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ABSTRACT 

This paper explores Frequency Modulation (FM) for use in mu-

sic synthesis. We take an in-depth look at Linear FM, Linear-

Through-Zero FM, Phase Modulation (PM) and Exponential 

FM, and discuss their pros and cons for sound synthesis in a digi-

tal system. In the process we derive some useful formulas and 

discuss their implementation details. In particular we derive ana-

lytic expressions for DC correcting Exponential FM, and make it 

match the modulation depth of Linear FM. Finally, we review 

practical antialiasing solutions. 

1. INTRODUCTION 

FM synthesis was first introduced by John Chowning in his fa-

mous paper from 1973 [1], where he showed how natural sound-

ing sounds could be synthesized by dynamically controlled Fre-

quency Modulation. The technique was licensed by Yamaha for 

use in their DX7 synthesizer. Before that, FM was known from 

its use in radio transmission, originally designed as a replacement 

for Amplitude Modulation (AM) radio, since it is less susceptible 

to noise.  

 

Chowning showed that a simple setup of a carrier waveform, 

modulated by a modulator waveform, could produce musical 

sounds by controlling the level of modulation using a Modula-

tion Index I.  

 

Expressed using just sinusoids, Chowning wrote the instantane-

ous FM modulated time-domain signal as: 

 

 ))sin(sin()( tItty mc     (1) 

 

where ωc is the carrier frequency and ωm is the modulator fre-

quency [1]. Here, ω denotes the angular frequency, which for a 

linear frequency f is defined as ω=2f.  

 

When I is zero, there is no modulation, but when I is increased, 

the modulation introduces sidebands in the resulting sound spec-

trum at frequency intervals of the modulating frequency [1]. See 

Figure 1. 
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Figure 1: FM spectrum 

 

Chowning’s insight was that by controlling the Modulation Index 

and the ratio between the carrier and the modulating frequency, 

could add and remove sound harmonics, thereby controlling tim-

bre.  

 

For synthesizing harmonic spectra, the frequency ratio r should 

be rational [1]: 
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That is, N1 and N2 should be integers. Furthermore when disre-

garding common factors, the fundamental frequency of the result-

ing sound will be [1]: 
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The sidebands of an FM signal and its associated magnitude co-

efficients can be determined using Bessel functions of the first 

kind, Jn  [1]: 
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Now, let us take a step back, and look at Chownings formula in 

equation (1). So the main frequency ωc of the carrier signal is 

kept static and the modulating signal added as a phase offset: 

Isin(ωmt). So he is in fact modulating the phase. So why call it 

Frequency Modulation? Simply due to the fact that Frequency 

and Phase Modulation are closely related. Since frequency is the 

derivative of phase, modulating the signals phase will also modu-

late its frequency. FM and PM are therefore used interchangeably 

and sometimes simply referred to as angle modulations [2]. 

However, there are some key differences that we will look at in 

the following. 
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2. LINEAR FREQUENCY MODULATION 

In principle, linear FM is simple: For a given carrier frequency, 

we allow the frequency to sweep up and down by a frequency 

deviation ω. The important distinction being that it linearly 

sweeps up the same amount of Hz as it sweeps down. Mathemat-

ically we can write the modulated frequency as: 

 

 )sin()( tt mclin     (5) 

 
and the resulting time-domain signal as: 

 

 )))sin(sin(()( ttty mc     (6) 

 
This is direct Frequency Modulation and not the same as equa-

tion (1), as phase is left untouched. 

 

The Modulation Index is defined as [2][3]: 
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This means that given a Modulation Index, the frequency devia-

tion is calculated as [3]: 

 

 
mI    (8) 

 

That is, the peak frequency deviation is a multiple I of the modu-

lating frequency. 
 

2.1. Linear FM DC and Tuning 

The link between the Modulation Index and frequency deviation 

means that slowly changing the modulation index, can make the 

resulting sound momentarily drift out of tune [2].  

 

For simplicity, we expressed the carrier and modulator using si-

nusoids. However, there is nothing stopping us from using other 

waveforms, such as more harmonically rich Saw, Square and 

Triangle waves. Yet, what happens if we use a modulating wave-

form that has a DC offset? In that case we will be adding this DC 

offset scaled by the frequency deviation ω to the carrier fre-

quency causing the resulting sound to go out of tune.  Not a de-

sirable behavior [2]. So for Linear FM, a DC offset in the modu-

lating waveform should be avoided.  
 

2.2. Linear-Through-Zero FM 

An interesting aspect of Linear FM is what happens at 0 Hz. 

Since we are subtracting ω from ωc, the frequency can reach 

and even cross the 0 Hz line. We can choose to disallow this and 

simply stop frequencies at 0 Hz, or we can choose to allow it and 

let frequencies become negative. While both acceptable, the lat-

ter is more correct and known as Linear-Through-Zero FM 

(LTZFM) [4]. It is more correct because stopping at 0 Hz will in 

itself introduce a DC offset [2][3]. Also, the negative frequencies 
contribute to the sound. LTZFM simply sounds “sweeter” [4]. 

 

Figure 2: Negative frequencies. 

 

 

So what happens below 0 Hz? Just like a wheel starting to spin 

backwards, negative frequencies generate sound but in reverse 

phase [3][4]: sin(-x) = -sin(x). That is, the negative frequency 

sidebands reflect back above 0 Hz, spilling into the positive fre-

quencies with their phase inverted. See Figure 2. 

 

3. PHASE  MODULATION 

Since frequency is the derivative of phase, modulating the phase 

will also modulate the frequency. Phase Modulation is therefore 

equivalent to Linear Frequency Modulation, and is in fact what 

Chowning describes in his paper [1]. Hence, it is also referred to 

as Chowning-style FM or indirect FM.  

 

The frequency can be seen as the angular velocity of the phase 

angle in time. With FM, we change the frequency while keeping 

the phase constant. In PM, we change the phase while keeping 

the frequency constant. However, changing the phase also alters 

the instantaneous frequency, where the frequency and phase rela-

tionship can be written as [2]: 
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  (9) 

 

 ( ) ( )t t dt  
  (10) 

 

That is, we get the frequency by differentiating the phase angle. 

And get the phase, by integrating the frequency. 

 

Again, using just sinusoids, we can express the modulating phase 

function as: 
 

 )sin()( tt m    (11) 

 

where  is the phase deviation. The resulting time-domain sig-

nal becomes: 
 

 ))sin(sin()( ttty mc     (12) 

 

The PM Modulation Index is simply defined as [2]: 

 

 I   (13) 

 

Looking at the time-domain formula in equation (12), we see that 

DC in the modulating function will not change the tuning fre-

quency of the carrier, but instead introduce a phase offset. Thus, 

PM is said to “fix” the DC tuning problem of Linear FM [2]. 
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Since the phase modulation in itself can make the carrier signal 

run backwards, PM actually has built-in Linear-Through-Zero 

behaviour. Also, unlike direct Linear FM, altering the Modula-

tion Index does not impose any momentary detuning [2]. 

 

Hence, for those reasons, PM is in general favoured over “na-

ïve”, direct Linear FM, and also why, when referring to FM, 

most papers and applications actually mean and apply PM.   

 

Note that, due to the use of angular frequencies with trigonomet-

ric functions, the Modulation Index, for both FM and PM, may 

or may not have an implied scaling by 2. 

 

Aside from the above differences, Phase and frequency modula-

tion give the same results. However, since frequency is the deriv-

ative of phase, there will always be a phase difference between 

FM and PM using the same modulation signal. 

 

So we can safely say that Linear Phase Modulation is Linear Fre-

quency Modulation. In fact, it is its more stable brother. Yet, the 

same cannot be said for Exponential FM.  

 

4. EXPONENTIAL FM 

Exponential FM is a form of frequency modulation where the 

modulation range follows the musical spacing of notes and oc-

taves. For instance, given a frequency ωc, going up one octave 

means doubling the frequency (2ωc), and going down one octave 

means halving the frequency (ωc/2).  

 

Mathematically we can write the exponentially modulated fre-

quency as [5][6]: 

 

 )sin(

exp 2)(
tV

c
mt

    (14) 

 

where V is the amplitude of the modulation. The sinusoidal time-

domain signal then becomes: 

 

 )2sin()(
)sin(
tty

tV

c
m   (15) 

 

Since trivial control over the tuning frequency is available in 

most analog synthesizers, Exponential FM is in a sense the sim-

plest form of FM. At low rates, Exponential FM is simply vibra-

to. 

 

With Linear FM/PM, the sidebands are equally spaced around 

the carrier frequency. However, with Exponential FM, the spac-

ing of the sidebands is asymmetrical around the carrier, creating 

a different type of sound [5]. 

 

As we cannot halve a frequency to cross the 0 Hz line, exponen-

tial FM does not have Through-Zero behavior, but instead stops 

at 0 Hz. 

 
Like with Linear FM, it would be advantageous to use phase 

modulation to get an Exponential FM response. However, in 

practice this is difficult.  Getting the instantaneous phase func-

tion would require integration of the above frequency function, 

but this does not have a closed-form solution [7]. 

4.1. Exponential FM DC and Tuning 

If we imagine a one octave modulation of a carrier frequency of 

440 Hz, the peak maximum and minimum frequencies become 

880 Hz and 220 Hz, which are not of equal distance to 440 Hz. 

So this implies that Exponential FM introduces a DC offset, 

which detunes the resulting sound [4]. 

 

Even modulation with a fully symmetric function, the “stretch” 

imposed by the exponential function will make the result non-

symmetric, which means that the DC offset is dependent on the 

modulating waveform. 

 

This may explain why musicians constantly have to retune a 

patch using Exponential FM [4]. Whenever the Modulation In-

dex or the modulating waveform is altered, the patch will go out 

of tune. 

 

To get an idea of what the DC offset is, we define an exponential 

factor k as the integral over one period of the modulating wave-

form: 
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tVf
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such that: 
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Integration over Sine does not give a closed-form solution. In-

stead the exponential must be expanded into: 

 

 






1

0

)sin( )cos())2ln((2))2ln((2
k

k

tV tkVIVI    (18) 

 

Where In are the modified Bessel functions, equivalent to the 

regular Bessel functions of the first kind evaluated for purely im-

aginary arguments: In(z)=(-in)Jn(iz) [6]. Since we are interested in 

the DC offset, we disregard the infinite sum, and write: 

 

 ))2ln(())2ln((
1

0
00|   VIdxVIk SineDC

  (19) 

 
The Modified Bessel function I0 is not trivial to evaluate. How-

ever, good approximations are described in [8] and [9]. Integrat-

ing for ideal Saw, Square and Triangle waveforms yield nice 

closed-form analytic expressions: 
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Figure 3: Analytic DC corrections. 

 

We can use these expressions to compensate for the DC offset for 

(bipolar) Exponential FM with ideal modulating waveforms. See 

Figure 3. 
 

To verify, we can, e.g., set V=4 and integrate over one period of 

a corrected modulating sinewave: 

 

   
1

0
0

)2sin(4 0))2ln(4(2 dxIx   (23) 

 

which means that our average ωexp,noDC  will equal ωc. The inte-

gral over this corrected function is graphed in Figure 4. 

 

 

Figure 4: DC corrected modulation. 

 

Care should be taken, as this correction may bring the instanta-

neous frequency below 0 Hz, thus again requiring a Through-

Zero carrier oscillator. 

 

In addition, since this correction is equivalent to altering the fre-

quency by a ωc scaled carrier offset, this skews the ratio, as ωm is 

kept constant, resulting in a different sound.  

 

4.2. Re-Tuning Exponential FM 

Let us take a look at a practical example to see what this actually 

means. So given a sinusoidal oscillator playing the musical note 

C-3, we apply Exponential FM using a sinusoidal modulator at 

the same frequency, thus r=1, and say V=3. 
 

 

Figure 5: Sinusoidal waveform and spectrum, without 

FM. 

 

For reference, we first observe the non-modulated waveform and 

spectrum shown in Figure 5. The fundamental frequency for the 

C-3 sinusoidal is shown in the spectrum, at exactly 130.81 Hz. 

 

We then apply “naïve” exponential FM without any correction. 

See Figure 6. The result is an erratic waveform that sounds harsh, 

inharmonic and out-of-tune. From the spectrum we observe that a 

new fundamental frequency is introduced (~56 Hz), that has no 

harmonic relation to the fundamental.  

 

 

 

 

Figure 6: Exponential FM without DC correction. 

 

Finally, we introduce the analytic DC correction. See Figure 7. 

The waveform becomes well-behaved, harmonic, and from the 

spectrum we observe that it is in-tune, since the fundamental fre-

quency is kept intact, while the FM modulation only produces 

overtones.  

 

Again, it is important to point out that this result is achieved us-

ing an oscillator capable of Through-Zero. If we apply this cor-

rection using an oscillator incapable of Through-Zero, we instead 

get the result shown in Figure 8, which in this case is just as in-

harmonic and out-of-tune as without correction. 
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Figure 7: Exponential FM with analytic DC correction. 

 

 

Figure 8: Exponential FM, with DC correction but with-

out Through-Zero. 

 

So are we not able to produce harmonic Exponential FM without 

Through-Zero? What happens if we instead alter the modulation 

frequency ωm ? 

 

According to Hutchins et al. [6] the condition for a harmonic 

spectrum with an Exponential FM pure sinusoidal oscillator is: 
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This forces one of the sidebands to fall on zero frequency, so 

“the carrier, all normal sidebands, and any significant reflected 

sidebands will fall on positions that are multiples of a common 

fundamental” [6]. 

 

So this means that, unlike with Linear FM, the harmonic ratio 

may be non-rational, and we can express the harmonic modula-

tion frequency as: 

 

  
cm

r

VI


)2ln(0   (25) 

 

 

 

Figure 9: Exponential FM with corrected modulation 

frequency. 

 

 

 

Figure 10: Exponential FM with tracked DC correction. 

 

The numerator looks exactly like our DC offset. Let us explore 

this further. So we again perform “naïve” Exponential FM, ex-

cept we now alter the modulation frequency according to equa-

tion (25). The result is shown in Figure 9. While the output is 

now harmonic and sounds good, it is not in-tune, as the funda-

mental has shifted to ~320 Hz. A shift that depends on V. Yet, 

given an oscillator incapable of Through-Zero, this correction 

does produce a harmonic sound. So if we know the modulating 

waveform, we can get the modulation frequency that will pro-

duce a harmonic spectrum by:  
 

 
c

DC
m

r

k
    (26) 

 

What if the modulating waveform is unknown? An alternative is 

to apply a DC filter to the frequency control signal, and use the 

estimated DC offset for correction. However, depending on the 

cutoff point, the filter will not work instantly, resulting in an in-

harmonic glide-effect when changing Modulation Index or 

switching notes. For completeness, Figure 10 shows the resulting 

signal when using such a tracked DC offset as our kDC. The out-

put matches our analytic results (Figure 7) when in a steady-state. 

A DC filter can also be applied in conjunction with an analytic 

correction in cases where the modulating waveform diverts from 

the analytic inputs. Finally, the integral over a known but non-

ideal waveform can be precalculated into a look-up table, and 

used for correction when the analytic formulas do not apply. 
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4.3. Exponential Modulation Index 

So far we have referred to the modulation amplitude as V. While 

V is linked to the Modulation Index, we have yet to establish this 

link. In [6] & [7] V is simply referred to as the Modulation 

Depth, while it is pointed out that the carrier frequency increases 

rapidly when V reaches values of 8 or more [7]. This is problem 

for digital synthesis, as high frequencies are prone to alias in a 

digital system. 

 

Timoney et al.[7] suggests a “useful formula for low-aliasing dig-

ital implementations of Exponential FM” that estimates the fre-

quency where sidebands fall below a threshold (See Section 5.1). 

The expression is limited to sinusoidal modulation. 

 

To make Exponential FM easier to control, we will instead derive 

an expression for V in relation to the Linear Modulation Index. 

To keep V in check, we set the size of the full exponential fre-

quency range equal to the Linear FM one and solve for V: 

 

   m
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Given a Modulation Index, this makes Exponential FM span the 

same size frequency range as Linear FM, thus keeping V within a 

more sensible range. See Figure 11. This also makes it easier to 

compare the two, both visually and sound-wise. The Linear FM 

vs. the Exponential FM spectrum is shown in Figure 12. 

 

 

 

Figure 11: Modulation Depth V vs. Modulation Index I, 

for ratio r=1. 

 

 

Figure 12: Exponential FM(green) vs. Linear FM spectrum(red). 

4.4. Operators & Feedback FM 

In classic FM, the term operator describes a waveform generator, 

who's amplitude is controlled by an envelope, and can function 

as either a carrier or a modulator [1][2]. Each operator can be 

routed to control the frequency of another operator. In this way it 

is possible to do complex FM routing, referred to as algorithms, 

where operators are connected in series or in parallel, to form 

complex evolving sounds. In part, this is what made the Yamaha 

DX7 so famous.  

 

Now, this design also made it possible to feed the output from a 

chain of operators back into the input frequency of a chained op-

erator, creating variable feedback by a factor . See Figure 13. 

Figure 13: Feedback FM. 

 

Feedback can breathe life into a static sound, but historically it 

also solved a problem. Normally, when the Modulation Index 

changes, the amplitude of the sidebands change unevenly as dic-

tated by the Bessel functions. This results in a characteristic un-

natural or “electronic” sound [5]. By introducing feedback, this 

unevenness is made more linear, which makes changes to the 

Modulation Index sound more natural. Roads et al. [5] describes 

this mathematically by: 
 

 
))sin(()(
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  (30) 

 

This reveals a scaling by 2/n but also shows that the inputs to 

the Bessel functions are now scaled by their order n, which ac-

counts for the even spread of the sidebands across a wider spec-

trum compared to non-feedback FM [5].  

 

An inherent problem with feedback is that it tends to be unstable. 

Feeding a Sine back into its frequency might be okay. The 

sinewave actually warps into a sawtooth. But feeding a Saw into 

itself, will quickly result in noise. One solution is to lowpass fil-

ter the feedback, thus taming the high frequencies that cause the 

noise. Although the DX7 was Sine only, it had built-in lowpass 

feedback filtering. 

5.  ANTIALIASING 

When implementing FM in a digital system we have to address 

digital aliasing, i.e., the fact that we cannot represent frequencies 

higher than the Nyquist frequency. Since one of the main points 

of FM synthesis is to generate sidebands, these can cross half the 

sampling rate, where they wrap around and reappear as distor-

tion, or aliasing. 

 

Interestingly, the corrections suggested in section 4 for Exponen-

tial FM, reduce the frequency range, and thus the aliasing risk. 

However, for both Linear FM, PM & Exponential FM, aliasing 

remains a concern, especially for non-sinusoidal carriers. 
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5.1. Modulation Index Limiting 

The extent of the sidebands is known as the bandwidth. 

Chowning uses Carson's rule for the estimated bandwidth of si-

nusoidal Linear FM [1]: 

 

 )1(2)(2  IfffB mmFM
  (31) 

 

Where f is the frequency deviation (in Hz), and fm is the maxi-

mum modulation frequency. If we set fc+fm(Imax+1)=FS/2, we can 

compute an approximate maximum Modulation Index:   

 

 
1
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m

cS
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Where FS is the sampling-rate and fc is the carrier frequency. 

Thus, keeping the Modulation Index below this limit will not 

cause significant aliasing for sinusoidal FM. For non-sinusoidal 

carrier signals, fc should be replaced by their highest overtone 

frequency. We can use Imax to design a simple expression for a 

low-aliasing Modulation Index I’: 

 

 
max' ,0,I clamp I I   (33) 

 

An adapted bandwidth rule may be chosen for Exponential FM, 

estimating where sidebands fall below -80 dB peak value [7]: 

 

 )303.4(771.22
1)2ln(0 


mm

VV

cEFM VfefB m   (34) 

 

Where V0 is the DC term and Vm the time-varying amplitude of 

the modulation signal [7]:  

 

 )()( 0 tfVVtV mm    (35) 

 

5.2. Oversampling 

Another way to reduce aliasing is to oversample, i.e., perform 

frequency modulation at an N times higher sample-rate, and then 

downsample the result, which involves lowpass filtering and dec-

imation [10].  

 

Ideally we want a lowpass filter that suppresses frequencies 

above Nyquist at the target sample-rate, leaves the pass-band flat, 

and has a short transition-band. One way to design such a filter is 

through a linear-phase FIR, whose output is given by the convo-

lution: 
 

 




M

k

knxkhny
0

][][][
  (36) 

 

where h[k]  are the M+1 filter coefficients and  x[n] is the sam-

pled input signal [10]. The symmetric coefficients for a Win-

dowed-Sinc filter are: 

 

 ][
2/

))2/(2sin(
][ iw
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Mif
ih c






   (37) 

where fc is the normalized cutoff frequency, and w[i] is a window 

weighting function, such as Hamming or Blackman [10]. For 

i=M/2, h[i]=2fcw[i]. The final filter kernel h should be normal-

ized for unity gain. 

 

The number of coefficients is typically limited, so it is important 

to consider the normalized bandwidth of the transition-band, 

which approximately is BW=4/M [10]. So for an M of say 64 co-

efficients, at 16x oversampling, the transition-band becomes 

twice the size of the pass-band. Even if we adjust the cutoff fre-

quency by -BW/2, the roll-off is still too slow and we get just 

20 dB attenuation at Nyquist.  

 

One option is of course to use more coefficients, but that makes 

the filter more costly. That aside, doing filtering before decima-

tion is inherently ineffective, as we throw away N-1 samples that 

were just computed. A different approach is to decimate before 

filtering. This is made possible with a class of filters called poly-

phase filters [11].  

 

For downsampling by a factor N, a polyphase filter consists of N 

parallel chains of allpass filters, that each have a different phase-

response (Hence the term “polyphase”). The output is the sum of 

these allpass filters.  

 

While the filters can be realized for any factor using both FIR 

and IIR prototype filters, we will focus on a polyphase IIR deci-

mation by a factor of 2, as these are relatively cheap and can be 

cascaded to form any power of two decimation. The digital z-

domain transfer function for such a polyphase halfband filter is 

[11][12]: 
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  (38) 

 

where n is the order and a the K=(n-1)/2 allpass coefficients. 

This formula tells us that we have two chains of cascaded 1st or-

der allpass filters than process the input data interleaved. Hence 

the reason for using z-2 and the extra sample delay z-1. For a spec-

ified transition bandwidth (ωt) and stop-band attenuation (ds), the 

calculation of n and the coefficients is shown in, e.g., [11] and 

[12].  

 

For 16x oversampling, we can cascade log2(16)=4 polyphase 2x 

decimation filters [12] and compute the normalized transition 

bandwidth ft for each section backwards by ft[stage]=(ft[stage-

1]+0.5)/2 [12]: 
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While IIR filters have fewer coefficients, and thus lower runtime 

than FIR, they have a non-linear phase response and are more 

susceptible to quantization noise. Since the transition-band re-

quirements are less critical for the first few sections, de Soras 

suggests using FIR filtering there and only polyphase for the last 

pass (2x1x) [12]. 
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Figure 14: Polyphase Halfband Filter Frequency/Phase 

Response. 

 

The Frequency and Phase response of a 2x1x polyphase filter 

of order 25 with normalized transition-band of 0.01 and a stop-

band attenuation of 96 dB is shown in Figure 14. We observe 

that it has the wanted cutoff, attenuation and fast transition, al-

though with a non-linear phase response. 

 

6. CONCLUSION 

We have looked at FM synthesis in its many different forms. We 

have described the differences between Linear FM, Linear-

Through-Zero FM, PM and Exponential FM and listed some 

practical formulas.  

 

Most notably we have reviewed different techniques for correct-

ing the DC offset and detuning of Exponential FM, and derived 

analytic expressions that produce harmonic and in-tune results: 

Equations (19, 20, 21, 22). If the modulation function is known, 

this makes it possible to synthesize the classic sound of Exponen-

tial FM, without the need for manual retuning, making it easier to 

implement and use in a digital system.  

 

In addition we have derived an expression for the Exponential 

modulation depth V, equation (29), that makes it match the size 

of Linear FM, making it both easier to control and compare. 

 

The differences between Linear FM and Phase Modulation have 

also been discussed, and why Through-Zero oscillators are im-

portant for both Linear and Exponential FM. We have also brief-

ly touched on Feedback FM and its uses. Finally, we have ad-

dressed the aliasing problem, and reviewed ways to overcome it 

when implementing FM in a digital system. 

 

Many sound synthesis textbooks only touch on Chowning-style 

FM. However, once we dig deeper it becomes clear that Fre-

quency Modulation is a much broader subject, with lots of differ-

ent variations that still makes this complex synthesis technique 

interesting, many years after its discovery. This paper has shed 

some light on these variations, their individual pros and cons, 

and practical ways to implement them in a digital system.  
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