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ABSTRACT

In recent years, a range of topological methods have emerged for
processing digital signals. In this paper we show how the construc-
tion of topological filters via sheaves can be used to topologize
existing sound synthesis methods. I illustrate this process on two
classes of synthesis approaches: (1) based on linear-time invari-
ant digital filters and (2) based on oscillators defined on a circle.
We use the computationally-friendly approach to modeling topolo-
gies via a simplicial complex, and we attach our classical synthesis
methods to them via sheaves. In particular, we explore examples
of simplicial topologies that mimic sampled lines and loops. Over
these spaces we realize concrete examples of simple discrete har-
monic oscillators (resonant filters), and simple comb filter based
algorithms (such as Karplus-Strong) as well as frequency modula-
tion.

1. INTRODUCTION

Topology is the mathematical description of connectivity. It disre-
gards information such as distances or angles. Thus, topological
constructions make weaker assumptions than geometry and pro-
vide broader applicability. In recent years, topological ideas have
increasingly found their way into applications.

In this paper, we explore how topological spaces can be made
an explicit part of the construction of sound synthesis methods
based on two building blocks: (1) Simplicial topological spaces
and (2) sheaves. Simplicial topological spaces have the advan-
tage of being suitable for computer implementation. While the
full theory of sheaves can be daunting [1], sheaves over simpli-
cial topologicies, with some further requirements, become much
more straightforward to understand and use. Using these two con-
structions, we employ so-called topological filters as proposed by
Robinson [2, 3]. Topological filters are very general in principle,
and largely prescribe a decomposition of input, state, and output
and their related computation over a topological space, which in
our case relates to temporal dynamics. This means that one can
envision that most, perhaps all, existing sound synthesis methods
can be realized in this framework.

In order to illustrate how existing synthesis methods can be re-
lated to a topological space, or topologized, we give explicit con-
structions of two classes of sound synthesis methods in this paper.
The first class consists of methods based on linear time-invariant
digital filters [4, 5]. The realization of both feedforward (all-zero)
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filters [2, 3] and general pole-zero filters [6] have been derived the-
oretically. This paper gives explicit demonstrations of these filters
by realizing a classical IIR resonance filter and the Karplus-Strong
plucked string algorithm in this formalism. These have been cho-
sen as they are closely related to widely used types of synthesis
methods based on filters. Resonant filters are elementary building
blocks in modal synthesis [7, 8, 9]. The Karplus-Strong plucked
string algorithm is constructed from a comb-filter with a low-order
loop filter [10]. It is a simple prototype of a linear time-invariant
filter-based physical model that can be enriched to arrive at physi-
cal models based on digital waveguides [11]. The second class of
synthesis methods realized over topologies are oscillatory synthe-
sis methods. It has recently been shown that numerous oscillatory
synthesis methods can be subsumed under the general formula-
tions of maps from the circle to itself [12]. We specifically use
frequency modulation [13] as a particularly popular, yet rich oscil-
latory prototype of this class of synthesis methods.

The relationship of topological space to audio samples, the
ultimate outcome of sound synthesis methods, is a rich playing
field that involves choices of topological spaces, metric informa-
tion, and geometric manipulations such as projections. A number
of concrete constructions illustrate these concepts in the topolo-
gized sound synthesis computation.

The goal of the paper is to have concrete, simple, yet suffi-
ciently rich examples to serve as a template for similar construc-
tions for other existing sound synthesis methods, or how novel
methods might be constructed using this approach. Hence, these
examples seek to illustrate the general strategy of "topologizing"
synthesis algorithms using simplicial topologies and sheaves.

1.1. Related Work

While the development of topology is predominantly in the realm
of pure mathematics, topological ideas have increasingly been
found useful in applied domains over the last two decades through
the emergence of the field of computational topology [14], applied
topology [15], and, most recently, the direct application of topo-
logical constructions and ideas to data analysis [16] and signal
processing [3, 17, 18].

Of particular relevance is recent work generalizing linear-time
invariant FIR filters [2, 3] as well as IIR filters [6] to topological
filters over sheaves. The basic intuition of a sheaf is the ability to
connect data locally to a topological space, while retaining consis-
tency of data during traversal of the topological space.

Basic topological notions have long been present in digital fil-
ter theory, primarily with respect to so-called "filter topologies"
and have been an important facet of comparing realizations of dig-
ital filters (see for example [19]). Furthermore, certain topolog-
ical properties have been used to inform sound synthesis meth-
ods. Trautmann published two Waveguide constructions of flat
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Figure 1: Low-dimensional simplices and their combinatorial de-
scription as simplicial sets.

metric Möbius bands as string models via twisted boundary con-
ditions [20]. Topology plays an important role in understanding
nonlinear problems as it often allows for the characterization of
desirable properties even when a method for precisely solving the
problem is unknown. The reason why circle maps are desirable
one-dimensional iterative maps for chaotic sound synthesis is that
their circular topology guarantees stability of the dynamics [21].
Many classical oscillatory synthesis methods can be reinterpreted
as dynamics on a circular topology [12]. Furthermore, studying
the topological structure of synthesis algorithms allows us to gen-
eralize results beyond specific metric settings as is the case in
the work of classifying excitation locations across standard and
banded waveguides in one and two dimensions [22]. Topological
foundations have also played an important role in computational
and mathematical musicology [23]. Munkres [24] provides an ac-
cessible introduction to topology.

2. SIMPLICIAL TOPOLOGY

At the most basic level, the study of topology investigates connec-
tivity patterns. General topology can be hard to model explicitly
algorithmically. However, there is a powerful yet very computa-
tional description of topology that allows us to formulate topo-
logical spaces combinatorially, which can be implemented in a
straightforward fashion. These topological spaces are called sim-
plicial topologies [14, 15], and use simplices as their basic building
blocks. Our exposition here is closely related to [3, 6]. Low-
order simplices are depicted in Figure 1. A 0-simplex can be
thought of as a topological point. A 1-simplex is a topological
line segment terminated by two points (0-simplices). n-simplices
can be thought of as modeling different dimensional objects topo-
logically. The next higher dimension would be that of an area.
The 2-simplex can be thought of as a topological area bounded by
three 1-simplices as its faces. This process can be continued to
arbitrary higher dimensions and in each case encodes that a n+1-
dimensional (hyper)-volume is filled in between surrounding faces
of n-dimensional (hyper)-volumes. Simplicial complexes are con-
structed by gluing together n-simplicies from shared points, edges,
areas and so forth. This paper will focus on a subset of simplicial
complexes: path constructions realized as line- or loop-complexes.

An extended line containing multiple points can be constructed
by gluing a number of 1-simplices together at a shared 0-simplex.
If there is no branching, this simplicial complex is called a line
complex1. This construction looks quite analogous to a sampled

1More general simplicial complexes which are limited to 0 and 1-

version of the real line R, except that there is none of the metric
structure of R. Throughout this paper, 0-simplices are interpreted
as topological sample points and 1-simplices define their respec-
tive connectivity and sequential order. In fact, the sampled real line
is an example of a line complex, endowed with additional informa-
tion (such as the metric structure of R). Any irregularly sampled
real line is an example of the line complex. Thus, all sampled
real lines share the same topological structure. The following two
operations allow one to relate n-simplices to each other.

Definition 2.1. A boundary operation b of an n-simplex Xn re-
turns an ordered set of all n-1-simplices that constitute its bound-
ary. A 0-simplex returns the empty set. A face operation f of an
n-simplex returns an ordered set of all n + 1-simplices of which
it is a boundary. We call two simplices directly connected if they
are relatable through one face or boundary operation.

These two operations are sufficient to traverse across neighboring
simplicies, keeping in mind the simplex already visited and the
ones yet to be visited, or having some local notion of orientation.

2.1. Sheaves: Associating Data to a Topology

The traditional setting for signal processing of audio follows this
basic model: Time and amplitude are modeled as Cartesian prod-
uct yielding a Eucledian plane R2 in which time-parametrized func-
tions of amplitude are considered. Furthermore, time is discretized,
yielding a sampled version of the time axis.

The sampled time line can be topologized by replacing it with
a line complex with the 0-simplicies corresponding to sampling
points. This construction is indeed a topological version of the tra-
ditional time line, except that the distance between sample points
is no longer considered up front (though it may be reintroduced
later). Next the amplitude component as well as computational
relations between them are topologized.

Attaching data to the line complex can be achieved by a mech-
anism called sheaves. Sheaf theory [26] was developed in the
1940s for this purpose, though the original applications of the the-
ory fall within the purely mathematical study of topology and ge-
ometry. The construction of attaching data to cellular or simplicial
structures emerged later [27], with applications emerging only re-
cently [28, 15, 3].

It is rather common to consider data in association with some
topological structure, including objects such as colored or labeled
graphs. Sheaves are a formal process of associating not only data,
but also functions, to a topological space. Within category the-
ory, this notion is called a functor [15]. Still, category theory is
not required to understand our constructions. Therefore we limit
ourselves to studying maps. For treatments using category theory
more explicitly, see [3, 15, 28]. We use the following definition
definition of a sheaf [6]:

Definition 2.2. A sheaf of data D of a simplicial complex S each
indexed by i ∈ I satisfying

1. Each Data Di is attached to each n-simplex Si.
2. Local data Di is unique. We call this the consistency con-

dition.
3. If two simplices Si,Sj are directly connected, then there

exists at least one mapping between Di and Dj , called the
consistency map.

simplices are related to signal processing over graphs [25] which has been
recently extended to processing over simplicial complexes [17, 18].
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Despite already being somewhat tailored to our needs, this is still
a rather general definition. Note that any simplicial complex is
permissible and there are only some general requirements for the
nature of the data and maps between them. The main difference
between our definition and other proposals [15, 3] is that our def-
inition fixes consistency locally. We are interested in constructing
synthesis methods and digital filters, rather than in analyzing in-
consistency in given data (as is done in [29]), hence it is appro-
priate to impose local consistency on all our constructions. This
behavior is implied in traditional digital filters.

3. TOPOLOGIZING SOUND SYNTHESIS VIA SHEAVES

A general template exists shared by all sound synthesis methods
topologized in this paper, which can be used to formulate others
as well. This construction is precisely the one given by Robinson
[3] under the name topological filter. The general definition of a
topological filter via sheaves after Robinson [3, Definition 4.15] is
encapsulated in this diagram:

Si
i←− Ss

o−→ So (1)

The sheaves S∗ in this construction have the following meaning:
Si is the input sheaf, So is the output sheaf, and Ss is the sheaf of
the state of the topological filter. These are called sheaves because
this structure is attached over simplices of simplicial complex and
connected via consistency maps. Tracing out an underlying sim-
plicial line complex results in a general structure [3, 6] as depicted
in Figure 2.

· · · 0 Si 0 · · ·

· · · Sc Ss Sc · · ·

· · · 0 So 0 · · ·

r

i

o

s

· · · · · ·

Figure 2: The sheaf filter structure over a line complex. The ver-
tical sheaf structure constitutes a topological filter. It is associated
with the 0 and 1-simplex below it. Horizontal maps correspond to
the traversal between neighboring simplices via face and boundary
maps and the sheaves above it.

This structure captures all essential aspects of sound synthesis over
a simplicial topology. It defines an input-output relationship with
a temporal dynamic. In the context of sound synthesis, the in-
put captures interactions, excitations, or parametric changes of the
synthesis method. The output is typically related to generated dig-
ital audio, though it can also serve as an input for further compu-
tations.

More specifically, each vertical slice of Figure 2 has the basic
form of the general topological filter of equation (1). The state over
each 0-simplex Ss is connected via a 1-simplex. This captures the
notion of a transition (or time-step). The consistency sheaf Sc con-
tains the information that is needed to transition data between the
two attached 0 simplices. The top row corresponds to inputs over
different simplices of the underlying topological space. The bot-
tom row corresponds to the output at the same simplices. Given
that input and output samples are treated as independent, that is,

there is no information to consider for their respective consisten-
cies, we have 0 sheaves over 1-simplices for each. In this diagram,
we think of time flowing from left to right. According to this inter-
pretation, the maps r and s capture the dynamic evolution of the
state as one traverses the simplicial topology, and the maps i and o
capture the injection of input into the state, and the computation of
output from the state, respectively. For the direction of the arrows,
we follow Robinson’s convention [3], which generally points from
higher dimensional spaces to lower dimensional ones. This makes
maps look like traditional (single-valued) functions, but does not
necessarily follow the direction of computation in practical real-
ization. For sound synthesis methods considered here, inputs will
always be given. Therefore, all inputs are always computed as
injections into the state, and never as projections from the state.
Furthermore, we will only consider synthesis in a causal direction
and therefore the retrieval map r is also always computed as an
injection. Hence, the practical computation of maps i and r are al-
ways performed against the direction of the arrow in the diagram.
Due to injectivity, both maps can populate the state sheaf directly.

4. FILTER-BASED SYNTHESIS METHODS AS SHEAVES

The previous section provides the general outlines of the compu-
tations we seek to realize in the sheaf structure. First, we realize
linear time-invariant digital filters as topological filters following
[2, 6]. This allows us to then give concrete examples of filter-
based synthesis methods over various simplicial topologies. Gen-
eral pole-zero IIR filters are needed to model resonant behavior.
The full derivation of these filters over sheaves can be found in
[6], to which the reader is referred for more details.

4.1. General LTI (Pole-Zero IIR) Filters as Sheaves

z-1

z-1

z-1

+

+

+
y

-a1

-a2

-aN

z-1

z-1

z-1

+

+

+
x

b0

b1

b2

bN

Figure 3: General IIR filter - Split Direct form II depicted as all-
pole IIR filter followed by an FIR filter of the same order

The equation for the general LTI filter contains feedforward and
feedback contributions as follows:

y =
N∑
i=1

bi · xN−i + b0 · x+
N∑

j=1

−aj · yN−j (2)

There are a number of practical realizations of such filters. How-
ever, the Direct Form II [4] (depicted in Figure 3 in split form)
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is particularly convenient for our discussion. If the length of the
feedback filter on the left and the feedforward filter on the right
are the same, the state is in fact identical and can be merged. This
is required to arrive at a shared state description for a full pole-
zero filter. From equation (2) emerges a state vector of size N . If
feedforward or feedback in the construction is lower, we simply
pad with filter coefficients set to zero to get matching lengths. The
input additionally provides a further dimension. Thus the size of
the vector in the state sheaf Ss is RN+1.
Now we can specify the nature of the data on the sheaf structure
of Figure 2 for this case, arriving at Figure 4 consisting of linear
maps between vector spaces. It can be shown [6] that the linear
maps in this structure for the general IIR filter are as follows:

s : (x0, x1, ..., xN−1, x)→(x1, x2, ..., xN−1,

x+
N∑

j=1

−aj · xN−j)
(3)

r : (x0, x1, ..., xN−1, x)→(x0, x1, ..., xN−1) (4)
i : (x0, x1, ..., xN−1, x)→(x) (5)

o : (x0, x1, ..., xN−1, x)→(b0 · x+
N∑
i=1

bi · xN−i) (6)

The input map i injects the input into the extended state. The
feedforward part of the filter equation 2 is contained in the out-
put map o. The sheaf map s captures the dynamical behaviors in
filters. This consists of the discrete shift that both feedforward and
feedback filters share and the feedback component of the filter.
This provides a convenient interpretation of the s map capturing
the complete dynamical behavior of the filter. The map r simply
retrieves the computed intermediate state over a 1-simplex to be
combined with the next input. Taken together, maps r and s con-
stitute the complete time-stepped dynamic of the filter that went
through an intermediate state RN which, in our general sheaf filter
structure, we called Sc. Sheaf-theoretically, we say that this inter-
mediate state contains the data needed to keep the data between
the two time steps consistent. This is precisely the data needed
to compute the next step. The standard feedforward filter dynam-
ics is recovered when all feedback coefficients are set to 0. Then
the map s reduces to a shift. In this form, it is easy to see why
feedforward filters are unconditionally stable. It is a unidirectional
computation with no further influence on any other components
of the sheaf structure (the morphisms between two output sheaves
are 0). The state can grow depending on the feedback coefficients.
Given that, if all coefficients are 0 it reduces to a shift (which ob-
viously has unit gain), the stability only depends on the feedback
coefficients. It can be shown that the sheaf map s is precisely the
state space matrix with input [6] hence the stability of the feedback
is identical to that of the classical filter with the same coefficients.

4.2. Digital Filters as Resonators

Digital filters are closely related to finite difference recurrence
models, which in turn arise as the discretization of differential
equations. Through this route it is well-known that a mass-spring
system with its damped oscillatory behavior is discretely modeled
by low-order feedback systems which in turn become low-order
pole-zero IIR filters when interpreted as digital filter structures.
Henceforth, we call these types of filters resonators [5]. Further-
more, linearity means that each mode of a linear medium can be

0 R 0

RN RN+1 RN

0 R 0

r

i

o

s

Figure 4: IIR filter in sheaf form using linear maps between vector
spaces

modeled independently, and the aggregate behavior can be recov-
ered as a linear combination of individual resonators, which in this
context are called modes. This is the core of modal synthesis [7].
We use a second order pole-zero equal-gain resonant filter follow-
ing [8, 9] as the first of our filter-based examples.

It is straightforward to plug the typical equal-gain resonant fil-
ter coefficients a2 = R2 and a1 = −2R cos(2π f

fs
) into equation

(3) and the feed forward coefficients b0 = 1, b1 = 0 and b2 = −1
into equation (6) with N = 2. R is the distance from the unit cir-
cle, capturing the temporal decay. We used 0.99995.The expected
spectral outcome of this filter (under classical uniform sampling) is
a single narrowband signal that sounds comparable to a sinusoidal
oscillator under some exponential damping.

4.3. Digital filters as Physical Models

The ideal 1-D wave equation permits traveling wave solutions.
The traveling behavior can be modeled in a straightforward fash-
ion by digital filters using delay lines, with some additional struc-
ture. Given that the delay lines are closed onto themselves for
finite strings or tubes, these correspond to comb-filter-like digital
filters [11]. The plugged string model by Karplus and Strong [10]
is a simple example of these types of physical models.

The Karplus-Strong model is a modified comb filter with an
averaging in its feedback filter coefficients. We chose aN = D ·
L and aN−1 = D · (1 − L) with D = 0.99 corresponding to
an overall damping factor, L = 0.9 being a weighted average.
b0 = 1 and all other coefficients zero. The length N = 1 + fs

2f
is

the loop length roughly tuned to a frequency at f . The spectrum
of the Karplus-Strong model is harmonic with partials decaying
according to the low-pass filtering in the feedback loop. Hence,
high frequency partials decay faster than low frequency ones.

5. OSCILLATORS ON THE CIRCLE AS SHEAVES

The need to use linear maps over vector spaces is not a given in
topological filters. A range of examples for feedforward structures
have been proposed by Robinson [3]. Here we give an example of
a nonlinear topological filter with feedback properties, discussing
attaching maps from circles to the circles known as circle maps
[21, 12] to sheaves.

5.1. Topological Filters with Circle Maps

Circle Maps are maps from the circle to the circle S1 → S1. We
can think of them as being maps between phases of oscillators [21,
12], hence a general circle map over a normalized phase interval
[0, 1) has the form:
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0 S1 0

(S1)N−1 (S1)N (S1)N−1

0 R 0

r

i

o

s

Figure 5: Nonlinear Oscillators in sheaf form using circle maps
between circles

xn+1 = f(xn) mod 1 (7)

Given that in this equation the past state of the circle position in-
forms future states, this describes a pair of state transition maps
s, r. Furthermore, we can modify these maps by introducing an
input x from S1. The general form of a circle map with input with
an additional phase is as follows:

xn+1 = f(xn, x) mod 1 (8)

Output can be constructed through some projection function (com-
pare [12]):

yn = p(xn) (9)

The general modulated circle map that encapsulates a large class
of oscillatory synthesis methods while being otherwise not overly
general is the following [12]:

xn =xn−1 +Ω+Hf(xn−1, zn−1, ωm, x) mod 1 (10)
zn =zn−1 + ωm mod 1 (11)

We note that this form actually updates two phases on the circle
per step. This form indicates that, in principle, more phases can
become part of the temporal update. Figure 5 shows the sheaf
morphisms with N−1 dynamical phases and 1 input for a total
state dimension of N .

The parameter H ∈ R controls the strength of the effect of the
function f , which is traditionally either a nonlinearity or a mod-
ulation. The dynamics of zn corresponds to the oscillation of a
possible modulation while xn is the overall dynamical behavior. A
typical projection for oscillators is the orthogonal projection from
the circle hence we get p(·) = sin(2π · +ϕ) to compute the final
output.

5.2. Frequency Modulation on Sheaves

In our examples we restrict ourselves to the iterative form of fre-
quency modulation [13, 12]:

s : (x0, z0, x)→(x0 +Ω+H sin(2πx0) + x mod 1

, z0 + ωm mod 1)
(12)

r : (x0, z0, x)→(x0, z0) (13)
i : (x0, z0, x)→(x) (14)
o : (x0, z0, x)→(sin(2πx0 + ϕ)) (15)

In this version, H is usually referred to as the modulation index.
Ω and ωm are phase increments corresponding to the frequency

of the oscillator f , modulation frequency fm and sample rate fs
such that Ω = f/fs and ωm = fm/fs. For our examples, we use
f = 220 and fm = 5

2
f which produces an inharmonic spectrum.

The sheaf maps in this case play an analogous role to the ones for
the LTI digital filter discussed in Section 4. The map s computes
the temporal dynamics. The map r injects the intermediate state
into the next time step to be combined with a new input. The input
map i injects data into the state. The output map o computes a
projection of the state onto a single sample. Given that all maps
from the circle onto the circle are stable (in the sense that they stay
on the circle by definition ) [12], this topological filter is stable.

6. FROM TOPOLOGY TO AUDIO SAMPLES

So far, we attached existing sound synthesis computations over
a simplicial topological space. This is not sufficient information
to compute audio samples because, at a minimum, there are no
distances associated with the simplicial complex. Therefore, the
computation is actually not yet related to any notion of temporal
progression and a notion of temporal sampling. Additional infor-
mation is needed to relate the results of the topological construc-
tion to the format required by standard audio digital analogue con-
version, which is fixed rate uniformly sampled data.

6.1. Metrization, Embedding, and Projection

A first step is to add information to our simplicial topology that
allows a description of some possibly local notion of distance (a
metric). The simplest form of adding metric information is to
associate each 1-simplex X1 and thus, via the boundary map b,
two 0-simplicies X 1

0 and X 2
0 with a pair-wise metric d(X1) =

d(b(X1)) = d(X 1
0 ,X 2

0 ). This notion of a metric is local, only
specifies the distance over one 1-simplex, and says nothing about
global metric structure.

A process of embedding can help to better understand the dif-
ference between local and global metric structure. If a simplicial
complex is embedded in a space, it takes on its metric structure. A
simple visual example of the embedding process is that of a closed
rubber band that is dropped on a flat surface and pinned down in
a specific configuration of stretching to that surface. The particu-
lar configuration and the pinning imposes distances on the rubber
band as well as a kind of flat projection of the band. An embed-
ding can provide substantially more metric information than the
pairwise metric. One can recover global distances and angles from
a Euclidean embedding. Global metric information from embed-
dings more strongly relates to our geometric intuition. Inversely,
we can also use geometric embeddings to construct topological
spaces with a given metric structure that appeals to our geometric
intuition. We discuss this latter case in Section 7.2.

Finally, the given embedding or metrization may not directly
correspond to the dimensionality of an audio sample. If we draw
a simplicial loop (consisting of a line complex that closes onto
itself) and embed it in the Euclidean plane R2, there is a mismatch
to the dimensionality of the audio sample amplitude, which is in an
interval (−1, 1) in R. We call the map from a higher dimensional
space to a lower dimensional one a projection.
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Figure 6: Log-scale spectrogram of a second-order equal-gain res-
onant filter with resonant frequency at 220Hz subject to an expo-
nential up sweep due to distance shortening of the metric of the
line complex. (Left) Without antialiasing. (Right) With 4-time
oversampling and a length-4 averaging FIR filter.

7. EXAMPLES

7.1. Resonant Filter over Variable Metrics on a Line Complex

A first simple concrete example illustrates basic properties of sound
synthesis over a topological space. This example uses the standard
equal-gain reson filter [8] realized as a topological filter (Section
4.2). The filter is implemented over a line complex. We create an
upward frequency sweep by exponentially shortening the spacing
between sampling in a pairwise metric d(X1) = xn computed
over 2 seconds at 44100Hz. We should expect the topological fil-
ter to be unconditionally stable by construction as long as the IIR
filter design itself is stable. This is achieved in the standard im-
plementation by choosing the radius of the resonance poles to be
less than 1. There is a sample position mismatch between the au-
dio samples required by the standard DAC hardware and our non-
uniform sampling from the exponential shortening. Our imple-
mentation uses the most naive form of dealing with oversampling
and undersampling. In the first case, an adaptive length FIR av-
eraging filter computes the average of the samples that fall within
one uniform rate audio sample. In the case of undersampling, the
previously computed value is returned, so long as the metric of
the topological space exceeds the distance between audio samples.
Hence, we expect the possibility of aliasing and rectangular wave-
forms artifacts in the result. This can be seen in Figure 6 (left).
To illustrate how to deal with aliasing, we implemented a simple
4-time oversampling scheme with a standard 4-length FIR aver-
aging filter. Sample frequency and numbers of samples computed
were normalized to maintain the same sweep after discrimination.
While far from optimal, this scheme already substantially reduces
audible aliasing in the example (see Figure 6 (right)).

7.2. Embedding a Simplicial Loop Complex

We called a line complex a loop complex if it closes onto itself by
identifying the first and last 0-simplex of a the line complex. On
its own, a loop complex requires no metrization or embedding.

Example 1. Circle in the Plane

A simple example of a loop with metric structure would be the
standard embedding of the 0-simplices at regular points of the cir-
cle in the plane R2. For a set of N discretely parametrized points
∀n ∈ [0, N) ∈ N:

x = R sin(2πn/N) y = R cos(2πn/N) (16)

Figure 7: A simplicial loop consisting of 50 0-simplices that is
(Left) embedded in the plane as a circle, (Middle) an immersion of
a torus knot by projection on the plane, and (Right) an immersion
of the FM loop by projection on the plane .

By construction, all pair-wise distances between neighboring 0-
simplices have the same distance in this embedding, so we arrive
at a uniform sampling. Note that we could keep the same metric
circle, and choose another, perhaps irregular set of points on it and
we would arrive at a different, perhaps non-uniform, sampling. In
fact, any map from the circle to itself can be made into a sampling
scheme in this way. However, one can also arrive at variation in
pair-wise distances through alternative embeddings of a loop com-
plex in some space.

Example 2. Torus Knot Projected onto the Plane
To illustrate this concept, first consider what is known as the torus
knot [30]. The torus knot is topologically a closed loop but is de-
rived from forming a closed path on a torus. In our case, consider
the following parametric closed curve in R3 where we pick a num-
ber of discrete points ∀n ∈ [0, N) ∈ N:

x =R cos(2πkn/N) · (Q+ cos(2πln/N)) (17)
y =R sin(2πkn/N) · (Q+ cos(2πln/N)) (18)
z =R sin(2πln/N) (19)

This is a discretely sampled set of points of a winding path on the
surface of a torus in R3 with a big radius R, a ratio Q both in R
and relative prime numbers k and l indicating the winding ratio of
the path around the torus. Note that given the uniform sampling
of our discrete points, the pair-wise distances are again uniform.
Many different embeddings of a simplicial loop can have uniform
sampling; this is one example. However, we can generate non-
uniform sampling from geometry by considering projections.

More generally than considered before, a projection is a map
that reduces dimensionality. For example, given two Euclidean
spaces Rm and Rn where m > n we consider the map p : Rm −→
Rn. The simplicial torus knot with Euclidean embedding in R3

can be projected down to a plane R2. The most straightforward
projections are those that simply remove one dimension. That is
any plane xy, yz, xz makes a projection (as does any rotation in
R3 followed by such a projection). Figure 7 (middle) shows one
such projection of the simplicial torus knot from an embedding
in R3 into the plane. Not all pair-wise distances are the same
in this planar projection because of the distance that was cap-
tured by the projected dimension that has been removed, which
shortened the distance in the projection appropriately. For exam-
ple, taking a z-projection onto the xy-plane, we have the follow-
ing relationship between pair-wise metrics: d3(∆x,∆y,∆z) =√

(∆x2 + ∆y2 + ∆z2) and d2(∆x,∆y) =
√

(∆x2 + ∆y2).
If z vanishes, these two metrics are identical, otherwise any other
distance in the projection is diminished. Thus the sampling dis-
tance becomes non-uniform according to the projected dimension.
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Example 3. FM Knot Projected onto the Plane
This idea can be used to construct non-uniform sampling inspired
by known synthesis methods. It has been shown that frequency
modulation [13] can be understood as an example of a map from
a circle to itself [12]. For relative prime ratios of carrier and mod-
ulation frequency, these maps close onto themselves in finite time
forming a loop complex. This provides a novel way to view fre-
quency modulation as path in R3. We construct this path in anal-
ogy to the torus knot. The torus as well as the torus knot come
about as a product of two circles. Recognizing that frequency mod-
ulation involves two circles (though not as a product) we can cre-
ate a path equation in analogy to the ones given for the torus knot
in equations (17)–(19) by applying a lift onto both circles to the
frequency modulation equation. This means that we provide the
orthogonal trigonometric function in a second orthonormal dimen-
sion. This process yields the following parametric path equation
in R3 for a frequency modulation knot (or FM knot):

x =R cos(2πkn/N + Im cos(2πln/N)) (20)
y =R sin(2πkn/N + Im cos(2πln/N)) (21)
z =R sin(2πln/N) (22)

Im is called the modulation index in FM theory. If we only con-
sider the z-projection onto the xy-plane, we recover the circle map
for frequency modulation in the plane, and a further projection [12]
recovers traditional frequency modulation.

Figure 8 shows concrete renderings of the three topologized
synthesis methods over two non-uniform loop spaces. In order to
improve comparability, all local metric have been normalized by
the total loop length. All examples are rendered at 220Hz (assum-
ing uniform sampling) and the loop simplices consist of 88200
0-simplices. This choice leads to one-to-one mapping onto audio
samples if the metric is regular. The left column shows the torus
knot projected onto the plane and the right column shows the FM
knot under the same projection. Both knots use the same relative
prime ratios 5 : 7. None of these results have been oversampled,
so aliasing artifacts are visible, perhaps most clearly in the top row
showing the result for the resonant IIR filter of Section 4.2. The
middle row uses the Karplus-Strong model (Section 4.3) exhibit-
ing clear harmonic spectra under the metric variation. The bottom
row renders an inharmonic FM using an iterative circle map (Sec-
tion 5.2), which shows a densely inharmonic spectra while still
maintaining the general spectral variation pattern.

Overall results depicted in Figure 8 show that all methods are
stably computed although they are subjected to severe deformation
in their sampling due to the underlying geometric construction.
This demonstrates that carefully constructing synthesis methods
as stable maps on sheaves leads to robust yet highly flexible ma-
nipulation mediated by topological and metric information that can
now be used as parametric control.

8. CONCLUSION

In this paper, we showed how sound synthesis methods can be
attached to simplicial topological spaces via sheaves. In partic-
ular, we used two broad approaches to sound synthesis: digital
linear time-invariant filter-based methods as are widely used in
modal and physical modeling synthesis, as well as oscillatory-
based methods understood as circle maps. However, these are
but two examples of the general process of generalizing sound

Figure 8: Log-scale spectogram of a second order resonant filter
(Top), of a Karplus-Strong filter (Middle) and a circle map realiz-
ing frequency modulation at modulation index 0.33 and frequency
ratio 2:5 for an inharmonic spectrum (Bottom). Loop-complex
metrized by plane projections of knots with 88200 0-simplices.
(Left) Torus knot. (Right) FM knot.

synthesis methods by associating them with topological space via
sheaves. This paper can hopefully serve as a template for this con-
struction for other synthesis methods. A key goal of this work is
to show how topology can become an explicit building block and
methodology for digital sound synthesis and processing.

Much work remains to be done to fully explore how topologi-
cal methods can be fruitfully used in digital audio. Discussed in the
paper are concepts of aliasing, metrization, and embedding. All of
these aspects can be realized and systematized in a context broader
than was possible to cover here. The resulting variation in tem-
poral patterns has a relationship to signal processing on irregular
samples [31], and event-based signal processing [32]. Depending
on the implementation, topological filters can end up having very
similar requirements as filtering in these cases (see recent work
on band-limited filtering over irregular samples [33, 34] as well as
the use of heterogeneous signal processing systems that combine
multiple fixed and event-rate processing [35, 36]. To develop these
connections in full detail is interesting future work.
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