
Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

GPGPU PATTERNS FOR SERIAL AND PARALLEL AUDIO EFFECTS

Travis Skare

CCRMA
Stanford University
Stanford, CA, USA

travissk@ccrma.stanford.edu

ABSTRACT

Modern commodity GPUs offer high numerical throughput per
unit of cost, but often sit idle during audio workstation tasks. Var-
ious researches in the field have shown that GPUs excel at tasks
such as Finite-Difference Time-Domain simulation and wavefield
synthesis. Concrete implementations of several such projects are
available for use.

Benchmarks and use cases generally concentrate on running
one project on a GPU. Running multiple such projects simulta-
neously is less common, and reduces throughput. In this work
we list some concerns when running multiple heterogeneous tasks
on the GPU. We apply optimization strategies detailed in devel-
oper documentation and commercial CUDA literature, and show
results through the lens of real-time audio tasks. We benchmark
the cases of (i) a homogeneous effect chain made of previously
separate effects, and (ii) a synthesizer with distinct, parallelizable
sound generators.

1. INTRODUCTION

General-Purpose GPU programming is attractive to obtain sub-
stantial speedups over CPU implementations for applicable prob-
lems. GPUs have been used in 2D and 3D FDTD methods to bring
complex simulations from >1000x real-time to 10-50x real-time.
For example, Bilbao et al.[1] simulate a timpani drum membrane
and the volume of air around the instrument. A C implementa-
tion obtains 4x speedup over a MATLAB prototype while GPGPU
CUDA code obtains 30x speedups over the prototype.

Real-time applications exist. Belloch et al.[2] demonstrate
wave-field synthesis with multiple objects via fractional delays,
and Webb[3] leverages multiple GPUs to compute room acoustics.

Commercial applications are rare but do exist. The previous
version of Acustica Audio’s Nebula[4] had a CUDA bridge to ac-
celerate their proprietary Volterra kernel-based algorithms, though
support for the GPU engine does not currently exist in the newest
version. Recently, NVidia released “RTX Voice” which offers real-
time noise cancellation, targeted for voice streaming scenarios.

Some challenges exist in widespread adoption of GPU audio.
From a casual survey of online forums, wide differences in users’
setups and worries about I/O bandwidth and latency (especially
latency variance) are common concerns. Practically, CPU perfor-
mance has continued to increase year over year and consumer core
counts grow. The number of audio signal paths is closer to CPU
core count (low dozens) than GPU core count (low thousands).

Copyright: c⃝ 2020 Travis Skare. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

While certainly not the only hurdle, we will focus on another
consideration–coordinating multiple GPU “programs.” The GPU
can be shared between multiple processes and the operating system
(for compute or display), but context switches introduce system
overhead. Furthermore, several GPU programs that each copy data
to and from the card must share I/O capability, and may quickly
run out of time in the audio callback. GPU manufacturers offer
documentation and tools for optimization, so in the following sec-
tions we apply a few such strategies to synthetic benchmarks and
observe performance increases, with the constraint that we must
meet audio rates.

As an aside, there is some academic coverage studying the
wisdom of using GPUs for real-time tasks outside graphics appli-
cations. Yang et al.[5] provide interesting observations and bench-
marks for embedded GPUs architecturally similar to our system.
In addition to tips and experiments, they point out concerns with
incomplete or incorrect documentation. While the group’s field is
autonomous vehicles, where the failure modes can be more severe
than an audio dropout, the concerns may be of interest to audio
researchers as fellow real-time system developers.

1.1. GPU Terminology

We provide a brief overview of some GPU facts and terms relevant
for future sections.

CUDA[6] is NVIDIA’s General-Purpose GPU (GPGPU) de-
velopment platform for GeForce cards from the last decade. It
provides APIs for critical tasks such as transferring data between
CPU and GPU memory, and executing a GPU “kernel” (a function-
formatted block of program code).

The developer may specify how many threads run a given ker-
nel. Regardless of this choice, threads are grouped and scheduled
in blocks of 32 called a warp. If the developer requests 31 threads,
one warp will be used and one thread will be turned off. If the
developer requests 33 threads, two warps will be used, one full
and one to compute the 33rd thread. Warps contain some shared
resources that make sharing data inside this group quick. On the
other hand, threads in a warp may compete for resources such as
the arithmetic units or memory bandwidth.

The GPU handles scheduling of warps based on available re-
sources. The GPU may schedule a kernel execution work in mul-
tiple stages transparently, and may serve requests from other pro-
cesses and the operating system on its own schedule.

Memory access patterns can be critical in obtaining perfor-
mant code. While beyond the scope of this work (specifics will
be different for different algorithms), the development kit includes
debugging functionality to assist in optimization.

DAFx.1

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

125

https://ccrma.stanford.edu/
http://creativecommons.org/licenses/by/3.0/

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

1.2. Setup

Next, we describe optimizations for cases of combining effects in
serial and parallel, and test these via synthetic benchmarks. The
test system is an Intel 3570K CPU with 16GB of RAM and an
NVIDIA GeForce 1080Ti, which is a powerful consumer-level
card, though currently three generations old (released in March
2017). The GPU has 11GB of RAM, runs at a 1480 MHz process-
ing clock, and has floating-point throughput of 10609 GFLOPS
at single precision, 332 at double precision. In practice many
applications will not be constrained by these limits and will be
more sensitive to latency. Neither the system CPU nor memory
capacities will bottleneck us in these studies. Memory and I/O
speeds will play a part and more modern and high-end hardware
are expected to have more performant numbers1, but similar scal-
ing trends.

We mix development on Linux and Windows; for this work
Windows was used the majority of the time due to preference
for the development tools available on that platform. Of note,
GeForce/CUDA drivers are not available on MacOS 10.14+. In
the event that this changes, we expect the benchmarks to run there
as well. CUDA Toolkit 10.1 was used for this work.

Benchmarks take the form of measuring time to compute ten
seconds of audio under the parameters. Sampling rate is held at
44.1kHz, and number of effect channels is held at 64 unless spec-
ified otherwise–this is less parallelism than many GPGPU algo-
rithms can reach, but it is a realistic thread count when treating an
audio channel as our unit of parallelism.

We run benchmarks for two classes of virtual insert plugin:
“Light Plugin” and “Heavy Plugin.” Both plugins accept a buffer
of audio and need to process it. Light runs the equivalent of ten bi-
quad filter calculations per sample of audio; Heavy runs one thou-
sand, requiring 100x the FPU throughput. Thus, the Light plugin
models cases where I/O time dominates CPU time, and the Heavy
plugin case models cases where CPU time dominates I/O time.

2. HIDING DATA TRANSFERS

First, we consider a documented strategy for increasing throughput
when running one single homogeneous audio task, by reducing
I/O time. This will be also generalized to multiple heterogeneous
kernels.

A prior project[7] involved a GPU process to synthesize and
modulate many modes in parallel. The GPU synthesis/filterbank
process and a plugin client running on the same machine inside a
DAW are launched and begin communicating over shared mem-
ory2. Then, during each audio callback, the following steps hap-
pen:

1. The plugin parses MIDI input data and populates a region
of shared memory with filter coefficients for the filter bank
process.

2. The plugin signals semaphore A and waits on semaphore
B.3

1For reference, the more recent flagship, GeForce 2080 Super, has a
1650 MHz base clock and 10138 single-, 317 double-precision GFLOPS

2without loss of generality; these processes could even live on different
machines if latency allows.

3We note for production-quality software, we must allow other depen-
dencies to run while we wait, so we must write threading/locking code
responsibly.

3. The filterbank process has been waiting on semaphore A; it
wakes up and transfers filterbank coefficients to GPU

4. The filterbank process launches the GPU synthesis kernel
and waits.

5. The GPU kernel retrieves prior state from main GPU mem-
ory (device memory), synthesizes a buffer of new samples,
and saves new state back to main GPU memory.

6. The GPU kernel threads synchronize and sum their output
buffers in groups of 32 threads.

7. The output buffers are transferred back to the filterbank pro-
cess (host memory).

8. If host memory is not mapped cross-process, the samples
are copied to shared memory that is mapped cross-process.

9. The GPU signals semaphore B and waits on A for the next
buffer.

10. The plugin wakes up and copies output data to the location
provided by the DAW. It returns and will be invoked to pro-
cess the subsequent audio callback.

In the existing implementation, all tasks happen sequentially
and strictly serially; they do not overlap. However, GeForce cards
from the last several years support concurrent memory copy and
code execution. That is, we can pipeline our code: while we are
copying results from kernel execution N , we may be in the com-
pute phase for execution N +1, and midway through this we may
have input data for execution N + 2 available and we can start
copying that to the device. This strategy was used by Belloch et
al.[8] towards 16-channel massive convolution on the GPU.

A hypothetical case we will use to benchmark this optimiza-
tion is shown in Figure 1. The baseline approach reads the next
available input audio segment, copies it to the graphics card, in-
vokes the kernel, and copies output data from the card to the host
process. The pipelined architecture uses asynchronous versions of
the API to overlap execution execution and I/O. We modified the
code to double-buffer inputs and outputs, though this change is not
absolutely required if the host is guaranteed to process output data
while I/O is not in progress.

One caveat: for zero-latency plugins, we must compute the
three stages (transfer-to-device, kernel execution, transfer-from-
device) serially and within one audio callback. We note Figure 1
would fail to meet this constraint even with the performance opti-
mization. There is a more general issue here: because input sam-
ples for callback N+1 must be sent to us after we deliver data for
callback N, the opportunity for overlapping data transfers disap-
pears and therefore this optimization can’t be applied for zero la-
tency plugins. If we are willing to incur one or two buffers of la-
tency, however, this optimization may expand the set of algorithms
that are practical on a GPU. We can effectively hide latency, run
compute near 100% of the time, and transfer results back to the
DAW in time slice after the one where compute finishes. In con-
trast, the serial, non-pipelined example in Figure 1 will never be
able to keep up with audio rate.

This is benchmarked synthetically in Table 1. We transfer
buffers of N samples of 64 channels of audio to the GPU, run
a computation representing a single monolithic insert plugin with
five internal stages of either “light” or “heavy” processing detailed
above. This processes samples serially using the arithmetic units
of the GPU. We then transfer the buffers back to the host.

When plugins are computationally light but still parallel, we
see improvements of around 15% by hiding I/O; this is a good

DAFx.2

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

126

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Time

Callback N

Baseline

Callback N+1
Callback N+2

Time

Callback N

Pipelined

Callback N+1
Callback N+2

Figure 1: Pipelined approach using concurrent execution and
memory transfer. Vertical lines indicate audio callback deadlines.
Processing segments are colored red for host-to-device I/O, green
for GPU kernel execution, and blue for device-to-host I/O.

Table 1: Sequential vs. Pipelined execution for one GPU-
accelerated plugin. Time to process 10 seconds of audio (sec)

Strategy Light Plugin Heavy Plugin
Baseline (N=256) 2.86 16.14
Pipelined (N=256) 2.43 16.32
Baseline (N=1024) 1.17 4.88
Pipelined (N=1024) 0.98 4.43

outcome-to-effort ratio for simply moving to the asynchronous
API. We still see improvement in the case of more computationally-
intensive kernels, but the improvement is small in marginal terms,
as there is relatively less I/O to hide.

The preceding benchmark measures processing throughput.
Digital Audio Workstations also have real-time constraints. In Ta-
ble 2 we rerun the experiment and measure mean, variance, and
maximum buffer processing times as seen by the host process. As
in the throughput-focused ten-second processing tests, these mea-
surements include all I/O transfers from and to the GPU. Overhead
of transferring to and from a host DAW is not included.

Table 2: Sequential vs. Pipelined execution, buffer processing
time, in milliseconds.

Strategy Mean Variance Max
Baseline (N=256), Light 1.19 1.82 9.04
Pipelined (N=256), Light 1.00 1.56 10.09
Baseline (N=1024), Light 2.11 1.79 11.08
Pipelined (N=1024), Light 1.93 1.63 8.46
Baseline (N=256), Heavy 8.49 0.91 12.77
Pipelined (N=256), Heavy 8.36 0.89 12.35
Baseline (N=1024), Heavy 8.76 1.10 16.38
Pipelined (N=1024), Heavy 8.61 1.31 15.31

Practically, at 256 samples at 44.1kHz, we must process a
buffer of audio in less than 5.6ms, minus applicable margins and
overheads. We note this constraint is not met for maximum laten-

cies in Table 2 for this trial. This is a problem for the baseline case,
though in pipelined cases our deadline will be two or more audio
callbacks, so the deadline may be met (of course this presents as
higher user-audible latency).

3. VIRTUAL CONSOLE SERIAL EFFECTS CHAIN

We consider a hypothetical 64-channel virtual console emulation.
This might be modeled using a series of stages:

• Microphone preamp: trim/gain and nonlinearity simulation.

• Channel Equalizer

• Channel Compressor

A simple approach is to execute kernels serially for each stage,
copying output data to a buffer to be used as the input data for the
next module. This is analogous to the way insert plugins may be
chained in digital audio workstations.

We narrow the problem with the restriction that each audio
channel is processed with one thread, sample-by-sample. In mak-
ing this restriction, we note that many GPU algorithms have ad-
ditional parallelism we may wish to exploit where possible. In
fact, the earliest examples of GPU audio computation on modern
graphics pipelines depended on this to reach audio rates. Savioja
et al.[9] sums more than one million sinusoids on a GPU, but re-
quired computing multiple samples for the same sinusoid in paral-
lel. Yet some algorithms cannot exploit time parallelism; in these
cases, f(t + 1) has a dependence on f(t) and we cannot apply
any strategy to change that. Based on experimentation, modern
GPUs have clock rates, I/O bandwidth, floating-point throughput
high enough to make serial sample-by-sample processing feasible
for some applications.

Returning to the virtual console example: we code the bench-
mark with each stage modeled as a separate effect. Because each
kernel invocation by default involves sample transfer between CPU
and GPU, we spend a large percentage of wall-time waiting for
I/O needlessly. An optimization is to combine our effects chain
into a single kernel and compute the full chain without any un-
needed memory copies. This scheme is visualized in Figure 2, and
is benchmarked in Table 3 for a chain of k effects.

Table 3: Coalescing k plugins to avoid I/O transfers between plug-
ins. Time to compute 10 seconds of audio (sec). Buffer size N=256.

Strategy Light Plugin Heavy Plugin
Baseline (k=2) 1.79 3.29

Combined (k=2) 1.05 2.32
Baseline (k=5) 3.42 7.51

Combined (k=5) 1.09 3.74
Baseline (k=10) 6.79 14.75

Combined (k=10) 1.16 6.22

The benchmarks show eliminating I/O is, as expected, a very
useful optimization. For inexpensive but parallel GPU computa-
tion kernels, I/O dominates scaling. As we chain computationally-
inexpensive plugins we quickly use up our audio buffer timeslice
in data transfer. If we can optimize all but the first and last trans-
fers away, we can scale number of plugins, or plugin complexity,
much further and spend more time in compute code versus I/O.

We again run the benchmark to examine practical latency con-
siderations, in Table 4 the mean latency, variance, and maximum

DAFx.3

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

127

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Time

Audio Callback 1 Audio Callback 2

Other Processes

Combined
Effect Kernel

A

Audio Callback 1 Audio Callback 2

Other Processes

Effect A

Effect B

B A B

Figure 2: Combining serial effects into one kernel

latency are measured. The more time spent inside compute-heavy
regions, the less penalty we suffer from inefficient I/O, though the
optimization is still worth pursuing.

Table 4: Coalescing k plugins to avoid I/O transfers between plu-
gins. Buffer processing time, milliseconds. Buffer size N=256

Strategy Mean Variance Max
Baseline (k=2), Light 2.09 2.39 10.94

Combined (k=2), Light 1.24 1.55 9.19
Baseline (k=5), Light 4.96 3.90 23.58

Combined (k=5), Light 1.52 1.47 8.66
Baseline (k=10), Light 10.18 5.32 33.22

Combined (k=10), Light 1.85 1.35 9.58
Baseline (k=2), Heavy 16.76 1.22 21.18

Combined (k=2), Heavy 15.74 0.82 19.48
Baseline (k=5), Heavy 41.56 1.46 45.99

Combined (k=5), Heavy 38.09 0.71 41.27
Baseline (k=10), Heavy 83.25 1.92 89.58

Combined (k=10), Heavy 74.31 1.25 83.37

Combining effects plugins is a simple operation, but we have a
few options that balance code readability, flexibility, and resource
usage.

As a manual approach, we may simply merge code in our de-
velopment environment, or more elegantly merge via preprocess-
ing, the code from two kernel functions into a new, combined func-
tion. Here we must ensure that variables are not redeclared, and
that the correct buffers are used such that the output memory from
one plugin is used as the input to the next. A compile-time trans-
form could be written for this. One drawback is that each plugin
will reserve its own stack space and potentially registers for vari-
ables. This is the approach used for our benchmarks in this work.

Alternatively, we may break our code into multiple device
functions, with a new device function calling them serially, but
developer documentation suggests that in cases where the compiler
does not inline the functions, the stacks will use relatively slower
device memory, where we would ideally like to keep all locals in
registers if possible; in [7] this was one of the most attractive opti-
mizations to running certain algorithms at audio rates. We note we
may reuse locals between stages at the cost of readability; beyond

this we hold discussion on local variables for Section 4.1.
In a hypothetical case where we are unable to coalesce all ef-

fects into one kernel, as a middle ground we may keep separate
kernels, but add a boolean parameter that controls whether to copy
data back to the host, or merely keep it in global GPU memory.
This parameter must be true for the last effect in the chain, but the
prior effects would be instructed to leave data in global memory
and avoid sending intermediate buffers back.

It is worth noting some advantages of separate kernels: clean
separation of code, separate stacks, easy code reuse across projects,
the ability to easily chain multiple instances (for example a fast-
attack compressor to tame peaks followed by a “character” com-
pressor for tone), and the ability to easily modify order – com-
pressor before EQ rather than after. While one monolithic kernel
does not preclude any of those advantages, when writing kernels
separately the advantages are obtained “for free.”

4. SYNTHESIZER WITH PARALLEL MODULES

Consider a semi-modular polyphonic synthesizer where oscillators
may be chosen from different engines: for example, FM or digital
waveguide string simulation. The simplest way of structuring this
code is likely to write it the same way we might a CPU implemen-
tation, performing a switch-like selection of algorithm:

Listing 1: Default approach for a multi-generator synth

d e v i c e s y n t h K e r n e l 1 (a r g s) {
/ / Loca l v a r i a b l e s d e c l a r e d h e r e
/ / f o r bo th e n g i n e s

i f (c o n f i g [t h r e a d I d x . x] . s y n t h E n g i n e
== FM) {

/ / run FM f o r t h i s t h r e a d
}
e l s e i f (c o n f i g [t h r e a d I d x . x] . s y n t h E n g i n e

== STRING) {
/ / run s t r i n g s i m u l a t i o n f o r t h i s t h r e a d

}
}

Note that threadIdx is provided by the CUDA runtime;
each thread will see its own index in this expression.

DAFx.4

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

128

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

SM Processor 0

Generator A

Generator B

Warp 0

Warp 0

Warp 1

Warp 0

Warp 1

Warp 0

Warp 1

Generator A

Generator B

Baseline Approach

Thread Alignment/Padding Separate Streams

SM Processor 1

t0 t0

t0 t0 t0 t0

SM Processor 1SM Processor 0 SM Processor 0 SM Processor 1

Figure 3: Default behavior and two optimizations for a synthesizer with selectable generator module. Note that the two warps are scheduled
to execute simultaneously on different streaming multiprocessors.

We recall how contemporary GPUs handle branching: for a
given if() branch in code, the conditional is evaluated on all
threads in a warp. If any thread in the warp evaluates to true, the
branch is taken. All threads in the warp execute in lockstep; the
threads that failed the condition effectively wait and do not in-
cur side effects. In an if/else, some threads will execute one
branch then wait for the other threads to execute the other branch.
We note future GPU generations may support richer branching.

Branching can reduce performance by factors of two, espe-
cially troubling for deep conditional statements. The GPU, how-
ever, will transparently implement an important optimization: if
all threads in a warp fail a conditional, there is no need to execute
it and the GPU will jump past it.

Therefore, if we can structure our threads in a way to max-
imize the likelihood that all threads in a warp execute the same
algorithm, our branches do not incur overhead.

We can group threads by voice and still run the check as in
Listing 1, or save some memory and partition the space; threads
with IDs less than some constant ENGINE_A_THREADS will use
generator of type A (FM in the prior example) and the next parti-
tion uses generator type B (STRING in the prior example).

Listing 2: Partitioned voice space optimization

d e v i c e s y n t h K e r n e l 2 (a r g s) {
/ / Loca l v a r i a b l e s d e c l a r e d h e r e
/ / f o r bo th e n g i n e s

i f (t h r e a d _ i n d e x < ENGINE_A_THREADS) {
/ / Run code f o r s y n t h Engine A

} e l s e {
/ / Run Code f o r s y n t h Engine B

}
}

4.1. Local variables

Performance may be the primary concern, but it is good to keep
readability and maintainability in mind. The synthKernel2 ap-
proach in Listing 2 has drawbacks, including more complex code,
and more importantly a shared frame for all local variables, im-
posing a resource constraint on register/thread memory, which is a
limited yet valuable resource.

It is possible to have the kernel code call other device func-
tions. In this case, the function may either be inlined, or called with
a traditional stack architecture; the stack resides in global memory
and will not be as fast as registers but can benefit from caching.

CUDA supports a union type but seemingly not in registers
as of the development kit version used in this project.

4.2. Comparison

A visual summary of the different approaches for the “synthesizer
with multiple generator types” problem may be seen in Figure 3.

We have a large number of voices–the synth may be poly-
phonic and have several oscillators per voice–and we assign gener-
ators to CUDA threads in order of their display on a user interface.
This is easiest to debug and the simplest, cleanest coding practice.
At runtime, though, it is likely that in a group of 32 threads, we’ll
have some threads using Generator A and others using Generator
B.

The second approach, “Thread Alignment/Padding,” can use
the exact same kernel code, but when assigning threads to warps
we assign them by Generator type. “Padding” refers to the fact
that we may end up with fewer than 32 threads per warp, and have
some threads idle in each warp. If only a few voices uses the FM
engine, we may seem to “waste” the majority of a warp, but in
practice the tradeoff in throughput may be worthwhile.

We expect some overhead in the Thread Alignment approach:
the kernel code is larger. There may be cycles spent in precondi-
tions or calculating the branch predicate for a branch we do not

DAFx.5

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

129

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

take. Finally, we may have fewer registers for optimizations4.
The third approach, “Separate Streams”, also involves buck-

eting threads, but we use the CUDA Stream API to launch each
generator as a completely separate kernel, concurrently. Bench-
marks follow in Table 5.

Table 5: Parallel Synth Engines, Time to compute 10s of audio
(sec)

Strategy Medium Plugin Heavy Plugin
Baseline 2.94 9.03

Thread Alignment 1.87 4.51
Streams 1.95 4.73

We see the expected effect that grouping threads to eliminate
branches has a substantial positive effect, approaching 2x for our
branching factor under the right conditions. Interestingly, we see
simply organizing threads manually performs best with these sim-
ple kernels. The Streams API offers true independent kernel exe-
cution, but there seems to be some small overhead in coordinating
and scheduling multiple kernels. In this synthesizer example it
was trivial to group threads; for other cases streams may be worth
considering using Streams to overlap heterogeneous kernels.

5. PRACTICAL CONSIDERATIONS

Some practical issues must be addressed to create a usable sys-
tem for end-user audio engineers. Different GPUs support a dif-
ferent number of concurrently-executing kernels within the same
process, which limits the number of different algorithms that may
execute simultaneously. The number may be queried from the
hardware at runtime or looked up in the developer documentation
based on Compute Capability level for the card[6], and is expected
to be around 16-32 in theory, with lower practical limits.

The prior section assumed a system with only one process
coordinating CUDA kernel launches. For our synthetic bench-
mark synthesizer we have full control, but what if a competing
plugin brand is running their own GPU synthesizer? By default,
multiple processes on a CPU system have different CUDA “con-
texts” and can not overlap. Each process effectively owns a global
CUDA context lock for its timeslice. For maximum performance,
the community would likely need to maintain a shared GPU ef-
fect bridge and kernels could be submitted as bridge plugins in the
form of shared libraries, much as DAW plugins are compiled and
registered.

An alternative exists, however. Nvidia provides MPS, a “Multi-
Process Service” binary which can coordinate kernel executions,
and importantly tries to overlap memory and compute tasks be-
tween different processes, without those processes being aware of
each other.

MPS is beyond the scope of this work. For interested re-
searchers, note Yang et al.[5] benchmark MPS for real-time ap-
plications and find some pros and cons; their results suggest this is
not a magic bullet. A failed effort to port TensorFlow to support
MPS[10] showed that it limits programming power, though MPS
is more robust on newer GPU architectures: Volta5, Turing, and
beyond.

4This last case would represented by a longer “Warp 0” bar in the plot
5Professional cards only; no consumer-level Volta cards were launched

It is worth emphasizing the overall utility of GPU audio is
dependent on exploitable parallelism: either we must have an al-
gorithm with parallel pieces per audio stream, or a high number of
independent audio streams. Revisiting a FPU-bound “heavy plu-
gin” example from Section 2 that processes ten seconds of audio
as quickly as possible, and sending the kernel 64 channels of au-
dio, we find via the NVidia performance tools that we use 0.16%
of available streaming multiprocessor throughput and 0.37% of
available memory. These are low numbers but make sense: the
card has 3,584 streaming multiprocessors and 64 channels of au-
dio only requires four or eight (at common developer-chosen di-
mension sizes), plus we do not achieve 100% occupancy. Overall
memory transfer rate achieved is 1.73 GB/s. The card has a theo-
retical maximum of 484 GB/s; CPU, Memory, and I/O counters all
indicate the 64-channel application is data-starved, as expected.

Having touched on coexisting with other audio tasks and other
GPU tasks (OS drawing, other applications, plugins’ UI render-
ing), we attempted to quickly gauge real-world impact. Different
benchmarks were run with and without Geeks3D “FurMark” run-
ning on the system simultaneously, set to the “GPU Stress Test”
mode. A synthetic FPU-bound trial increased in time from 4.0s
to 10.71s (2.68x) with FurMark running. For an I/O bound test,
the audio processing process’s runtime increased from 15.06s to
48.05s (3.19x). Thus, GPU scheduling contention may be an area
worth exploring in the future, with regard to different consumer
workloads and dedicated versus shared GPUs.

6. CONCLUSIONS

We explored some optimizations available for cooperative GPU
kernel execution in serial and parallel real-time audio tasks. Alter-
native approaches were considered, along with tradeoffs involving
development flexibility and style.

Benchmarks were synthetic, but the parallel synthesizer mod-
ules strategy is being applied in practical concurrent work involv-
ing a drum set synthesizer with a modal filterbank for cymbals and
waveguide meshes for membranes.

Very recently, Gaster et al.[11] explored feasibility of differ-
ent buffer sizes for realtime GPGPU audio, benchmarking across
CUDA and OpenCL on discrete and integrated graphics. We con-
centrated on CUDA and explored breadth in the form of bench-
marking different optimizations, and found overall similar possi-
ble buffer sizes. However, we note that while buffer sizes of 256
samples appear feasible in terms of mean latency, latency vari-
ance, and data throughput, there were occasional latency spikes
that would have caused rare, but present, overruns–even before
taking into account DAW overheads, driver latency, and additional
safety margins.

Future work might be to fully prototype a virtual console setup,
if a model is available where GPU compute for 64 channels out-
weighs I/O transfer. This would give a practical example for the
effects chain benchmark.

We might also investigate integrated GPUs on mobile devices.
These are becoming steadily more powerful and are often generally-
programmable. They are of active interest in the machine learning
community; Georgiev et al.[12] found that inference for tasks such
as speech recognition obtained 6.5x speedups over CPU while us-
ing only 25% of the energy, saving battery power and heat output.
Anecdotally, as an early empirical result we have found modal pro-
cessors may run on the NVidia Jetson Nano development board at
audio rates, albeit with thousands rather than millions of modes.

DAFx.6

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

130

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Use of mobile GPUs could power art installations or portable in-
struments and run at around five watts, or increase the scope of
what is possible on phone/tablet synthesis applications.

7. ACKNOWLEDGMENTS

Thanks to reviewers who had substantive comments that improved
the paper and allowed for improvements such as formalizing in-
sights around latency, pointers to nvprof and GPU stress tests.
Thanks to conference organizers, especially during this unique and
challenging year.

8. REFERENCES

[1] Stefan Bilbao and Craig J Webb, “Physical modeling of tim-
pani drums in 3d on gpgpus,” Journal of the Audio Engineer-
ing Society, vol. 61, no. 10, pp. 737–748, 2013.

[2] Jose A Belloch, Alberto Gonzalez, Enrique S Quintana-Orti,
Miguel Ferrer, and Vesa Välimäki, “Gpu-based dynamic
wave field synthesis using fractional delay filters and room
compensation,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 2, pp. 435–447, 2016.

[3] Craig Webb and Alan Gray, “Large-scale virtual acoustics
simulation at audio rates using three dimensional finite dif-
ference time domain and multiple graphics processing units,”
in Proceedings of Meetings on Acoustics ICA2013. Acousti-
cal Society of America, 2013, vol. 19, p. 070092.

[4] Acustica Audio, “Nebula 3 vst plugin,” 2009.

[5] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita,
James H Anderson, and F Donelson Smith, “Avoiding
pitfalls when using nvidia gpus for real-time tasks in au-
tonomous systems,” in 30th Euromicro Conference on Real-
Time Systems (ECRTS 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[6] NVIDIA Inc., “CUDA C++ Programming Guide,” Avail-
able at https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html, accessed April 19, 2020.

[7] Travis Skare and Jonathan Abel, “Gpu-accelerated modal
processors and digital waveguides,” in Linux Audio Confer-
ence, 2019.

[8] Jose A Belloch, Alberto Gonzalez, Francisco-Jose Martínez-
Zaldívar, and Antonio M Vidal, “Real-time massive convo-
lution for audio applications on gpu,” The Journal of Super-
computing, vol. 58, no. 3, pp. 449–457, 2011.

[9] Lauri Savioja, Vesa Välimäki, and Julius O Smith III, “Real-
time additive synthesis with one million sinusoids using a
gpu,” in Audio Engineering Society Convention 128. Audio
Engineering Society, 2010.

[10] TensorFlow GitHub repostory and community, “Sup-
port for nvidia-cuda-mps-server,” Available at
https://github.com/tensorflow/tensorflow/issues/9080,
accessed April 19, 2020.

[11] Benedict R Gaster, Harri Renney, and Thomas J Mitchell,
“There and back again: The practicality of gpu accelerated
digital audio,” in NIME, 2020.

[12] Petko Georgiev, Nicholas D Lane, Cecilia Mascolo, and
David Chu, “Accelerating mobile audio sensing algorithms
through on-chip gpu offloading,” in Proceedings of the 15th
Annual International Conference on Mobile Systems, Appli-
cations, and Services, 2017, pp. 306–318.

DAFx.7

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

131

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/tensorflow/tensorflow/issues/9080

	1 Introduction
	1.1 GPU Terminology
	1.2 Setup

	2 Hiding Data transfers
	3 Virtual Console Serial Effects Chain
	4 Synthesizer with parallel modules
	4.1 Local variables
	4.2 Comparison

	5 Practical Considerations
	6 Conclusions
	7 Acknowledgments
	8 References

@inproceedings{DAFx2020_paper_73,
 author = "Skare, Travis",
 title = "{GPGPU Patterns for Serial and Parallel Audio Effects}",
 booktitle = "Proceedings of the 23-rd Int. Conf. on Digital Audio Effects (DAFx2020)",
 editor = "Evangelista, G.",
 location = "Vienna, Austria",
 eventdate = "2020-09-08/2020-09-12",
 year = "2020-21",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "1",
 doi = "",
 pages = "125--131"
}

