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ABSTRACT

In this paper, a complete simulation of a trombone using finite-
difference time-domain (FDTD) methods is proposed. In particu-
lar, we propose the use of a novel method to dynamically vary the
number of grid points associated to the FDTD method, to simulate
the fact that the physical dimension of the trombone’s resonator
dynamically varies over time. We describe the different elements
of the model and present the results of a real-time simulation.

1. INTRODUCTION

The trombone is a musical instrument that presents distinct chal-
lenges from the perspective of physical modelling synthesis. In
particular, the excitation mechanism between the lips and the player
has been extensively studied, and simulated mostly using a sim-
ple mass-spring damper system [1]. Because the majority of the
bore is cylindrical, nonlinear effects can appear at high blowing
pressures [2], leading to changes in timbre, or brassiness; such ef-
fects have been investigated and simulated [1, 3, 4]. However, the
defining characteristic of the trombone is that the physical dimen-
sions of the resonator vary during playing. Synthesis techniques
such as digital waveguides allow an approach to dynamic resonator
changes in a simple and computationally efficient way, simply by
varying the length of the corresponding delay line. This feature
has been used in real-time sound synthesis [5], for simplified bore
profiles suitable for modelling in terms of travelling waves.

However, when attempting more fine-grained modelling of the
trombone resonator using finite-difference time-domain (FDTD)
methods, the issue of the change in the tube length is not trivial.
Previous implementations of brass instruments using these meth-
ods focus on the trumpet [6] and various brass instruments (in-
cluding the trombone bore) under static conditions [7]. To our
knowledge, the simulation of a trombone varying the shape of
the resonator in real time using FDTD methods has not been ap-
proached. We can tackle this problem by having a grid that dy-
namically changes while the simulation is running as presented
in a companion paper [8]. Briefly described, we modify the grid
configurations of the FDTD method by adding and removing grid
points based on parameters describing the system.

In this paper, we propose a full simulation of a trombone, de-
scribing all its elements in detail with a specific focus on the dy-
namic grid simulation. Section 2 presents the models for the tube
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and lip reed interaction in continuous time. Section 3 briefly intro-
duces FDTD methods and the discretisation of the aforementioned
continuous equations. Section 4 presents the dynamic grid used to
simulate the trombone slide and details on the implementation are
provided in Section 5. Section 6 presents simulation results, and
some concluding remarks appear in Section 7.

2. CONTINUOUS SYSTEM

Wave propagation in an acoustic tube can be approximated using a
1-dimensional (1D) model, for wavelengths that are long relative
to the largest lateral dimension of the tube. Consider a tube of
time-varying length L = L(t) (in m) defined over spatial domain
x ∈ [0, L] and time t ≥ 0. Using operators ∂t and ∂x denoting
partial derivatives with respect to time t and spatial coordinate x,
respectively, a system of first-order partial differential equations
(PDEs) describing the wave propagation in an acoustic tube can
then be written as:

S

ρ0c2
∂tp = −∂x(Sv), (1a)

ρ0∂tv = −∂xp, (1b)

with acoustic pressure p = p(x, t) (in N/m2), particle velocity
v = v(x, t) (in m/s) and (circular) cross-sectional area S(x) (in
m2). Furthermore, ρ0 is the density of air (in kg/m3) and c is the
speed of sound in air (in m/s). System (1) can be condensed into
a second-order equation in p alone, often referred to as Webster’s
equation [9]. For simplicity, effects of viscothermal losses have
been neglected in (1). For a full time domain model of such effects
in an acoustic tube, see, e.g. [10].

System (1) requires two boundary conditions, one at either end
of the domain. The left boundary condition, at x = 0, will be set
according to an excitation model to be described in Section 2.1.
The right boundary, at x = L, is set according to a radiation con-
dition. The radiation model used here, is the one for the unflanged
cylindrical pipe proposed by Levine and Schwinger in [11] and
discretised by Silva et al. in [12]. As this model is not important
for the contribution of this work it will not be detailed here in full.
The interested reader is instead referred to [7, 13] for a compre-
hensive explanation.

2.1. Coupling to a Lip Reed

To excite the system, a lip reed can be modelled as a mass-spring-
damper system including two nonlinearities due to flow, and the
collision of the lip against the mouthpiece. In the following, y can
be seen as the moving upper lip where the lower lip is left static
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and rigid. A diagram of the full lip-reed model is shown in Figure
1. Using dots to indicate time-derivatives, the lip reed is modelled
as

Mrÿ = −Mrω
2
r y −Mrσrẏ + ψ(ψ̇/η̇) + Sr∆p, (2)

with displacement from the equilibrium y = y(t), lip mass Mr (in
kg), externally supplied (angular) frequency of oscillation ωr =
ωr(t) =

√
Kr/Mr (in rad/s) and stiffness Kr = Kr(t) (in N/m).

We extend the existing models of lip reeds [1] by introducing
a nonlinear collision between the lips based on potential quadrati-
sation proposed by [14]. The collision potential is defined as

ψ(η) =

(
2Kc

αc + 1
[η]αc+1

+

)1/2

, (3)

with collision stiffness Kc > 0 and dimensionless nonlinear col-
lision coefficient αc ≥ 1, The inverted distance between the lips
η = η(t) ≜ −y − H0 (in m), for static equilibrium separation
H0 (in m). [η]+ = 0.5(η + |η|) indicates the “positive part of
η”. Notice, that if η ≥ 0, the lips are closed and the collision
potential will be non-zero. This quadratic form of a collision po-
tential allows for a non-iterative implementation [14]. This will be
explained further in Section 3.

Finally, Sr (in m2) is the effective surface area and

∆p = Pm − p(0, t) (4)

is the difference between the externally supplied pressure in the
mouth Pm = Pm(t) and the pressure in the mouthpiece p(0, t)
(all in Pa). This pressure difference causes a volume flow velocity
following the Bernoulli equation

UB = wr[−η]+sgn(∆p)

√
2|∆p|
ρ0

, (5)

(in m3/s) with effective lip-reed width wr (m). Another volume
flow is generated by the lip reed itself according to

Ur = Sr
dy

dt
(6)

(in m3/s). Assuming that the volume flow velocity is conserved,
the total air volume entering the system is defined as

S(0)v(0, t) = UB(t) + Ur(t). (7)

This condition serves as a boundary condition at x = 0 for system
(1).

3. DISCRETISATION

The continuous system described in the previous section is discre-
tised using FDTD methods, through an approximation over a grid
in space and time. Before presenting this discretisation, we briefly
summarize the operation of FDTD methods.

3.1. Numerical Methods

Consider a 1D system of (static) length L described by state vari-
able u = u(x, t) with spatial domain x ∈ [0, L] and time t ≥ 0.
The spatial domain can be disctretised according to x = lh with
spatial index l ∈ {0, . . . , N}, number of intervals between the
grid points N , grid spacing h (in m) and time as t = nk with tem-

Mr

Sr

−η

Kr σr

Pm ∆p
p(0, t)

y

0

−H0

wr

Figure 1: Diagram of the lip-reed system with the equilibrium at
0 and the distance from the lower lip H0. The various symbols
relate to those used in Eq. (2).

poral index n ∈ Z0+ and time step k (in s). The grid function un
l

represents an approximation to u(x, t) at x = lh and t = nk.
Shift operators can then be applied to grid function un

l . Tem-
poral and spatial shift operators are

et+u
n
l = un+1

l , et−u
n
l = un−1

l ,

ex+u
n
l = un

l+1 , ex−u
n
l = un

l−1,
(8)

from which more complex operators can be derived. First-order
derivatives can be approximated using forward, backward and cen-
tred difference operators in time

δt+ =
et+ − 1

k
, δt− =

1− et−
k

, δt· =
et+ − et−

2k
, (9)

(all approximating ∂t) and space

δx+ =
ex+ − 1

h
, δx− =

1− ex−
h

, δx· =
ex+ − ex−

2h
, (10)

(all approximating ∂x) where 1 is the identity operator.
Furthermore, forward, backward and centred averaging oper-

ators can be defined in time

µt+ =
et+ + 1

2
, µt− =

1 + et−
2

, µt· =
et+ + et−

2
, (11)

and space

µx+ =
ex+ + 1

2
, µx− =

1 + ex−
2

, µx· =
ex+ + ex−

2
. (12)

Finally, an approximation δtt to a second time derivative may
be defined as

δtt = δt+δt− =
1

k2
(et+ − 2 + et−) . (13)

3.2. Discrete Tube

As a first step, the domain x ∈ [0, L] can be subdivided into N
equal segments of length h (the grid spacing). Interleaved grid
functions approximating p and v may then be defined. Grid func-
tion pnl with l ∈ {0, . . . , N} approximates p(x, t) at coordinates
x = lh, t = nk and vn+1/2

l+1/2 with l ∈ {0 . . . , N − 1} approxi-
mates v(x, t) at coordinates x = (l + 1/2)h, t = (n + 1/2)k.
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In addition, a discrete cross-sectional area Sl ≈ S(x = lh) with
l ∈ {0, . . . , N} is assumed known. System (1) can then be discre-
tised as

S̄l

ρ0c2
δt+p

n
l = −δx−(Sl+1/2v

n+1/2

l+1/2 ), (14a)

ρ0δt−v
n+1/2

l+1/2 = −δx+pnl , (14b)

where Sl+1/2 = µx+Sl and S̄l = µx−Sl+1/2 are approximations
to the continuous cross-sectional area S(x). The values for S̄l at
the boundaries, i.e., S̄0 and S̄N , are set equal to S(0) and S(L).

Expanding the operators, we obtain the following recursion

pn+1
l = pnl − ρ0cλ

S̄l

(Sl+1/2v
n+1/2

l+1/2 − Sl−1/2v
n+1/2

l−1/2 ), (15a)

v
n+1/2

l+1/2 = v
n−1/2

l+1/2 − λ

ρ0c
(pnl+1 − pnl ), (15b)

where λ = ck/h is referred to as the Courant number and

λ ≤ 1 =⇒ h ≥ ck (16)

in order for the scheme to be stable [15]. In implementation, the
following steps are taken to calculate λ:

h := ck, N :=

⌊
L

h

⌋
, h :=

L

N
, λ :=

ck

h
, (17)

where ⌊·⌋ denotes the flooring operation and is necessary because
N is an integer. This causes (16) to not be satisfied with equality
for all choices of L.

Equations (15a) and (15b) hold for l ∈ {0, . . . , N} and l ∈
{0, . . . , N − 1} respectively, and thus, in analogy with the con-
tinuous case, two numerical boundary conditions are required in
order to update pn+1

0 and pn+1
N . These are provided by numerical

equivalents of the excitation condition (see Section 3.3 below) and
the radiation condition (in [13]).

3.3. Lip reed

As the lip reed interacts with the particle velocity of the tube via
Eq. (7), it is discretised to the interleaved temporal grid, but to
the regular spatial grid as it interacts with the boundary at x = 0.
Equations (2) - (7) are then discretised as follows:

Mrδtty
n+1/2 =−Mr(ω

n+1/2
r )2µt·y

n+1/2

−Mrσrδt·y
n+1/2 + (µt+ψ

n) gn+1/2 + Sr∆p
n+1/2,

(18a)

∆pn+1/2 = Pn+1/2
m − µt+p

n
0 , (18b)

U
n+1/2
B = wr[−ηn+1/2]+sgn(∆pn+1/2)

·
√

2|∆pn+1/2|/ρ0,
(18c)

Un+1/2
r = Srδt·y

n+1/2, (18d)

µx−(S1/2v
n+1/2

1/2 ) = U
n+1/2
B + Un+1/2

r . (18e)

Here, following [14],

gn+1/2 =



κ

√
Kc(αc + 1)

2
·(ηn+1/2)

αc−1
2 if ηn+1/2 ≥ 0 (19a)

−2
ψn

η⋆ − ηn−1/2
if ηn+1/2 < 0 (19b)

0,
if ηn+1/2 < 0

and η⋆ = ηn−1/2
(19c)

where κ = 1 if ψn ≥ 0, otherwise κ = −1. It should be noted
that condition (19c) has been added to the definition of g from [14]
to prevent a division by 0 in (19b). Finally, η⋆ = −y⋆−H0 where
y⋆ is the value of yn+3/2 calculated using system (18) (after ex-
pansion) without the collision potential. This means that system
(18) needs to be calculated twice every iteration, once without the
collision term and once with. The process of calculating the pres-
sure difference ∆pn+1/2 in (18) will not be given here, but the
interested reader is referred to [13, Ch. 5] for a derivation.

4. DYNAMIC GRID

The defining feature of the trombone is its slide that alters the
length of the tube, changing the resonant frequencies. In a com-
panion paper [8], we present a method to dynamically change grid
configurations of FD schemes by inserting and deleting grid points
based on an instantaneous value of the time-varying wave speed
c(t). Although here, the tube length L(t) is varied, the method
still applies. Note that this method only works for slow (sub-audio
rate) parameter changes.

We can split a tube with time-varying lengthLn into two smaller
sections with lengths Ln

p and Ln
q (in m) such that Ln = Ln

p +Ln
q .

Splitting the schemes in (14) in this way yields two sets of first-
order systems. The pressure and particle velocity of the first (left)
system pnlp and v

n+1/2

lp+1/2 are both defined over discrete domain
lp ∈ {0, . . . ,Mn}, and those of the second (right) system qnlq
and wn+1/2

lq−1/2 are defined over discrete domain lq ∈ {0, . . . ,Mn
q },

with
Mn = ⌈Ln

p/h⌉, and Mn
q = ⌊Ln

q /h⌋ (20)

where ⌈·⌉ denotes the ceiling operation. Note, that the domains for
v andw have an extra grid point when compared to the regular case
in (14) and that w is indexed with lq − 1/2 rather than lq + 1/2.
The resulting system of FD schemes then becomes

S̄l

ρ0c2
δt+p

n
lp = −δx−(Sl+1/2v

n+1/2

lp+1/2), (21a)

ρ0δt−v
n+1/2

lp+1/2 = −δx+pnlp , (21b)

S̄l

ρ0c2
δt+q

n
lq = −δx+(Sl−1/2w

n+1/2

lq−1/2), (21c)

ρ0δt−w
n+1/2

lq−1/2 = −δx−qnlq . (21d)

Here, due to the different indexing for w, the spatial derivatives
for the right system are flipped (δx+ became δx− and vice versa).
Also note, that l is still used for the spatial indices of S̄ and S
which now approximate S(x) according to

Sl ≈

{
S(x = lh) for x ∈ [0, Ln

p ],

S(x = Ln − (Mn
q − l)h) for x ∈ [Ln

p , L
n].

(22)
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Figure 2: Schematic showing data flow of how different grid points at time index n + 1 are calculated with α = 0.25 in Eq. (25). To
prevent cluttering, arrows going straight up (indicating that the state of a grid point at time step n is needed to calculate the state of that
grid point at n+ 1) are suppressed. As an example of the usual case (refer to Eq. (15)), the points required to calculate pn+1

2 are shown.
Furthermore, the points needed to calculate pn+1

Mn and qn+1
0 are shown. The most important difference with the usual case is that the virtual

grid points pnMn+1 and qn−1 are the result of the interpolation of known pressure values at n using Eq. (27).

The conditions for the outer boundaries of this system, i.e., at lp =
0 and lq = Mn

q , are the same as for the full system. The inner
boundaries, lp = Mn and lq = 0 are connected according to
the method described in [8] to be explained shortly. To be able
to calculate pn+1

Mn and qn+1
0 , the domains of v and w have been

extended at the inner boundaries to include vn+1/2

Mn+1/2 and wn+1/2

−1/2 .
These, however, require points outside of the domains of pnlp and
qnlq , i.e., pnMn+1 and qn−1. In [8] we propose to calculate these
virtual grid points based on known values of the system. Despite
the fact that [8] presents the method using a second-order system,
it can still be applied here. The process of how pn+1

Mn and qn+1
0 are

calculated is visualised in in Figure 2. Notice that all time steps
use the same value of Mn and Mn

q . In other words, the expansion
of the temporal operators in (9) do not affect the temporal indices
n in Mn and Mn

q .

4.1. Changing the Tube Length

In the following, the location of a grid point ul along the grid (in
m from the left boundary) at time index n is denoted as xnul

.
The two pairs of first order systems in (21) are placed on the

same domain x with

xnplp = lph, and xnqlq = Ln − (Mn
q − lq)h, (23)

describing the locations of the left system and right system respec-
tively. Here, it can be observed that as the tube length Ln changes,
the locations of the grid points of the right system will change.
More specifically, as the trombone-slide is extended and Ln in-
creases, all grid points of the right system move to the right, and
to the left for a contracting slide. If Ln is changed in a smooth
fashion, the continuous domain x ∈ [0, Ln] will not necessar-
ily be subdivided into an integer amount of intervals Nn (of size
h = ck). This is where a fractional number of intervals is intro-
duced and is defined as

Nn = Ln/h, (24)

which is essentially the calculation of N in Eq. (17) without the
flooring operation, and Nn = ⌊Nn⌋. The fractional part of Nn

can then be calculated using

α = αn = Nn −Nn, (25)

which describes the distance between the inner boundaries along
the grid in terms of how many times hwould fit in-between (which
is always less than once). If Nn = Nn and α = 0, the inner
boundary locations perfectly overlap, and xnpMn = xnq0 . This also
means that the domain x can be exactly divided into Nn equal in-
tervals of size h = ck. As the virtual grid points pnMn+1 and qn−1

perfectly overlap with qn1 and pnMn−1 respectively, these values
can be used directly to calculate the grid points at the inner bound-
aries. This situation effectively acts as a rigid connection between
the grid points at the inner boundaries defined as

pnMn = qn0 , if α = 0. (26)

If α ̸= 0, some other definition for pnMn+1 and qn−1 needs to be
found. We use quadratic Lagrangian interpolation according to

pnMn+1 =
α− 1

α+ 1
pnMn + qn0 − α− 1

α+ 1
qn1 , (27a)

qn−1 = −α− 1

α+ 1
pnMn−1 + pnMn +

α− 1

α+ 1
qn0 , (27b)

which can then be used to calculate vn+1/2

Mn+1/2 and wn+1/2

−1/2 and
consequently pn+1

Mn and qn+1
0 (see Figure 2). This process is re-

peated every sample. It can be shown through the rigid connection
in (26), that if α = 0, the definitions in (27) reduce to pnMn+1 =
qn1 and qn−1 = pnMn−1 as stated before.

4.2. Adding and removing grid points

As the tube length Ln changes, Ln
p and Ln

q also change according
to

Ln
p = Ln−1

p + 0.5Ln
diff, Ln

q = Ln−1
q + 0.5Ln

diff, (28)

where
Ln

diff = Ln − Ln−1, (29)
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which causes the number of intervals between grid points Mn and
Mn

q to change as well, according to Eq. (20).
The following state vectors are introduced for the pressure,

defined for n+ 1 and n

pn = [pn0 , p
n
1 , ..., p

n
Mn ]T , qn = [qn0 , q

n
1 , ..., q

n
Mn

q
]T , (30)

and for the velocity, defined for n+ 1/2 and n− 1/2

vn−1/2 = [v
n−1/2

1/2 , v
n−1/2

3/2 , ..., v
n−1/2

Mn+1/2]
T ,

wn−1/2 = [w
n−1/2

−1/2 , w
n−1/2

1/2 , ..., w
n−1/2

Mn
q −1/2]

T ,
(31)

and contain the different states over the discrete domains defined
at the beginning of this section. Here, T denotes the transpose
operation.

If Nn > Nn−1, points are added to the left and right system
in an alternating fashion:{

pn = [(pn)T , I3r
n]T

vn−1/2 = [(vn−1/2)T , I3z
n−1/2
v ]T

if Nn is odd,{
qn = [I←3 rn, (qn)T ]T

wn−1/2 = [I←3 z
n−1/2
w , (wn−1/2)T ]T

if Nn is even,

(32)

where

rn = [pnMn−1, p
n
Mn , qn0 , q

n
1 ]

T ,

zn−1/2
v = [v

n−1/2

Mn−1/2, v
n−1/2

Mn+1/2, w
n−1/2

1/2 , w
n−1/2

3/2 ]T − η,

zn−1/2
w = [v

n−1/2

Mn−3/2, v
n−1/2

Mn−1/2, w
n−1/2

−1/2 , w
n−1/2

1/2 ]T + η←,

(33)

and cubic Lagrangian interpolator

I3 =
[
− α(α+1)

(α+2)(α+3)
2α
α+2

2
α+2

− 2α
(α+3)(α+2)

]
. (34)

Here,

η = ηn−1/2 =
(
w

n−1/2

−1/2 − v
n−1/2

Mn+1/2

)
· [0, 0, 1, 1]T (35)

adds an offset to half of the elements in the z vectors depending on
the difference between vn−1/2

Mn+1/2 and wn−1/2

−1/2 . Why this is neces-
sary will be further explained in Section 4.3. Finally, I←3 and η←

are flipped versions of (34) and (35) respectively.
If Nn < Nn−1, points are simply removed from the vectors

according to{
pn = [pn0 , . . . , p

n
Mn−1]

T

vn−1/2 = [v
n−1/2

1/2 , . . . , v
n−1/2

Mn−1/2]
T if Nn is even,{

qn = [qn1 , . . . , q
n
Mn

q
]T

wn−1/2 = [w
n−1/2

1/2 , . . . , w
n−1/2

Mn
q −1/2]

T if Nn is odd.

(36)

Notice that the even and odd conditions in Eqs. (32) and (36) can
be swapped. To stay as close to the desired location of adding
and removing grid points as possible, this requires the ceiling and
flooring operations in (20) to be swapped as well.

4.3. Drift of w

The inner boundaries of the pressure states p and q are connected
by (27), but no such connection exists for the velocity states v and

w. As the radiating boundary is implemented on the pressure grid,
this leaves w without any boundary condition; it is only “held in
place” by the pressure values of q, or more specifically, by deriva-
tives (both spatial and temporal). As FD schemes are an approx-
imation, it does not give a perfect solution and w tends to ‘drift’
during the simulation, especially when Ln is changed.

Luckily, as the pressure values are also calculated from deriva-
tives of the velocity, the absolute state of w does not matter. The
difference in values at the connection point is also irrelevant as
there is no spatial derivative taken between v and w (refer to Fig-
ure 2). Finally, the pressure values are used for the output audio of
the simulation, so the drift does not affect the audio.

The absolute states of the velocity vectors do, however, need
to be accounted for when adding points to the v and w using (32).
The current drift can be approximated by observing the differ-
ence between wn−1/2

−1/2 and vn−1/2

Mn+1/2, as these have approximately
the same x location (xnw−1/2

≈ xnvMn+1/2
) when a grid point is

added. This is then used in a drift-correction vector ηn−1/2 pre-
sented in (35). When a point is added to v, the values of w in zv
are offset by the aforementioned difference and when a point is
added to w the same happens (inverted) for the values of v in zw.
This way, the drift is allowed, but does not affect the state of the
newly added grid points. Notice that the drift does not affect the
operations of point removal in (36).

4.4. State Correction

As Ln, and consequently the number of grid points, is decreased,
it might occur that the grid points at the inner boundaries pnMn and
qn0 have a very different value when α ≳ 0, i.e., right before a
point is removed. This violates the rigid connection in Eq. (26).

We propose in [8] to add an artificial spring-like connection
between the grid points at the inner boundaries that “corrects” the
state of these points. Applying this to system (21) extends Eqs.
(21a) and (21c) according to

S̄l

ρ0c2
δt+p

n
lp = −δx−(Sl+1/2v

n+1/2

lp+1/2) + Jp(x
n
pMn )F

n
sc , (37a)

S̄l

ρ0c2
δt+q

n
lq = −δx+(Sl−1/2w

n+1/2

lq−1/2)− Jq(x
n
q0)F

n
sc , (37b)

where the spreading operators are defined as

Jp(x
n
i ) =

{
1
h
, lp = ⌊xni /h⌋

0, otherwise,
and

Jq(x
n
i ) =

{
1
h
, lq = ⌊xni /h⌋ −Mn

0, otherwise.

(38)

Furthermore, the correction effect is defined as

Fn
sc = β (µt·η

n
sc + σscδt·η

n
sc) , (39)

with spring damping σsc, pressure difference

ηnsc ≜ qn0 − pnMn , (40)

and scaling coefficient

β = β(α) =
1− α

α+ ε
. (41)
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Table 1: Geometry of a measured trombone taken from [16]. Num-
bers correspond to Figure 3.

Part of tube Length (cm) Radius (cm)
Inner slide (1) 70.8 0.69
Outer slide (extended) (2) 53 0.72
Slide crook (3) 17.7 0.74
Outer slide (extended) (4) 53 0.72
Inner slide (5) 71.1 0.69
Gooseneck (6) 24.1 0.71
Tuning slide (7) 25.4 0.75, 1.07
Bell flare (8) 50.2 1, 10.8

Table 2: List of parameter values used for the simulation. Taken
from ⋆[16], *[13] or **[17] with temperature T = 26.85◦C.

Name Symbol (unit) Value
Tube
Length L (m) 2.593 ≤ L ≤ 3.653⋆

Air density ρ0 (kg/m3) 1.1769**
Wave speed c (m/s) 347.23**
Geometry S (m2) See Table 1.
Lip reed
Mass Mr (kg) 5.37 · 10−5*
Frequency ωr (rad/s) 20 ≤ ωr/2π ≤ 1000
Mouth pressure Pm (Pa) 0 ≤ Pm ≤ 6000
Damping σr (s−1) 5*
Eff. surface area Sr (m2) 1.46 · 10−5*
Width wr (m) 0.01*
Equilibrium sep. H0 (m) 2.9 · 10−4*
Coll. stiffness Kc (N/m) 104

Nonlin. coll. coeff. αc (-) 3
Other
State corr. damping σsc 1
Sample rate fs (Hz) 44100

Here, ε ≪ 1 to prevent division by 0. Just like in [8], the im-
plementation of the correction effect allows for an infinite β when
α = ε = 0 acting like a rigid connection between Eqs. (37a) and
(37b).

5. IMPLEMENTATION

The implementation has been done in C++ using the JUCE frame-
work 1, and is available online2 as well as a demo showcasing it.3

The audio output of the system can be retrieved by selecting a grid
point on the pressure grid and listening to this at the given sam-
ple rate fs. Here, the radiating boundary qnMn

q
is chosen, as this

is where the sound enters the listening space in the real world. To
mimic low-pass filtering happening due to a distributed radiating
area, a 4th-order low-passing Butterworth filter with a cutoff fre-
quency of fc =

√
c2π/S(L) ≈ 3245 Hz is used. This equation

is retrieved by choosing the listening point to be at the bell surface

1https://juce.com/
2https://github.com/SilvinWillemsen/cppBrass/releases/
3https://youtu.be/Ht5gVNrshYo

(8)

(7)

(6) (5) (4)

(3)

(2)(1)

Figure 3: Diagram showing the trombone geometry (not to scale).
Numbers correspond to the parts of the tube found in Table 1 and
dashed lines highlight where the different parts are separated. The
tube is split in the middle of the slide crook with the colours corre-
sponding to those in Figure 2.

and integrating over the bell area.

5.1. Parameters

For the most part, the parameters used in the simulation have been
obtained from [13, 16, 17]. The lengths and radii of different parts
of the tube can be found in Table 1 and a diagram showing this
geometry is shown in Figure 3. The system is split in the middle
of the slide crook such that the ranges for the lengths of the two
tubes are Ln

p ∈ [0.797, 1.327] and Ln
q ∈ [1.796, 2.326].

Other parameters used in the simulation can be found in Table
2. Not included here is λ, which has been set slightly lower than
the stability condition in (16), i.e., λ = 0.999. Although the im-
plementation works when λ = 1, this is done to tolerate (much)
higher speeds of change in Ln before instability occurs (see Sec-
tion 5.2). Not satisfying condition (16) causes bandlimiting and
dispersive effects [15], but such a small deviation from the condi-
tion has no perceptual influence on the output sound and outweighs
the problems caused by instability.

As the tube acts mainly as an amplifier for specific resonant
frequencies it is important to match the frequency of the lip reed
to a resonating mode of the tube. This frequency depends on Ln

in the following way

ωn+1/2
r = F 2πc

ρ0Ln+1/2
, (42)

where Ln+1/2 = Ln and scalar multiplier F = 2.4 was heuristi-
cally found to best match the 4th resonating mode of the tube and
generates a recognisable brass sound.

5.2. Limit on speed of change

To reduce audible artifacts and instability issues from adding and
removing points, and to stay in the sub-audio rate regime, a limit
can be placed on (29) as

Ln
diff ≤ Nmaxdiffh, (43)

where Nmaxdiff is the maximum change in N per sample and has
been set to Nmaxdiff = 1/20. This means that a grid point can be
added or removed every 20 samples and allows the entire range of
L to be traversed in ca. 0.06 s at a sample rate of fs = 44100 Hz.
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Figure 4: Screenshot of the graphical user interface (GUI). The
geometry (in orange) as well as the states of the pressure (in blue)
and velocity scaled by S (in green) are shown. For clarity, the start
and end of the outer slide are denoted by dashed lines. The drift
of w as explained in Section 4.3 is visible from the “kink” in the
green line exactly in the middle of the outer slide.

5.3. State correction

The introduction of system states at n + 1 through the centred
operators in Eq. (39) seem to make the scheme implicit. It is,
however, possible to calculate Fsc explicitly [15, 18]. The same
operators also introduce the need for values at n − 1, i.e., pn−1

Mn

and qn−1
0 . Therefore, the vectors pn−1 and qn−1 will need to

be stored, and the operations to add and remove grid points as
described in 4.2 need to be applied to these as well. One could
argue that only two points at the inner boundaries are needed for
the calculation and to create r in (33) at n− 1. For generality, we
continue with the entire vectors defined over the same domains as
pn and qn respectively.

5.4. Graphical User Interface and Control Mapping

A screenshot of the graphical user interface (GUI) is shown in
Figure 4. The geometry of the tube is plotted along with paths
showing the pressure states in blue and the velocity (scaled by the
geometry S) in green. The audio thread of the application runs at
44100 Hz whereas the graphics are updated at a rate of 15 Hz.

The real-time application is controlled by interacting with the
bottom panel using the mouse. The x-axis is mapped to tube-
length Ln and also modifies the lip-reed frequency ωr according
to Eq. (42). The y-axis changes the multiplier F in Eq. (42) and
the black line in the vertical middle of the control panel is mapped
to F = 2.4. The pressure is modulated by a slider at the bottom
of the control panel. As of now, no focus has been put on intu-
itive parameter mapping; it has only been implemented for simple
parameter exploration.

5.5. Order of Calculation

Algorithm 1 shows the order in which the different parts of the
system presented in this paper are calculated.

while application is running do
Retrieve new parameters
Update Ln

p and Ln
q

Calc. Nn and Nn

Calc. αn

if Nn ̸= Nn−1 then
Add or remove point
Update Mn and Mn

q

end
Calc. pnMn+1 and qn−1

Calc. vn+1/2 and wn+1/2

Calc. yn+3/2 w/o collision
Calc gn+1/2

Calc. yn+3/2 with collision
Calc. Un+1/2

B and Un+1/2
r

Calc. pn+1 and qn+1

Retrieve output

(Ln, ωn
r and Pn

m )
(Eqs. (29), (43) & (28))
(Eqs. (24) and (17))
(Eq. (25))

(Eq. (32) or (36))
(Eq. (20))

(Eqs. (27))
(Eqs. (21b) and (21d))
(Eqs. (18))
(Eq. (19))
(Eqs. (18))
(Eqs. (18c) and (18d))
(Eqs. (37))

Update system states

Update Nn−1

Increment n

(pn−1 = pn, pn = pn+1)
(same for vn−1/2 = . . .,
yn−1/2, yn+1/2, and ψn)
(Nn−1 = Nn)

end

Algorithm 1: Pseudocode showing the order of calculations of
the algorithm implementing the trombone.

6. RESULTS AND DISCUSSION

The real-time implementation has been tested on a MacBook Pro
with a 2.2 GHz Intel i7 processor and was informally evaluated
by the authors. The speed of the algorithm was tested with and
without the graphics-thread and using three different styles of in-
teraction: static excitation at the shortest and longest length, and
rapidly (and continuously) changing L and ωr between their min-
imum and maximum values given in Table 2. The pressure was
kept at Pm = 3000 Pa at all times. The results are shown in Ta-
ble 3. Differences in CPU usage between a short and long tube
length are because more grid points need to be calculated in the
long case. The recalculation of the geometry maximally once ev-
ery 20 samples in the rapidly moving case explains the increase in
CPU usage there. These results show that the implementation can
easily be used as an audio plugin, with or without graphics.

Table 3: Average CPU usage (in %) for different graphics settings
and various interactions with the application.

Tube length Graphics (%) No graphics (%)
Short (Ln = 2.593 m) 12.1 4.3
Long (Ln = 3.653 m) 14.4 5.2
Rapidly changing 17.7 10.1

Informal listening tests by the authors confirm that the audio
output of the simulation exhibits brass-like qualities. However,
the implementation requires some further refinements to be con-
sidered as a complete trombone. Possible extensions to improve
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the realism of the simulation sound could be to add viscothermal
losses [19] or nonlinear effects [3]. Furthermore, for lower val-
ues of the lip frequency ωr, the sound exhibits extra oscillatory
behaviour making the output “non-smooth”. This might be due a
higher average displacement of y for lower ωr and the nonlinear
collision present in the lip model will have a greater effect on its
displacement. Variable collision stiffness might solve this issue
but is left for future work.

Informal listening by the authors shows that the method used
to implement the dynamic grid does not introduce perceivable au-
dible artifacts, even when Ln is changed very rapidly. Naturally,
this needs to be confirmed by formal listening tests. Despite the
limit placed on the speed of change of Ln in (43) the control of the
application does not exhibit a noticeable delay and changes in Ln

feel immediate.
The main difference between the method in [8] and the version

used here, is that the method is applied to a system of first-order
equations rather than the second-order 1D wave equation. Because
the connection between the inner boundaries is only applied to the
grid functions describing pressure, a drift occurs in w as it is left
without boundary conditions. Although this drift does not have an
effect on the output sound, as discussed in Section 4.3, too high
or low values might cause rounding errors in the simulation. As it
is expected that this only happens at extremely high or low values
after a long simulation length, the drift is not considered an issue
at this point.

7. CONCLUSION

In this paper, we have presented a full implementation of the trom-
bone including a lip reed, radiation and a tube, discretised using
FDTD methods on a dynamic grid. Informal evaluation by the au-
thors shows that the implementation exhibits no audible artifacts
when grid points are added and removed, even under relatively
fast variation in tube length. Naturally, this needs to be confirmed
by formal listening tests. Moreover, the simulation easily runs in
real-time allowing it to be used as an audio plugin.

Future work will include extending the tube model to include
more realistic viscothermal and nonlinear effects and variable col-
lision stiffness in the lip model. Furthermore, the investigation of
more intuitive control parameter mappings is a necessary step to-
wards a real-time instrument.
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