analysis window, m
is the frame index, k is the spectral bin, H is the hop size, M is
the frame length in samples, j is the imaginary unit, and ωk is the
normalized central frequency of the kth spectral bin. This section
presents the four methods included in our current implementation.

2.1. Harmonic–Percussive (HP) separation

The HP method aims at separating the sinusoidal component from
the transient component. Fitzgerald noted that sinusoids compose
flat lines in time direction in the spectrogram; vice versa, impulsive
events appear as flat lines in the frequency direction [12]. Hence,
horizontal (time-oriented) and vertical (frequency-oriented) me-
dian filtering can be applied on the signal STFT to highlight the
desired component and suppress the other [12]:

Xh(m, k) =

= median
[
|X(m− Lh

2
+ 1, k)|, ..., |X(m+

Lh

2
, k)|

]
, (2)

Xv(m, k) =

= median
[
|X(m, k − Lv

2
+ 1)|, ..., |X(m, k +

Lv

2
)|
]
, (3)

Figure 1: Hard (dashed) and soft masks (solid lines) used for tran-
sients (red) and sines (blue) in Harmonic-Percussive separation.

where Xh and Xv are the resulting horizontally-enhanced STFT
and vertically-enhanced STFT, respectively, and Lf and Lt are the
median filter lengths (in samples) in frequency and time directions,
respectively. The two median-filtered spectrograms Xh and Xv

are then used to extract the tonalness Rs and transientness Rt:

Rs(m, k) =
Xh(m, k)

Xh(m, k) +Xv(m, k)
, (4)

Rt(m, k) = 1−Rs(m, k) =
Xv(m, k)

Xh(m, k) +Xv(m, k)
. (5)

In [12], Rs and Rt are used directly as soft spectral masks on X
to obtain the relative spectral component:

Xi(m, k) = Ri(m, k) X(m, k) i = s, t. (6)

Alternatively, a hard binary masking approach is possible:

S(m, k) =

{
1, if Rs > Rt

0, otherwise
(7)

T (m, k) =

{
1, if Rt > Rs

0, otherwise
(8)

Xs(m, k) = S(m, k)X(m, k)

Xt(m, k) = T (m, k) X(m, k).
(9)

The relationship between the different masks is shown in Fig. 1.

2.2. Harmonic–Percussive–Residual (HPR) separation

Driedger et al. [13] improved Fitzgerald’s technique by introduc-
ing a controllable separation factor β and a third class (noise),
meant to describe those parts of the sound that are neither sinu-
soidal nor transient. From (4) and (5), a new set of spectral masks
S (sinusoidal), T (transient), N (noise) can be derived by extend-
ing (7) and (8):

S(m, k) =

{
1, if Rs/Rt > β

0, otherwise
(10)

T (m, k) =

{
1, if Rt/Rs > β

0, otherwise
(11)
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Figure 2: Hard masks used for transient (red), noise (yellow), and
sinusoidal (blue) in HPR separation, β = 2.5.

N(m, k) = 1− S(m, k)− T (m, k) (12)

and their relationship for a chosen β is shown in Fig. 2. The spec-
tral masks are then used on X to obtain the three spectral compo-
nents:

Xs(m, k) = S(m, k)X(m, k),

Xt(m, k) = T (m, k)X(m, k),

Xn(m, k) = N(m, k)X(m, k).

(13)

It was observed that the quality of the HPR separation largely
varies for sines and transients depending on the choice of the anal-
ysis window length M [24, 13]. A large window length for the
STFT, ensuring good frequency resolution but poor time resolu-
tion, results in a good sines extraction but a low-quality transient
output; vice versa, a small value of M leads to a better transients
extraction but a worse sinusoidal description. To overcome this
limitation, the decomposition process can be divided in two cas-
caded iterations [13]. In the first round, a larger analysis window
is applied to extract the sinusoidal component, while transients and
noise are mixed together:

xs(n) = ISTFT
[
S1(m, k)X(m, k)

]
,

xres(n) = ISTFT
[
(T1(m, k) +N1(m, k))X(m, k)

]
.

(14)

Subsequently, the residual from the first round is separated again
using a shorter analysis window, leading to the final decomposi-
tion:

xt(n) = ISTFT
[
T2(m, k)Xres(m, k)

]
,

xn(n) = ISTFT
[
(S2(m, k) +N2(m, k))Xres(m, k)

]
.

(15)

2.3. HPR using Spectral Tensor (ST)

Füg et al. [14] noted that sounds exhibiting a vibrato, which carry
sinusoidal information and are perceived as sines, do not present
a strictly horizontal structure in the spectrogram, resulting in a
leakage of energy in-between different spectral components when
HPR separation is implemented. The strictness of the median fil-
tering can be overcome using a structure tensor, a common image

Figure 3: Relationship between transient (red), noise (yellow) and
sines (blue) masks for ST, c = 0.6, rs = rt = 10 kHz. Angles αs

and αt are related to rs and rt, respectively, according to (16).

processing tool, to obtain a measure of the frequency change rate
and local anisotropies in the spectrogram, which will then be used
as features to define the spectral masks. The orientation angles
α(m, k) and the anisotropy C(m, k) of the spectral bins are ob-
tained as described in [14]. Instantaneous frequency change rate
R(m, k) is computed for each bin from the orientation angles:

R(m, k) =
fs

2

HM
tanα(m, k). (16)

The spectral masks are then obtained as follows:

S(m, k) =

{
1, if |R(m, k)| ≤ rs ∧ C(m, k) > c

0, otherwise
(17)

T (m, k) =

{
1, if |R(m, k)| ≥ rt ∧ C(m, k) > c

0, otherwise
(18)

where c is the anisotropy threshold and rs, rt are the frequency rate
thresholds. N(m, k) is again computed as in (12); the relationship
between the spectral masks and chosen values of parameters c, rs,
and rt is shown in Fig. 3. The spectral components are then de-
rived as in (13).

2.4. Fuzzy Separation

Damskägg and Välimäki [1] introduced the concept of fuzzy clas-
sification of the spectral bins, which was later extended by Moliner
et al. [2] to ensure perfect reconstruction. In [2], a third member-
ship function for noisiness is derived from (4) and (5):

Rn(m, k) = 1−
√

|Rs(m, k)−Rt(m, k)|. (19)

The spectral masks are computed as:

S(m, k) = Rs(m, k)− 1

2
Rn(m, k),

T (m, k) = Rt(m, k)− 1

2
Rn(m, k),

N(m, k) = 1− S(m, k)− T (m, k) = Rn(m, k).

(20)

and their relationship is shown in Fig. 4. The spectral masks are
once again used on X to obtain the spectral components, as in (13).
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Figure 4: Transient (red), noise (yellow) and sinusoidal (blue)
membership functions for Fuzzy separation.

3. IMPLEMENTATION AND GUI

3.1. Overview

SiTraNo aims at giving an immediate and easy access to STN spec-
tral components. When an input file is imported, it is decomposed
into sines, transients, and noise signals according to the chosen
separation method, using ISTFT (Inverse STFT) to generate time-
domain sounds. Through individual sliders, the amount of each
component in the output mix can be chosen continuously between
0% and 100%. The mixed audio can be reproduced at any time,
and saved as a Wave file.

The application puts its emphasis on the visualization of the
decomposition process: the user is presented with the current form
of the output waveform, plus the percentage of energy of each
component and the spectrum of the signal at the selected time loca-
tion; the user can also access spectrograms of sines, transients, and
noise individually, which are complemented with a visual evalua-
tion of possible artifacts. The SiTraNo GUI is shown in Fig. 5.
The elements of the interface can be grouped in three main blocks:
the Control (right) panel, where user controls and application sta-
tus are accessible to the user; the Audio (bottom left) panel, where
the mixed waveform and energy percentages are presented and the
time location can be modified; and the Analysis (top left) panel,
comprising a group of spectral plots.

3.2. Architecture and Dependencies

SiTraNo has been developed through MATLAB’s App Designer
[25], with dependencies on the Image Processing Toolbox [26] and
the Audio Toolbox [27]. It has been tested for compatibility back
to MATLAB R2018b. Further plans for this application are de-
scribed in Section 5. The application installer and its source code
can be accessed and downloaded both from the companion page
[28] and the GitHub repository [29]. At the moment of writing,
it is advised to use SiTraNo with audio inputs with a maximum
duration of around one minute.

3.3. Standard Parameters

The application is set to work at a sample rate fs = 44.1 kHz.
The single-sided FFT (Fast Fourier Transform) is implemented to

compute STFTs. A standard window length M = 2048 sam-
ples is applied, except for two-stage HPR that uses M = 8192
samples for the first decomposition and M = 512 samples for
the second one. Window lengths have been chosen accordingly to
[13, 14]. The hopsize is fixed at M/8 samples, and the number
of FFT points is equal to the used window length. The Hann win-
dow function is used, following [1]. The horizontal median filter
length is 200 ms (4 time frames at 44.1 kHz, M = 2048 samples),
vertical median filter length is 500 Hz (23 frequency bins at 44.1
kHz, M = 2048 samples). For HPR, a separation factor β = 2.5
is used. Regarding ST, a Sobel filter is used as a differentiation
kernel. Standard parameters include anisotropy threshold c = 0.2,
frequency change rate thresholds rs = rt = 10000 Hz, Gaussian
filter variance σ = 2.8, and tolerance ϵ = 20, following [14].

3.4. Control Panel

The right panel in Fig. 5 is where most of the GUI controls reside.
The user has access to a scroll-down window to select one among
the separation methods described in Section 2 (double-round HPR
is set as default) and to three sliders, which determine the amount
of sines, transients, and noise to be mixed in the output sound. The
number of FFT points for the spectrogram computation and arti-
facts threshold (see Section 3.6) can be arbitrarily selected by the
user: valid candidate values for such thresholds usually lie in the
[−90,−80] dB range. The spectral plots can be refreshed at any
time by means of an apposite button. Four buttons in the lower sec-
tion of the panel allow the user to, respectively, play and stop the
audio mix, open a new input file and save the current mix into an
output Wave file. The sound reproduction can be looped by ticking
a checkbox. The right panel also presents a lamp to monitor the
application status. The lamp has three possible conditions: red,
while main processing is ongoing after a new signal is imported or
the separation method is changed; yellow, while the spectrograms
are updated; green, while the application is active and running. In-
teractions with the GUI are disabled during yellow and red phases
to avoid conflicting conditions to appear.

3.5. Audio Panel

The bottom panel in Fig. 5 features the time-domain plot of the
output mix, which is updated every time that either one of the slider
values or the separation method are changed, and three gauges,
used to visualize the amount of energy percentage per spectral
component at the current time frame, which is indexed by a red
cursor on top of the time-domain plot. Such a cursor automati-
cally updates its position during audio playback, but can also be
manually moved by the user.

3.6. Analysis Panel

The top left panel in Fig. 5 comprises a group of five tabs relative
to the spectral analysis and evaluation of the audio signal. The
first tab features a spectrum analyzer. The following three tabs
show the spectrograms of, respectively, the sinusoidal, transient,
and noise component. The last tab shows data relative to the eval-
uation of the decomposition.

3.6.1. Spectrum Analyzer

The first entry in the tab group shows a spectrum analyzer, also
shown in Fig. 5, which is refreshed every time the time cursor is
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Figure 5: SiTraNo GUI, comprising the Analysis panel (top left), the Control panel (right) and the Audio panel (bottom left).

updated. A sliding window centered in the current time location is
used to compute the single-sided FFT of the audio mix, which is
plotted on a logarithmic frequency axis with a [−90, 0] dB magni-
tude scale. The quickness of the component mixing using the slid-
ers, combined with the promptness of the time navigation, makes
the spectrum analyzer a powerful tool for the visualization of each
spectral component’s contribution to the sound mix. For example,
it is very easy to spot when a harmonic structure is present or to
investigate how the spectral behavior changes during an impulsive
event.

3.6.2. STN Spectrograms

In the following tabs in SiTraNo, the logarithmic spectrograms for,
respectively, the sines, transients, and noise component are shown.
Some examples of sinusoidal-only spectrograms and transient-only
spectrograms are shown, respectively, in the left side and the the
right side of Fig. 7. The STFT window length can be modified
from the Control panel. The spectrograms are updated only when
a different separation method is selected, or the user manually
presses the refresh button. Time-frequency representations of the
individual spectral components are particularly useful from a vi-
sual analysis point of view, as it makes very easy to compare
the quality of transient and sinusoidal extraction among multiple
methods.

A basic artifact visualization tool is also provided for the sines
and transients spectrograms (due to the component’s nature, there

is not much sense in looking for artifacts in noise). Energy bins
showing local maxima below a certain threshold (that can be set
in the Control panel) are marked in red in the spectrogram. In this
way, a visual evaluation, combined with the audio playback, can
be performed: intuitively, the denser a cluster of flagged bins is,
the higher is the chance that an artifact is audible. The simplicity
of this detection method may cause relevant content to be visually
classified as an artifact if the threshold is ill-chosen, and that is
why the use of the audio cues remains necessary.

3.6.3. Evaluation

In the last tab, some comprehensive statistics are displayed. In
particular, each component’s energy percentage is compared with
the total amount of energy for all the flagged bins. Also, the num-
ber of flagged bins in each spectrogram per time frame is plotted.
Again, intuitively, a tall peak in the number of flagged bins in a
single time frame suggests the presence of a strong artifact.

4. APPLICATIONS

In this section, a few relevant cases of use for the proposed app are
discussed. SiTraNo is particularly useful for educational purposes,
as the visualization of the STN decomposition process greatly sim-
plifies its understanding, when paired with the instantaneous audi-
ble cues. SiTraNo also proves useful to perform dynamic range
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(a) S: 100%, T: 100%, N: 100%

(b) S: 100%, T: 50%, N: 100%

(c) S: 100%, T: 0%, N: 20%

Figure 6: Dynamic range reduction of the cast-viol excerpt,
achieved by acting on the transient and noise sliders.

compression and to compare different separation methods against
each other. Provided examples are discussed below and in a video
tutorial available at the companion webpage [28].

4.1. Dynamic Range Reduction

In the context of audio mixing, it is often useful to pre-process
sounds by applying a compressor to reduce the signal dynamics:
this enables a great set of operation, e.g. making quieter parts of
music audible in the mix, boosting the perceived loudness or de-
essing [30]. Often, the dynamics of a sound are defined by impul-
sive or high-energy percussive events. A straightforward yet effec-
tive way of taking advantage of the mixing capabilities of SiTraNo
is to decrease the amount of transients in the sounds while leav-
ing sines and noise untouched. An example of this application is
shown in Fig. 6. A mixture of castanets and violins (cast-viol)
is imported in SiTraNo and STN decomposition is applied using
HPR. As shown in Fig. 6a, the castanet events are occupying the
entirety of the signal dynamics. By acting on the transient and
noise sliders, it is possible to see how the magnitude of the impul-
sive events can arbitrarily reduced (Fig. 6b) to the point of being
completely suppressed. (Fig. 6c). Audio examples for the different
mixes described above available on the companion webpage [28].

4.2. Comparison of Decomposition Methods

A single-ended evaluation metric for STN separation has not been
proposed yet, while double-ended evaluation metrics, such as SDR,
SIR, and SAR cannot be applied unless the original sources that

compose the three spectral classes are known, as discussed in Sec-
tion 1. SiTraNo allows for a visual and audible comparison of the
output of different separation methods by matching the visual in-
formation provided by the spectrograms and the flagged bins with
the audible cues. In Fig. 7, a full comparison between single-round
HPR, double-round HPR, ST, and Fuzzy is reported for audio ex-
cerpt cast-viol. A window size M = 2048 samples and artifact
thresholds Ts = Tt = −85 dB have been used for this example.

Sinusoidal spectrograms show a common pattern of artifacts
and interference appearing towards high frequencies, which seems
to be more sparse for single-round HPR (Fig. 7a) and double-round
HPR (Fig. 7c), while denser clusters of flagged bins emerge in ST
(Fig. 7e) and Fuzzy (Fig. 7g). Looking at transient spectrograms,
artifacts and interference are very noticeable in single-round HPR
(Fig. 7b) and Fuzzy (Fig. 7h) for low frequencies. Double-round
HPR (Fig. 7d) returns a better separation, although spurious en-
ergy is still detected between the impulsive events. This energy
is mostly musical noise coming from the spectral subtraction pro-
cess [31]. ST (Fig. 7f) provides the best isolation of the transients,
but heavy energy dropouts can be spotted in low and mid-low fre-
quencies, which contribute to a partial loss of bass presence and
prominence [32]. Audio excerpts and video tutorials are available
in the companion page [28].

5. CONCLUSIONS

In this work, a MATLAB app with GUI for decomposition of audio
signals into sines, transients, and noise has been proposed. The im-
plementation gives control over the amount of each spectral com-
ponent to be mixed into the output signal and allows to select sev-
eral among the most recent sines-transients-noise separation meth-
ods. Additionally, users have access to spectral representations
of the signal to investigate the behavior of individual components
and the quality of the separation. A simple visualization overlay
highlights the presence of artefacts in each spectrogram. Exam-
ples of relevant uses of this app, such as dynamic range reduction
and comparison of decomposition quality for multiple separation
methods, have been reported. SiTraNo is available on the compan-
ion website [28] and on its GitHub repository [29].

In future releases, the authors would like to include standard
parameters control and more separation methods, to improve the
artifacts detection and optimize the code implementation. A par-
allel version of SiTraNo as a real-time VST plugin is also under
consideration, as it would enable to extend the evaluation to CPU
usage and computational cost for each method, and to enable a
real-time one-in three-out implementation for creative use.
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Figure 7: Parallel comparison of the single-round HPR, double-round HPR, ST, and Fuzzy methods using SiTraNo, with sinusoidal spec-
trograms in the left column and transients spectrograms in the right column. Artifacts are highlighted in red.
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