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ABSTRACT

Virtual analog (VA) modeling using neural networks (NNs) has
great potential for rapidly producing high-fidelity models. Recur-
rent neural networks (RNNs) are especially appealing for VA due
to their connection with discrete nodal analysis. Furthermore, VA
models based on NNs can be trained efficiently by directly ex-
posing them to the circuit states in a gray-box fashion. However,
exposure to ground truth information during training can leave the
models susceptible to error accumulation in a free-running mode,
also known as “exposure bias” in machine learning literature. This
paper presents a unified framework for treating the previously
proposed state trajectory network (STN) and gated recurrent unit
(GRU) networks as special cases of discrete nodal analysis. We
propose a novel circuit state-matching mechanism for the GRU
and experimentally compare the previously mentioned networks
for their performance in state matching, during training, and in ex-
posure bias, during inference. Experimental results from modeling
a diode clipper show that all the tested models exhibit some expo-
sure bias, which can be mitigated by truncated backpropagation
through time. Furthermore, the proposed state matching mech-
anism improves the GRU modeling performance of an overdrive
pedal and a phaser pedal, especially in the presence of external
modulation, apparent in a phaser circuit.

1. INTRODUCTION

VA modeling [1] attempts to reproduce the desirable sonic charac-
teristics of analog audio processing devices while side-stepping
their inconveniences by operating in a purely digital domain.
While white-box VA modeling approaches [2, 3] can produce ac-
curate digital models, the creation of these models requires ex-
pert knowledge in circuit analysis and digital signal processing.
Furthermore, the process is often labor intensive. This creates a
clear appeal in automating VA modeling via black-box methods
for rapid development and deployment.

Various black-box system identification methods for guitar
amplifiers and distortion effects have been proposed [4, 5], but the
methodology is constrained by the coupling between the parame-
ter estimation method and a Wiener-Hammerstein model topology.
Meanwhile, NN and generally deep learning methods for VA have
gained popularity not only due to their black-box convenience, but
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also their flexible model architecture choice. Generic NN black-
box models include a feedforward variant of the WaveNet [6, 7]
and encoder-decoder models with recurrent bottleneck processors
[8]. A deep learning framework further enables the inclusion (and
end-to-end tuning) of digital signal processing (DSP) components,
such as oscillators [9] and infinite impulse response filters [10, 11].

Typical audio processing circuits are stateful nonlinear sys-
tems, with relatively few reactive components. As such, compar-
isons arise naturally between classical circuit analysis techniques,
such as the Discretized Kirchhoff nodal analysis (DK-method)
[12, 13], and stateful NN models, such as recurrent neural net-
works (RNNs). RNNs with gated activations (for example, the
long short-term memory (LSTM) [14] network and the gated re-
current unit (GRU) [15]) have been successfully applied in a black-
box VA setting [16–18]. Although these RNNs are stateful, their
state bears no direct relationship to the analog circuit state they
aim to emulate. Meanwhile, the recently proposed State Trajec-
tory Network (STN) [19] directly draws inspiration from the DK-
method by tying the output of the NN model with the analog cir-
cuit state. The STN leverages the observed state information for
efficient training, but its generalization to inference without avail-
able ground-truth states is not yet well understood. On the other
hand, the present black-box NN models are relatively slow to train,
which could be mitigated by utilizing available circuit states.

Recurrent (and recursive) networks are widely used for se-
quence modeling tasks in the nearby fields of natural language
processing (NLP) and speech synthesis. Invariably, the models
share a common discrepancy between training and inference time.
That is, at training time, recursively computed states are often sub-
stituted with ground truth information. A common example of this
is to replace a recursive model output with the true target output.
However, at inference time such a substitution is not possible and
the model must instead recursively rely on its own previous predic-
tions (and states) as conditioning for its subsequent outputs. This
discrepancy between training and test time conditions is known as
“exposure bias”. Training techniques that “expose” the model to
ground truth information in this way are referred to as “teacher
forcing”, analogous to a teacher correcting a student’s mistakes
while sequentially working through a problem.

The exposure bias problem has attracted considerable research
attention especially in NLP, with proposed mitigation techniques
including scheduled sampling [20], decoding model outputs from
multiple candidate trajectories [21], optimizing metrics at a se-
quence level [22], adversarial training schemes [23, 24], and re-
inforcement learning [25]. Though the exposure bias phenomenon
is acknowledged in NLP, it remains difficult to quantify due to the
natural random variation present in the data. In contrast, the elec-
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trical circuits in VA modeling are practically deterministic, which
facilitates studying exposure bias in a VA context. An initial inves-
tigation into state matching for GRUs and the effect of truncated
backpropagation through time (TBPTT) [26] for various recurrent
VA models was presented in [27].

In this paper, we expand upon previous work by exploring
the impact of state matching and exposure bias on NN based VA
models. In Sec. 2 we demonstrate how existing STN and GRU
based networks can be interpreted as learnable DK-method-like
algorithms and analyze the effect of teacher forcing on the train-
ing dynamics of such RNNs. In Sec. 3 we propose a GRU vari-
ant which incorporates a state matching capability similar to the
STN via a state-based loss function. We then demonstrate a range
of experimental results in Sec. 4, where we firstly study the ex-
posure bias problem as a generalization gap between the quality
of model outputs generated during training and during inference,
for a simple diode clipper circuit. We also conduct further experi-
ments to quantify the effects of model architecture choice and state
matching during training on a more complex overdrive circuit and
a modulated phaser. Finally in Sec. 5, we finish out the paper with
our concluding remarks.

2. A GENERALIZED INTERPRETATION OF
RECURSIVE BLACK-BOX METHODS

Nonlinear state space methods are a common tool in the world
of VA modeling. Among such approaches is the so called DK-
method [12, 13] which decomposes a discretized circuit model into
a cascade of a linear transformation and a nonlinear mapping f ,
whose form is implied by the underlying circuit topology. Under
the assumption that f is functional, the recursive update equations
for such an approach are given by

xt = Axt−1 +But +Cwt, wt = f (xt−1,ut)

yt = AExt +BEut +CEwt,
(1)

where the vectors xt ∈ RN , ut ∈ RM , wt ∈ RP , and yt ∈ RQ

are the system states, inputs, nonlinear activations and outputs at
time step t respectively and A, B, C, AE , BE , and CE are a set
of appropriately sized matrices. While seemingly distinct from the
world of NN black-box modeling, in the following we demonstrate
that both STNs and GRUs can be interpreted as learnable variants
of such a DK-type method.

We firstly consider STNs. According to [19], one can freely
choose the states of the circuit(s) to be modeled. We explicitly se-
lect the device outputs to be a subset of these states and assume that
the output signals correspond to the last Q observed states. We do
so, because during initial experimentation with STNs it was found
that this configuration leads to the best performance in modeling
audio circuits. More formally, we define the matrices

A = IN×N , B = 0N×M , C = IN×N (2)

AE =
[
0Q×(N−Q) IQ×Q

]
, BE = 0Q×M , CE = 0Q×Q,

where IQ×Q and 0Q×M denote a Q dimensional identity matrix
and a Q by M zeros matrix respectively. By then defining the non-
linear function fs : RN+M → RN to be a multi-layer perceptron
(MLP), it follows that the STN update equations are equivalent to

xt = xt−1 +wt, wt = fs (xt−1,ut)

yt =
[
0Q×(N−Q) IQ×Q

]
xt,

(3)

xt−1

ut
f

+ xt

ytAE

Figure 1: Signal Flow Diagram for STN and GRU.

and form a restricted subset of a learnable DK-method. Note that
all of the learnable system parameters are incorporated into the
nonlinear mapping, fs, as weights and biases of the MLP.

The connection with GRUs is also straightforward to derive.
First, consider the state update equations for a standard GRU [15],

xt = zt ⊙ xt−1 + (1− zt)⊙ gt

zt = σ (Wx,zxt−1 + bx,z +Wu,zut + bu,z)

rt = σ (Wx,rxt−1 + bx,r +Wu,rut + bu,r) (4)
gt = tanh (rt ⊙ (Wx,gxt−1 + bx,g) +Wu,gut + bu,g)

yt = Wyxt + by,

where ⊙ denotes the Hadamard product. By then introducing the
additional vector variable wn ∈ RN and nonlinear mapping fg :
RN+M → RN such that

wt = (1− zt)⊙ (gt − xt−1) = fg (xt−1,ut) , (5)

and by defining the additional following matrices

A = IN×N , B = 0N×M , C = IN×N

AE = Wy, BE = 0Q×M , CE = 0Q×N

, (6)

the updates in (4) can be equivalently written as

xt = xt−1 +wt, wt = fg (xt−1,ut)

yt = Wyxt + by.
(7)

Note that as in the case of the STNs, the GRU architecture has
again imposed the restriction that P = N .

Comparing the update equations in (3) and (7), one can note
the near identical nature of the recursive updates (xt and wt) with
the only distinction being the architecture of the nonlinear map-
ping adopted. Ignoring the additional additive bias term in (7) for
the sake of brevity, it follows that the signal flow of both methods
can be represented by the diagram in Fig. 1.

Due to the well known universal (memoryless) function ap-
proximation properties of MLPs [28], the difference in non-
linearity might suggest that the STN could be more flexible than its
GRU counterpart. For the training routine proposed in [19] which
involves ground truth state information, this may well be the case
at training time. However, this approach can have a significant
impact on inference performance when the ground truth states are
no longer available. In contrast, the particular topology of fg is
well known to lend itself to more effective training via truncated
back propagation through time [26] which we postulate can lead
to better model performance at inference time.

2.1. STN, Teacher-Forcing, and Exposure Bias

Given the previously mentioned connection between STNs and
recurrent mechanisms for black-box modeling, we also link the
corresponding proposed training procedure with that of recurrent
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mechanisms. To that aim, allow x̂ ∈ RN to be the approxima-
tion of the target state signal x ∈ RN computed using fs from
(3). From (3), x can be seen as the vector that contains both the
output and the remaining state variables. For optimizing the pa-
rameters of fs, stochastic gradient descent is applied using ground
truth data obtained from the system to be modeled at every time-
step t. It follows that an STN is essentially a recurrent mechanism
optimized using the teacher-forcing technique, proposed in [29,
30]. To highlight the exposure bias in STNs, let us focus on the
learning of fs. For the sake of brevity, we will focus on the last
layer of fs, parameterized by the matrix Θ ∈ RN×Nh where Nh

denotes the dimensionality of the latent vectors computed by the
computational layers of fs. It follows that the partial derivatives
can be calculated1 as

∂E

∂Θ
=

∂E

∂x̂

∂x̂

∂w

∂w

∂w̃

∂w̃

∂Θ
, (8)

where E is the outcome of a differentiable loss function that com-
pares the predicted and target outputs x̂ and x. From (3), the out-
put of fs is denoted by w ∈ RN . The tilde symbol “ •̃ ” is used
to denote the computed latent vector prior to the application of the
element-wise non-linear activation function and thus, ∂w

∂w̃
refers to

the first derivative of the element-wise non-linear activation func-
tion(s) contained in fs.

As can be seen in (8), the updates of the parameters of the fs
do not consider the temporal contribution of previous time-steps
t′ < t. Essentially, fs does not model temporal dependencies
longer than a single advance from t− 1 to t, i.e., the shortest pos-
sible trajectory is considered during training. Consequently, fs
is exposed only to vectors drawn from the training data-set and
not the predicted ones by evaluating fs at some previous time-
step. This could limit the generalization performance of the model
during inference [25], because at inference time only the approx-
imations x are available for conditioning. It is therefore useful
to expose fs to approximations of the input vectors, so the model
may learn to recover from its own mistakes.

A straightforward way to expose fs to the previously men-
tioned bias can be achieved by allowing fs to freely-run for T
time-steps during the training procedure. In the free-running
mode, the output of fs is used as input for the next time-step
and the optimization of Θ can be done using back-propagation
through-time (BPTT) [26] and its time-truncated (TBPTT) vari-
ant [31]. With this in mind, we propose to consider the temporal
contributions of previous time-steps t′ to the loss at time-step t as

∂Et

∂Θ
=

t∑
t′=0

∂Et

∂x̂t

∂x̂t

∂wt

∂wt

∂wt′

∂inst wt′

∂Θ
, (9)

where ∂inst wt′
∂Θ

is the instantaneous gradient. The instantaneous
gradient computes the gradient of w with respect to Θ only at
t′, disregarding other time-steps. In contrast to the instantaneous
gradient, ∂wt

∂wt′
is calculated by considering the dependencies from

all the previously evaluated time-steps up to t including the applied
element-wise non-linear function. It is important to notice that
for T = 1, (9) boils down to (8), i.e., the training scheme of the
STN as originally proposed in [19]. A caveat for letting T > 1,
is that the Jacobian ∂wt

∂wt′
can perturb exceedingly small or large

values, due to the computation of a product that includes all the

1The functional dependence of variables and differentiable functions is
used for convenience in the notation.

previous time-steps. This results into the problem of vanishing
or exploding gradients [14, 32]. A common way to mitigate the
problem of vanishing or exploding gradients is to employ gated
recurrent mechanisms such as the GRU (see (4)) [15].

3. STATE SPACE INFORMED LOSS FUNCTIONS

In addition to the implicit teacher-forcing in the formulation of
STNs, the work in [19] highlights the potential benefit of using
state information as an additional objective to optimize neural net-
works. We refer to this objective as state matching and propose
to use it for optimizing the parameters of a GRU. To that aim, let
us denote by st ∈ RNs the target vector of state variables at time
step t where Ns is the number of measured states from the device
under test and by xt ∈ RN the output of the GRU using (4). The
state matching loss Es for a set of time steps t ∈ [0, T − 1], is
given by

Es =

T−1∑
t=0

LESR,t(xt, st), (10)

where LESR,t is the error-to-signal ratio (ESR) loss function and it
follows that N = Ns. The LESR,t between a target mt ∈ RN and
an approximation of mt at time-step t, denoted as m̂t ∈ RN , is
computed as

LESR,t (mt, m̂t) =
∥F(mt)−F(m̂t)∥22

∥F(m̂t)∥22 + ϵ
, (11)

where ϵ = 10−9 is an additive constant ensuring numerical stabil-
ity and F is a memory-based pre-emphasis filter computed as

F(mt) = mt − 0.95mt−1. (12)

In (12) the memory refers to the storage of the information con-
tained in mt−1 and for t = 0, mt−1 is a vector of zeros. The
motivation for applying the high emphasis filter follows the exper-
imental findings presented in [6, 17, 33].

Assuming that the outputs of the device under test are a subset
of the measured states, (10) also contains information of the target
output signal y. In contrast, black-box training only aims to match
outputs which is equivalent to substituting xt and st in (10) by

x̃t =
[
0Q×(N−Q) IQ×Q

]
xt, s̃t =

[
0Q×(N−Q) IQ×Q

]
st.

With the above substitution, we can interpret state matching as
a form of loss regularization. If we were to naively use (10) to
regularize GRU training however, this would impose that N = Ns

which could limit network capacity due to the restrictive form of
fg . Motivated by the different AE matrices used in (3) and (7), we
therefore propose a modified state matching loss by substituting xt

and st in (10) by

x̃t = Asxt + bs, s̃t = st, (13)

where As,bs together form a learnable affine mapping between
the network states xt and circuit states st. This allows us to main-
tain the decoupling of N and Ns and optimize with respect to a
single objective, i.e., Eq. (10) with the modifications imposed by
Eq. (13). Furthermore, assuming that the output states form a sub-
set of s, the last Q rows of As and bs are equivalent to the output
affine mapping of the GRU, Wy and by respectively. We refer to
the usage of (13) as soft state matching and the usage of (10) as
hard state matching.
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Expanding on (13), we can also use state information to warm-
start the GRU during training. Commonly, for the first time-step
in a batch, the GRU hidden states are initialized with zeros and for
subsequent frames the hidden states contain the previously pro-
cessed time-step state. In contrast, teacher forcing uses ground
truth state information for every time-step. We therefore propose
to use an additional learnable mapping between the state vector st
and the GRU hidden states xt during training, to complement the
use of soft state matching. Specifically, at the start of each TBPTT
frame in a batch we propose to set

xt = Csst + ds, (14)

where Cs and ds constitute a learnable affine layer. Echoing our
state matching naming convention, we will refer to this as soft
teacher forcing. We postulate that when combined with soft state
matching, this will allow GRU based networks to exploit circuit
state information without restricting their state size.

4. EXPERIMENTAL PROCEDURE

To evaluate the impacts of teacher forced training and state-
matching on NN VA modeling, we conducted a number of exper-
iments. In this section we highlight these efforts by firstly outlin-
ing our experimental methodology including our data generation
approach and performance metrics. For the teacher forcing exper-
iments we explore the presence of exposure bias in trained models
in the context of a second order diode clipper while in the state-
matching case we consider two more complicated devices, a Boss
SD-1 and MXR Phase 90. Lastly, listening tests results for each
experiment are included to complement the objective performance
metrics.

4.1. Data Generation

To conveniently obtain the state information of increasingly com-
plex circuits, we opted to use synthetic data generated via SPICE
simulations. A corpus of musical instrument recordings (∼ 7 min)
were passed through these models to form the dataset for each,
with peak values of ±1 V. The data was split into training (∼ 5 min
30 s) and validation (∼ 30 s) subsets. Furthermore, a test subset
(∼ 1 min) was formed to evaluate the trained model performance
for each experiment. The number of states Ns was determined
for each circuit based on their respective number of reactive ele-
ments (i.e., capacitors or inductors). As these states could be cho-
sen somewhat arbitrarily without degrading performance, [19], for
each reactive component, an associated nodal voltage was mea-
sured with the additional restriction that one such state would be
the output signal itself (for all considered circuits Q = 1).

SPICE transient analysis uses a variable time step size to ac-
curately resolve the circuit states. To convert into a constant step
size, we therefore used cubic spline interpolation to obtain a 32
times oversampled sequence, which was then bandlimited and re-
sampled to a 48 kHz rate2. Finally, the resulting recordings were
scaled globally (per device) to a range of ±1.

4.2. Objective Evaluation

While the models were trained with pre-emphasized ESR loss
(11), each model was also evaluated on unseen test data using

2Note that the STN was originally trained at a 192 kHz rate [19].

the ESR without pre-emphasis. The ESR metric without the pre-
emphasis is denoted as EESR. To assess the model quality, we also
employed a metric computed using the short-time Fourier trans-
form (STFT) denoted by ESTFT. Similarly to (11), ESTFT is com-
puted as

ESTFT =
1

JK

J∑
j=1

K∑
k=1

20 log10

( |STFT(m)|
|STFT(m̂)|

)
, (15)

where J and K denote the number of frames and frequency bins,
respectively, log10 is an element-wise logarithmic function, and
STFT denotes the STFT operation using a 8192 sample long Han-
ning windowing function and 75% overlap.

In contrast to the ESR, which compares values point-wise in
the time domain, the STFT and magnitude based metric first av-
erages short-time spectral information for the target and model
output, and only afterwards computes a difference. The resulting
metric is agnostic to discrepancies in phase. We expect a potential
drift in model output to occur, but it remains imperceptible as long
as the short-time spectral magnitude remains unaffected. Note that
both the validation and test metrics were only considered on the
final output of the device under study. This is due to the output ac-
curacy being the most crucial element of the model performance,
while allowing for the direct comparison of models irrespective of
their state-space representation.

4.3. Impact of Exposure Bias on Inference Performance

To quantify exposure bias, the generalization gap between the free-
running prediction performance, during inference, and the metrics
measured during TBPTT based training was explored. Specifi-
cally, three model configurations were considered: the STN [19],
a standard black-box GRU [17], and finally a state-space regular-
ized GRU (SS-GRU) which utilizes the soft state-matching (13)
and soft teacher forcing (14) proposed in Sec. 3. Furthermore,
each model was trained using various TBPTT lengths to quantify
the effect of sequential training. To keep the experiment simple,
we focused on modeling a second order diode clipper (following
[19]). To ensure non-linear circuit behavior, the input signals for
each dataset were increased in order to give peak values of ±2V,
which is comparable to the signals used in [19].

4.3.1. Experimental Configuration

The STN and SS-GRU were able to be trained in a fully teacher-
forced manner, because the real circuit states were known at each
time step and could be mapped to the model state. However, such
ground-truth information was not available for the hidden states
of the GRU. Therefore, when training the standard GRU with a
TBPTT of 1 the model always starts from a zero state. Each model
was trained with a constant number of hidden units, in this instance
8, which was chosen due to the simplicity of the given circuit. Each
GRU model contained a single layer, while the STN had 3 hidden
layers due to a fully connected MLP layer having approximately
one third the computational complexity of a (three-gated) GRU
layer of the same nominal size. Both the STN and SS-GRU map
between the hidden and observed states using affine layers.

For each training iteration, a one-second audio segment was
used which was framed and reshaped to match each respective
TBPTT segment length. As a result, the effective minibatch size
was decreased as TBPTT length increased, retaining a constant
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Table 1: Test set EESR and ESTFT metrics for the second order diode
clipper with increasing TBPTT length (the lower the better), for
both free-running and teacher-forced inference. The lowest ob-
tained values in each column are highlighted in bold.

Model TBPTT Free-running Teacher-forced
EESR (%) ESTFT (dB) EESR (%) ESTFT (dB)

1 5.40 3.92 0.18 1.43
4 6.77 2.44 6.83 2.46

STN 16 5.31 2.22 4.48 2.16
64 5.14 2.09 4.55 1.92

256 5.42 2.09 4.80 2.02
1 8.85 3.59 0.45 0.93
4 7.24 2.48 5.47 2.17

SS-GRU 16 1.49 1.57 0.32 0.89
64 1.14 1.53 0.32 0.95

256 0.57 1.23 0.18 0.75
1 19.24 4.21
4 5.11 2.14

GRU 16 4.31 1.92 N/A N/A
64 3.89 1.89

256 3.90 2.09

data volume at each iteration. To evaluate the generalization per-
formance during training, validation metrics were computed by
performing free-running predictions over the full length sequences
in the validation set every 10k iterations. The training utilized an
early stopping criterion with a patience of 10 validation intervals,
after which the model with the lowest validation loss was stored
for further evaluation. We used the Adam optimizer [34] with a
learning rate of 5 × 10−4 and beta values (0.9, 0.999) for all ex-
periments in this paper. Likewise, the MLP layers were initialized
using the Xavier uniform initialization [35], while the GRU used
the PyTorch default uniform initialization.

4.3.2. Exposure Bias Results

Table 1 lists objective metrics for the various model architectures
and TBPTT lengths used during training. TBPTT length 1 corre-
sponds to the fully teacher-forced training for the state-space mod-
els. Overall, the SS-GRU tends to outperform the GRU model
in matching size and TBPTT configuration. To quantify exposure
bias, the state-space model scores were computed for the test set
data first for free-running predictions on long sequences, and sec-
ond for one-step predictions given ground truth state information.
This was done in an attempt to separate the “ordinary generaliza-
tion error” present in a teacher-forcing condition that matches the
training setup and realistic generalization error present in the free-
running mode. We argue that the difference between these two
kinds of metric gives a measure of exposure bias in VA modeling.

Fig. 2 displays training and validation metrics for different
models and various TBPTT lengths. It can be seen that fully
teacher forced training, results in poor generalization when the
models are validated in free-running mode. This is the fundamen-
tal outcome when a model is exposure biased, since free-running
validation is the first instance wherein the model has to recursively
utilize its own predictions. In contrast, as recursive conditioning is
introduced to the training, the corresponding validation accuracy
improves dramatically. That is because the models are optimized
to operate in such conditions.

Furthermore, it is important to note the instability and poor
generalization present when fully teacher forcing during training.
However, this instability dissipates as recurrent predictions are in-
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Figure 2: EESR metric during training and free-running valida-
tion for each model type and configuration. Legend indicates the
truncation order in TBPTT during training. ESR metric values are
averaged for all model outputs during training (i.e., all states for
state-space models, only output for standard GRU). During vali-
dation, the ESR metric is computed only on the final circuit output.

troduced in training, highlighting the benefits of reducing expo-
sure bias by having models train in circumstances that represent
their inference conditions closest. Moreover, the generalization
gap from teacher forced training to free-running validation is not
as significant with the SS-GRU when comparing to the STN.

From Fig. 2, one can observe a discrepancy between validation
and training results for the majority of configurations. While for
the state-aware models this comes from the fact that the validation
metric only considers the output signal, the presence in the GRU
results indicates potential differences in the datasets. In particular,
the validation set is smaller and hence less diverse than that used
during training. Lower validation scores may therefore indicate
accurate modeling for only a subset of typical instrument playing.

4.4. State Matching with Neural Networks

To explore the effect of state-matching as a mechanism with which
to train neural networks, we experimented with two devices of
varying behavior, the Boss SD-1 and MXR Phase 90. For each de-
vice we tested both the state-aware architectures discussed within
this work, the STN and SS-GRU, as well as the non-state matched
GRU. For these experiments we adopted the training convention
of previous works [17], whereby each iteration consisted of pro-
cessing TBPTT length segments with a fixed batch size. For both
devices the combination of a batch size of 4 with TBPTT length
256 was used, while the hidden unit size was increased.
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Figure 3: Listening tests results for the diode clipper. For each
model, the configurations with lowest free-running ESR (EESR) in
Table 1 and TBPTT length 1 (denoted “TF”) were considered.

Table 2: Test set EESR and ESTFT metrics for Boss SD-1. Lowest
obtained values are highlighted in bold.

Model Hidden units EESR (%) ESTFT (dB)

STN

8 146.39 8.21
16 47.03 13.25
32 10.62 4.60
64 48.01 12.48

SS-GRU

8 5.17 2.98
16 1.97 2.14
32 1.25 1.87
64 0.85 1.52

GRU

8 7.66 3.19
16 1.00 1.77
32 0.79 1.46
64 0.53 1.25

4.4.1. Boss SD-1

The Boss SD-1 is a common overdrive pedal in the world of guitar
effects. Unlike the second order diode clipper, this circuit is much
more complex and contains a number of tunable user controls. For
the sake of brevity, these were set to a constant value but it should
be noted that these could also have been passed in as additional
inputs to the neural network to learn their behavior [17].

The results for the Boss SD-1 are shown in Table 2, where
the increase in circuit complexity shows higher variance between
models and configurations than before. For all configurations, the
STN results in a higher loss value compared to an equally sized
GRU, which highlights the challenges in training such a network
architecture with TBPTT. Both GRUs demonstrate improved per-
formance with increasing hidden size, however, when comparing
the smallest model sizes, one can note that the SS-GRU outper-
forms its GRU counterpart. This could indicate that access to cir-
cuit state-space during training allows for more efficient perfor-
mance with smaller hidden sizes. The SS-GRU can also lever-
age the warm-starting of the circuit state to accumulate less error
within a batch. The state-matching also implicitly demonstrates
longer-term dependencies that would otherwise fall outside of the
TBPTT window. However, the larger hidden sizes allow the stan-
dard GRU to perform best, which could demonstrate a loss of
model capacity of the SS-GRU as it has to replicate each system
state of the device.

Table 3: Test set EESR and ESTFT metrics for the MXR Phase 90.
Lowest obtained values are highlighted in bold.

Model Hidden units EESR (%) ESTFT (dB)

STN

8 57.09 8.30
16 58.02 8.31
32 56.36 8.08
64 56.33 7.98

SS-GRU

8 8.33 2.78
16 3.96 2.35
32 1.04 1.45
64 1.27 1.45

GRU

8 29.47 4.03
16 6.27 2.26
32 3.89 1.74
64 1.15 1.48

4.4.2. MXR Phase 90

The final circuit considered is that of the MXR Phase 90 which is
a basic four pole phaser pedal. Unlike the other models considered
so far, the input vector un in this case is given by the concatenation
of the input voltage Vin and low frequency oscillator (LFO) volt-
age VLFO such that un =

[
Vin,n, VLFO,n

]T . Notably, VLFO is a
modulation signal used to vary the center frequency of the phasers
allpass stages across time. Since the device was simulated within
SPICE, the LFO section of the physical device was not replicated
but rather a triangular waveform was used to modulate the allpass
filter stages within realistic bounded values. The frequency of os-
cillation was set to different values for each dataset, to effectively
evaluate the generalization capabilities of the models. Since this
allowed the ground truth time-aligned LFO signal to be known di-
rectly, no LFO extrapolation was required as shown in [36].

The objective metric scores for the Phase 90 experiments can
be seen in Table 3. In contrast to the previous devices, the SS-GRU
now provided the most accurate emulation. Moreover, similar to
the SD-1 (see Table 2), the SS-GRU performed better with smaller
hidden sizes. The differences between the GRU models is also
shown in Fig. 4, in which spectrograms of the smallest and best
performing models are included. Again, the STN exhibits higher
EESR values when compared to equally sized GRUs, reinforcing
the training challenges noted in Sec. 4.4.1.

4.5. Listening Tests

To grade the subjective performance of the studied models, we
conducted a set of MUSHRA listening tests3 [37]. Fig. 3 shows
the results for the diode clipper experiments, while Fig. 5 displays
the results for the SD-1 and Phase 90. Rating averages are shown
with t-statistic based 95% confidence intervals, along with scatter
plots of individual ratings. Test responses where the reference was
rated below 80 or the anchor was rated above 80 were excluded
from the analysis.

The Wilcoxon signed-rank test was used to evaluate the statis-
tical significance of differences between systems. For the signifi-
cance test, all pairings (excluding the anchor) were formed within
a MUSHRA page and the resulting p-values were adjusted for mul-
tiple comparisons using the Bonferroni correction. For the diode
clipper, there were statistically significant differences between all
conditions, except for the pairings STN-TF – GRU-TF, STN-TF –

3Audio examples available at https://neural-dsp-publications.github.io/
DAFx2021/
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Figure 4: Phase 90 test set spectrogram for GRU models of increasing size. Model’s hidden size is indicated in parenthesis.
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Figure 5: Listening tests results for the (top) SD-1 and (bottom)
Phase 90 models. Model’s hidden size is indicated parenthesis.

SS-GRU-TF, STN-TF – STN, GRU-TF – SS-GRU-TF, GRU-TF –
STN, STN – GRU, GRU – SS-GRU. For the SD-1 and Phase 90,
there were statistically significant differences between all condi-
tions, except for the pairing GRU – SS-GRU.

5. CONCLUSIONS

This paper presented a framework for interpreting STNs and GRUs
as special cases of a learnable DK-method. The framework en-
abled us to investigate two questions: first, do such models suf-
fer from exposure bias in a measurable way, and second, does

matching of circuit states to model states assist in NN training.
These questions were motivated by previous knowledge in RNN
research (especially language modeling) and VA modeling, respec-
tively. Both the objective metrics and listening tests show that
all the studied model configurations exhibit a test-set performance
gap between free-running and teacher-forced inference, which we
interpret as exposure bias. The effect is somewhat mitigated by
TBPTT during training, but full understanding of the issue remains
a future research question. State matching for the GRU was found
helpful in the case of a phaser circuit (Phase 90) and diode clipper,
but not with a more complex distortion circuit (SD-1).

While the STN performed reasonably well on the diode clip-
per and benefited from the TBPTT training, it struggled to model
the more complicated SD-1 and Phase 90 circuits. Although there
is no available experimental reference for these circuits, we ac-
knowledge that implementation differences to the original paper
[19] may have contributed to this performance. Notably, all the
experiments in this paper used a 48 kHz sample rate, while the
original used 192 kHz. Furthermore, we did not perform an ex-
tensive hyperparameter search for the model and optimizer config-
urations, nor experimented using different parameter initialization
strategies. The settings used were rather conservative but remained
consistent across the different models considered. While the mod-
els used herein were fairly small, some sensitivity can be expected.
However, investigating these differences is left as future work.
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