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ABSTRACT

Piano transcription is a fundamental problem in the field of music
information retrieval. At present, a large number of transcriptional
studies are mainly based on audio or video, yet there is a small
number of discussion based on audio-visual fusion. In this paper,
a piano transcription model based on strategy fusion is proposed,
in which the transcription results of the video model are used to as-
sist audio transcription. Due to the lack of datasets currently used
for audio-visual fusion, the OMAPS data set is proposed in this pa-
per. Meanwhile, our strategy fusion model achieves a 92.07% F1
score on OMAPS dataset. The transcription model based on fea-
ture fusion is also compared with the one based on strategy fusion.
The experiment results show that the transcription model based on
strategy fusion achieves better results than the one based on feature
fusion.

1. INTRODUCTION

Piano transcription is a fundamental problem in the field of music
signal processing and music information retrieval. It has a wide
range of applications in music education, music creation and in-
formation retrieval. The complete piano transcription infers in-
formation about onset, offset, pitch, velocity and pedal from the
audio signal and then obtains score-level representation. Due to
transcription complexity, most of the current transcription models
can only get accurate onset and pitch [1].

Audio-based transcription, video-based transcription and
audio-visual fusion transcription are three methods of piano tran-
scription. The current mainstream transcription models are based
on audio, among which the Onsets and Frames model [2] is the
most advanced model. Besides, video-based transcription mod-
els and audio-visual fusion transcription models have been grad-
ually developed in recent years. In general, the keyboard regis-
tration is carried out in the video-based model [3] to obtain the
segmented single-key images.Then the single-key images are fed
into the classifier to get the transcription results. Compared with
video-based and audio-based transcription, there are a few stud-
ies on audio-visual fusion transcription. Wan [4] proposed a novel
piano-specific transcription system, using both audio and visual
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features for the first time. A new onset detection method was pro-
posed using a specific spectrum envelope matched filter on multi-
ple frequency bands. And a computer-vision method was proposed
to enhance audio-only piano music transcription by tracking the
pianist’s hands on the piano keyboard. Lee [5] introduced a novel
two-stream convolutional neural network that took video and audio
inputs together for detecting pressed notes and fingerings. How-
ever, due to the lack of implementation details and open-source
datasets, the actual performance of the models [4, 5] remains to be
verified.

At present, researches based on video transcription and au-
dio transcription are relatively sufficient, but the single-mode tran-
scription models cannot achieve satisfactory results in actual per-
formance scenario. Therefore, a piano transcription model based
on strategy fusion is proposed, as shown in Figure 1, and the
model’s real performance is discussed in this paper. At the same
time, the feature fusion idea of Lee [5] is also reconstructed. Fi-
nally, we compare the transcription models’ performance based on
feature fusion and strategy fusion.
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Figure 1: Piano transcription based on strategy fusion.

As shown in Figure 1, the audio transcription model only re-
lies on the audio signal to predict notes, but the audio is a mixture
of fundamental and harmonics. When a piano key is pressed, both
the fundamental and harmonics have strong energy. As a result,
audio models often detect harmonics as notes with a higher fun-
damental frequency, resulting in extra note detection errors. We
refer this type of errors as harmonic errors. At the same time, the
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actual playing can be fast or slow. For successive rapid notes, the
audio models are also prone to extra note detection errors of the
same pitch We refer this type of errors as successive errors. In
this paper, the transcription model based on strategy fusion takes
the audio transcription results as the preliminary results and then
uses the range of hands in the video to limit the pitch range of
playing notes to eliminate harmonic errors. Besides, video-based
transcription can detect key jitters in continuous playing, helping
the audio model eliminate successive errors.

In order to study the effect of video transcription on audio tran-
scription, the ablation studies of hand range and jitter detection are
carried out. The experiment results show that the strategy fusion
model with hand range and jitter detection achieves a 92.07% F1-
score on OMAPS dataset, which is better than the single-mode
transcription model.

The feature fusion transcription is also studied and compared
with the transcription based on strategy fusion. Since the feature
fusion model [5] directly takes the whole image as the video mod-
ule’s input, many interfering pixels will be brought in, which may
have a negative impact. Therefore, the influence of full image,
only keyboard region, only hand region and differential image as
input on the feature fusion model is also studied. On OMAPS
dataset, the F1 score of the strategy fusion model is 5.18% higher
than that of the best model based on feature fusion, which proves
the superiority of the strategy-based fusion model.

In general, the main contributions of this paper are as follows:

• A piano dataset, OMAPS dataset 1, is proposed for audio-
visual fusion transcription research, which contains com-
plete video, audio and aligned MIDI annotations.

• A piano transcription algorithm based on strategy fusion is
proposed, and for the first time the hand range and jitter
detection mechanisms is used for audio-visual fusion tran-
scription.

• The input characteristics of the transcription model based
on feature fusion is also studied. And compared with the
best model based on feature fusion, the strategy fusion al-
gorithm proposed in this paper is better.

2. RELATED WORK

2.1. Audio-based Transcription Research

Before deep learning became popular, NMF was often used for pi-
ano transcription. The simplest NMF [6, 7] first established the
spectrum template through the single note signal, then used the
spectrum template to decompose the piano signal to get the activa-
tion matrix, and finally obtained the transcription results through
the post-processing of the activation matrix. However, simple
NMF transcription methods do not consider the differences of
signals at different stages, and the models’ performance is often
unsatisfying. Cheng [8] proposed an NMF transcription method
based on attack-decay, using different spectral templates to decom-
pose the attack and decay stages of the piano signal, and achieved
an 81.80% F1 scores on MAPS dataset. However, NMF is a linear
model and its modelling ability is limited, so the development of
NMF in transcription soon reaches a bottleneck.

With the emergence of deep learning, piano transcription tech-
nology has been further developed. The most common input of
the piano transcription models [9, 10, 11] based on deep learning

1https://github.com/itec-hust/OMAPS

is the two-dimensional spectrogram obtained by time-frequency
transformation. Then the spectrogram representation is sent to the
convolutional neural network for feature extraction. Finally, the re-
sults are obtained through the classifier. The transcription models
based on CNN make up for the lack of modelling capability, but
they don’t consider the time dependence between sound signals.
To solve this problem, Hawthorne [2] and Kong [12] proposed the
piano transcription models based on CRNN. These models used
CNN to extract the spectral features and then used Bi-LSTM to
learn the time dependence. Compared with the model only us-
ing CNN, the CRNN models can capture the correlation of sound
signals and achieve better transcription performance. In addition,
there are transcription studies based on generative adversarial net-
works (GAN) [13, 14], language models [15, 16, 17], etc.

2.2. Video-based Transcription Research

At present, there are two kinds of video-based transcription meth-
ods. In the first kind of methods, a single key image is obtained
by keyboard location and keyboard segmentation. These images
are then fed into a binary classifier to get transcription results.
However, the accuracy of keyboard segmentation is critical in this
non-end-to-end transcription methods. Before the emergence of
deep learning, traditional image processing methods such as Sobel
operator, Hough transform, morphological expansion and corro-
sion [18, 19, 20] were generally used to complete keyboard loca-
tion and keyboard segmentation. However, such methods are often
sensitive to camera distortion and illumination changes, leading to
the accuracy decline of the keyboard segmentation and ultimately
affecting the entire transcription system’s performance. Akbari
[21, 22] added an illumination correction step in their pipeline, but
the limitations for drastic light changes or vibrations of the camera
or piano were reported. The methods based on deep learning make
keyboard segmentation more robust. Li [3] proposed keyboard lo-
cation and segmentation models based on semantic segmentation,
making the model more tolerant to illumination changes and cam-
era distortion. The second kind of methods is to directly send the
whole image into the models for end-to-end learning. Since the
transcription of a single image often ignores the association be-
tween successive frames, Koepke [23] has used 3D convolution
for feature extraction to learn the temporal correlation between
continuous video images. Besides, Rho [24] used a depth cam-
era to capture the depth change and speed of the keypress, which
provides a new idea for video-based piano transcription.

Single-key models reduce interference in images and focus on
keypress detection. But there are also shortcomings, such as the
lack of hand position perception and key position correlation learn-
ing. Full keyboard input retains the original hand position infor-
mation. However, full image as input will bring a lot of irrelevant
information to the models, which may interfere with the model’s
decision making.

2.3. Audio-visual Fusion Transcription Research

Piano transcription methods based on audio-visual fusion have
been gradually developed in recent years. There are two methods
to complete audio-visual fusion transcription. The first method
is to use the transcription results of one mode to assist the tran-
scription of another mode. For example, the audio-visual fusion
transcription method proposed by Wan [4] adopted an energy en-
velope matching filter for the audio transcription part. Then hand
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information transcribed in the video was used to enhance the au-
dio transcription results. Another fusion method is to fuse audio
and video modes’ feature matrices to get the final transcription re-
sults. For example, Lee [5] proposed a two-stream convolutional
neural network that took video and audio together for detecting
pressed notes and fingerings. Lee finally achieved an accuracy of
75.37% on its own piano dataset, which proved the feasibility of
audio-visual fusion transcription.

Audio based 
transcription

Video based 
transcription

strategy 

fusion

Onset  Offset  Pitch
1.44    1.68     47
1.72    2.08     64
1.76    2.08     44
2         2.28     47
2.32    2.56     42
2.32    2.56     63
2.56    2.8       47
2.56    2.88     59

Figure 2: The overall structure of our system.

3. METHOD

Because the single-mode piano transcription models in the real
scenario are not excellent, a fusion model based on strategy is pro-
posed in this paper. The fusion model based on strategy utilizes the
current optimal audio transcription model and video transcription
model. The system’s overall structure is shown in Figure 2, which
is divided into three modules: video transcription, audio transcrip-
tion, and strategy fusion. Each module will be introduced in detail
below.

3.1. Audio transcription model

3.1.1. Implementation of audio transcription model

We use the Transition-aware model [25] as our audio-based tran-
scription model. This model includes two branches: frame es-
timation and onset detection. The overall structure is shown in
Figure 4. Frame estimation is used to predict the existence of 88
notes; Onset detection is used to predict the onset probabilities of
88 notes. The structure of onset detection and frame estimation
branches is the same. Firstly, a multi-layer convolutional network
is used to extract features from the input spectrogram. Then, Bi-
LSTM is used to conduct time-dependent modeling. The onset de-
tection branch features are fused into the frame estimation branch
to improve the frame estimation branch’s performance.

The structure of the Transition-aware model is similar to that
of the Onsets and Frames model. The following improvements
have been made to the Transition-aware model to achieve a better
transcription performance:

1. Use CQT spectrogram instead of mel spectrogram as in-
put. Compared with mel spectrogram, the frequency points
of the CQT spectrogram are distributed exponentially and
have different frequency resolutions for high and low fre-
quencies, so it is more suitable for music signal processing.

2. The continuous five frames near the onset are annotated so
that the model could better consider the spectral changes at
the edge of the onset moment and improve the transcription
accuracy.

3. Use peak selection to obtain onset transcription results.
Compared with the taking threshold method, peak selection
is more robust to noise interference and can reduce extra
note detection errors.
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Figure 3: Extra note detection errors’ distribution.

3.1.2. Problems in audio transcription

We have tested the Transition-aware model on OMAPS dataset and
achieved an F1 score of 87.51%. The number of extra note detec-
tion errors and missing note detection errors on OMAPS dataset of
the Transition-aware model is 2723 and 2235, respectively, which
indicates that extra note detection errors are the principal contra-
diction of the audio transcription model. We have analyzed the ex-
tra note detection errors’ distribution on OMAPS dataset, as shown
in Figure 3. It can be seen that there are mainly harmonic errors
generated by harmonics and successive errors generated by contin-
uous playing, which is consistent with the discussion in the intro-
duction part. The audio-based transcription model performs well,
but the remaining extra note detection errors are challenging to be
solved by audio-based methods, which prompts us to propose a
fusion model based on strategy.

3.2. Video transcription model

3.2.1. Implementation of video transcription model

We adopt the best video transcription model [3], which includes
four components: keyboard location, keyboard segmentation,
hands location and classifier. The overall structure is shown in
Figure 5.

As can be seen from Figure 5, a complete input image con-
tains the keyboard, hands and other interfering pixels. Putting the
whole image directly into the neural network will bring in many in-
terfering factors, which will affect the model’s performance. The
keyboard location is generally carried out first, and only the key-
board’s filed is retained to improve the performance of the video
transcription model. Then the coordinates of each key can be ob-
tained according to the geometric relationship. On the other hand,
the keyboard area covered by each playing action is limited to the
hands’ range. Therefore, the hand detection module is used to lo-
cate hands, and the approximate range of playing keys is obtained.
We intercept the keyboard within the rectangular field of the hands
as our detection range. At the same time, the coordinates of all
keys are used for single key segmentation. Finally, a single key’s
image is sent into the binary classifier to get the detection results.
The video transcription model uses differential images as input of
the binary classifiers to obtain better transcription results. Consid-
ered the influence of optical factors, two independent classifiers
are used for white keys and black keys, respectively, and the com-
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Figure 4: Audio-based transcription model.
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Figure 5: Video-based transcription model.

plete transcription results are finally obtained by combining them.
Keyboard location and hand detection are implemented us-

ing the semantic segmentation model, PSPNet [26], proposed by
SenseTime company. To reduce the model’s computational load,
MobileNet-v2 [27] is used to accomplish feature extraction in
PSPNet. After locating the keyboard, each key’s position can be
obtained based on the geometric relationship to achieve keyboard
segmentation. Finally, the classifiers of black keys and white keys
are implemented by the five-layer convolutional neural network,
and the specific parameters are shown in Table 1. The convolution
layer parameters, H*W@C, refer to the height of the convolution
kernel as H, width as W and the number of channels as C. The
max-pooling layer parameters, PH * PW/PSH * PSW, indicate that
the height of the pooling area is PH, the width is PW, the step size
along the height direction is PSH, and the step size along the width
direction is PSW.

Table 1: Parameters of the classifiers.

Input Layer & Parameter Output
112× 32× 1 Convolution:3× 3@8 112× 32× 8
112× 32× 8 Max-pool:2× 2/2× 2 56× 16× 8
56× 16× 8 Convolution:3× 3@8 56× 16× 8
56× 16× 8 Max-pool:2× 2/2× 2 28× 8× 8
28× 8× 8 Convolution:3× 3@16 28× 8× 16
28× 8× 16 Max-pool:2× 2/2× 2 14× 4× 16
14× 4× 16 Convolution:3× 3@32 14× 4× 32
14× 4× 32 Max-pool:2× 2/2× 2 7× 2× 32
7× 2× 32 Reshape+Drop:0.5+Fc:256 256

256 Fc:2 2

3.2.2. Problems with video transcription

We have found that the transcription models based on video can
detect the white keys well, but there are many missing note de-
tection errors for the black keys. There are two reasons for this
phenomenon. First, the hands will cover part of the keys during
the playing process, while the color of the human skin is closer to
the color of the black keys, which has a greater impact on the black

keys. Second, a black gap will appear when a piano key is pressed.
For white keys, the model can recognize the gap better when the
piano keys are pressed. However, for black keys, the color of the
gap is comparable to that of the black keys, so the model cannot
identify the gap’s characteristics well. These two factors lead to
the detection accuracy of the black keys being much lower than
that of the white keys, which ultimately leads to the video models’
performance is inferior to that of audio models.

Although the model’s overall performance based on video is
not as good as that based on audio, some information in the video
can assist the audio model in completing the transcription task bet-
ter. For example, the video model’s hand range judgment can help
the audio transcription model remove harmonic errors. Mean-
while, the video transcription model can perform jitter detection
for white key, which helps eliminate successive errors of the audio
model. Both mechanisms are described in detail below.

Intermediate
results of video

Intermediate 
results of audio

Harmonic error 
elimination

Successive error 
elimination

transcription 
results

hands range Jitter detection

Figure 6: Concrete implementation of our strategy.

3.3. Strategy fusion

Our fusion model’s basic idea based on strategy is to use the inter-
mediate results of the video-based model to assist the audio-based
model. As shown in Figure 6, the video-based model’s hand range
is used to eliminate harmonic errors, and the jitter detection results
are used to eliminate successive errors.

The mechanism of using the hand range to eliminate harmonic
errors is straightforward. We take the notes within the hand range
detected by the video transcription model as the candidate notes. If
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Figure 7: Jitter is used to eliminate successive errors.

the note onsets of the audio transcription results are not within the
candidate notes, we consider them as harmonic errors and remove
them from the final results. Using the jitter detection mechanism
to eliminate successive errors is shown in Figure 7a. There may
be successive detection of the same pitch in the audio transcrip-
tion results. Some of these results represent continuous playing,
while the other part represents successive errors. To distinguish,
we use the detection probabilities of the video model to perform
jitter analysis. As shown in Figure 7b, the video transcription
model’s output probabilities show a jitter between two probability
peaks, indicating that the video model has detected continuous key
playing. Therefore, the continuous detections in the audio model
results are retained, and the final transcription result is shown in
Figure 7c. As shown in Figure 7d, the video transcription model’s
output probabilities have no jitter between the two peaks, indicat-
ing that this is the playing action of one onset. Hence, the audio
part’s continuous detection results represent successive errors and
will be removed later. The final result is shown in Figure 7e.

For the video transcription model, optical factors lead to a high
error rate for black keys. Therefore, we carry out different fusion
strategies for white keys and black keys:

1. For the black keys, we directly use the hand range to elimi-
nate harmonic errors in the audio. Due to the low detection
accuracy for the black keys, the jitter detection of the black
keys cannot be well detected. Therefore, we do not conduct
successive errors correction for the black keys.

2. For white keys, the video model has high accuracy, so we
adopt a more refined processing strategy. Firstly, all the
probabilities of white keys within the range of hand are ob-
tained, and then white keys above the threshold are selected
as candidate keys to eliminating harmonic errors. Then we
use a jitter detection mechanism for white keys to eliminat-
ing successive errors.

4. EXPERIMENTS

4.1. OMAPS dataset

At present, the datasets used in piano transcription research in-
clude MAPS dataset [28], MAESTRO dataset [2] for audio tran-
scription, and MTA dataset [20] for video transcription. However,
the dataset used for audio-visual fusion transcription has not been
proposed yet. To evaluate the performance of different audio-video
fusion models, we have established the OMAPS dataset.

The OMAPS (Ordinary MIDI Aligned Piano Sounds) dataset
was recorded from Yamaha electric piano P115 by a piano player.
The Logitech C922 Pro HD stream webcam was used to record
video and audio simultaneously. The Logitech camera is avail-
able in both 1080p/30fps and 720p/60fps video configurations. To
ensure the resolution of the video, we used the 1080p/30fps con-
figuration. The Logitech camera audio module’s sampling rate is
44100Hz. Since the recorded videos and piano MIDI files were out
of sync, we manually aligned the exported MIDI files as annota-
tions. The OMAPS dataset contains 106 different pieces for a total
of 216 minutes, with an average of two minutes per piece. The
amount of notes played per second is used to measure the play-
ing speed. According to the playing speed, the OMAPS dataset is
divided into a training set and a test set. The training set and the
test set have the same playing speed distribution. The training set
contains 80 videos, and the test set contains 26 videos, as shown
in Table 2.

Table 2: Statistics of the OMAPS dataset.

Split Performance Duration, minutes Size, GB Notes
Train 80 123 3.18 60,589
Test 26 53 1.03 19,135
Total 106 176 4.22 79,724
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4.2. Evaluation metrics

Precision, recall and F1 score are used to evaluate the performance
of the piano transcription models. Precision represents extra note
detection errors, recall represents missing note detection errors,
and F1 score represents the model’s comprehensive performance.
The calculation formula of precision, recall and F1 score is as fol-
lows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 =
2× P ×R

P +R
(3)

Where TP is the number of correct detected notes, FP is the num-
ber of extra detected notes, and FN is the number of missed de-
tected notes. At present, the evaluation algorithm implemented in
mir_eval library [29] is commonly used to evaluate transcriptional
models, and the time tolerance of onset is set to ±50ms.

4.3. Study on ablation of strategy fusion

The fusion model based on strategy in this paper adopts a non-end-
to-end method to conduct post-fusion of audio and video transcrip-
tion results. The audio part adopts the Transition-aware model and
the video part adopts Li’s model. Due to many parameters in the
Transition-aware model and to prevent overfitting of the model,
we pre-trained the Transition-aware model using the MAESTRO
dataset and then fine-tuned the model on OMAPS training set. The
OMAPS training set contains more than 200,000 images, which is
enough to train Li’s video transcription model. So we directly use
the OMAPS dataset to train the video transcription model.

To investigate hand range and jitter detection, we stud-
ied the effects of three model configurations: Transition-aware,
Transition-aware combined with hand range, and Transition-aware
combined with hand range and jitter detection. As shown in Table
3, the hand range eliminates many harmonic errors and increases
precision by 8.6%, which is the main contribution improving of the
model’s performance. After combining jitter detection, the preci-
sion is only increased by 1.01%. On the one hand, there are a
few successive errors, and the improvement of reducing succes-
sive errors is limited. On the other hand, the video transcription
model has a poor jitter detection performance for black keys, so it
is only implemented for white keys. At the same time, it can also
be found that the recall of using the hand range and jitter detection
mechanism is unchanged, which indicates that the proposed strat-
egy rarely brings in new missing detection errors into the audio
transcription results.

Table 3: Performance of the three model configurations on
OMAPS test set.

Model P R F1
Transition-aware 85.98 89.22 87.51

Transition-aware+Hands 94.58 88.56 91.40
Transition-aware+Hands+Jitter 95.59 88.94 92.07

(a) Full image

(b) Only keyboard

(c) Only hands

(d) Differential image

Figure 8: Four types of input images.

4.4. Input research of feature fusion

We replicated the idea of the feature fusion model [5] and con-
ducted training and testing on OMAPS dataset. A complete image
was directly fed into the feature fusion model, including many in-
terfering pixels, so the transcription performance might not be per-
fect. To explore the potential of the feature-fusion based model,
we investigated the effects of full-image input (Figure 8a), only-
keyboard input (Figure 8b), only-hands input (Figure 8c) and dif-
ferential input (Figure 8d), respectively. The full-image input (Fig-
ure 8a) is the input configuration in Lee’s paper. The performance
of each model on OMAPS test set is shown in Table 4.

Table 4: The feature fusion model’s performance on different input
images.

Configuration P R F1
Full image 90.62 83.96 86.67

Only keyboard 92.83 84.26 87.74
Only hands 95.74 84.77 89.69
Differential 96.15 86.32 90.22

As shown in Table 4, only an 86.67% F1 score is obtained
on OMAPS dataset when the entire image is directly used as the
model input. The F1 score of the only-keyboard input reaches
87.74%, which indicates that reducing interference makes the
model achieve better performance. The F1 score and precision of
the only-hands input reaches 89.69% and 95.74% respectively, and
the recall isn’t decreased, indicating that only-hands input features
can make the transcription model locate the playing pitch range
more accurately. For differential input, the transcription model
achieves an F1 score of 90.22% on OMAPS dataset and achieves
the best performance among the feature fusion models. The dif-
ferential image allows the model to directly focus on each finger,
which is more accurate than the only-hands images and further re-
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duces extra note detection errors. Besides, the differential image
is not dependent on the hand detection module. This also avoids
missing note detection errors caused by inaccurate hand detection,
thus improving the recall rate.

4.5. Comparison with other methods

We tested Onsets and Frames, Li’s model and the our strategy fu-
sion model on OMAPS test set, and the experiment results are
shown in Table 5.

Table 5: Results of several transcription models on OMAPS test
set.

Model P R F1
Onsets and Frames[2] 81.03 90.22 85.17

Li[3] 93.69 77.73 83.15
Feature fusion [5] 96.15 86.32 90.22

Strategy fusion 95.59 88.94 92.07

As can be seen from Table 5, the F1 score of Onsets and
Frames is 2.02% higher than Li’s video-based transcription model.
The transcription models based on feature fusion and strategy fu-
sion achieve 90.22% and 92.07% F1 scores on OMAPS dataset,
respectively, which are higher than the single-mode transcription
model based on video or audio. The fusion models’ performance
indicates that it is effective to combine video and audio informa-
tion.

The strategy fusion model achieves a 92.07% F1 score on
OMAPS dataset, which is the best among the above models. This
model directly post-processes the audio transcription results to re-
duce the audio model’s extra note detection errors. In this way, no
missing detection errors are brought in, thus maintaining the ad-
vantage of the audio-based transcription model’s high recall rate.
In contrast, due to the hand occlusion problem in the video part and
the same weight given to the image feature and the audio feature,
new missing note detection errors are brought in for the feature fu-
sion model. Its final recall is lower than that of our strategy fusion
model. Compared with the best feature fusion model, our strategy
fusion model’s precision decreased slightly, recall rate increased
by 2.62%, and F1 score increased by 1.85%, indicating that the
current strategy fusion model’s performance is better than that of
the feature fusion model.

5. CONCLUSION

The OMAPS dataset is proposed for audio-video fusion transcrip-
tion studies in this paper, consisting of 106 videos. Besides, a tran-
scription model based on strategy fusion is also presented. The ex-
periment results show that our strategy fusion model has achieved
a 92.07% F1 score on OMAPS dataset, which is better than the
feature fusion model [5]. Besides, the ablation studies of the hand
range and the jitter detection mechanisms are conducted, proving
the effectiveness of our proposed strategy fusion.

Piano transcription based on audio-visual fusion is a new re-
search field, and there are a few relevant pieces of research at
present. However, studies based on multimode is essential. We
need machines to perceive the external world from a variety of
perception simultaneously, just like humans. In the future, we will
continue to study the audio-visual piano transcription and further
explore the piano transcription models based on feature fusion.
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