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ABSTRACT

A mechanical system is said to be bistable when its moving parts
can rest at two equilibrium positions. The aim of this work is to
model the vibration behaviour of a bistable system and use it to
create a sound effect, taking advantage of the nonlinearities that
characterize such systems. The velocity signal of the bistable sys-
tem excited by an audio signal is the output of the digital effect.
The latter is coded in C++ language and compiled into VST3 for-
mat that can be run as an audio plugin within most of the com-
mercial digital audio workstation software in the market and as a
standalone application. A Web Audio API demonstration is also
available online as a support material.

1. INTRODUCTION

When the first audio effects were introduced into the market, mu-
sicians, composers, filmmakers, and audio engineers started exper-
imenting with these gadgets obtaining new exotic and fascinating
sounds that would revolutionize music forever. Since then, many
enthusiasts have dedicated extensive hours to creating and synthe-
sizing new sounds that can be used for musical compositions and
for audiovisual productions. With the rapid development of the
computer industry and digitalization of analogue audio effects [1],
it has become even easier to experiment with them.

Many of these effects are using some nonlinear relation, which
is of no surprise. Indeed, many beautiful sounds created by mu-
sical instruments rely very often on a nonlinear mechanism. Self-
sustained oscillations in instruments like violins, flutes or trum-
pets, depend upon a severe nonlinearity [2, 3]. Even instruments
based on free oscillations can exhibit nonlinear behaviour, for in-
stance, due to vibrations of strings at large amplitude [4] or against
unilateral contact obstacle [5]. Percussion instruments like cym-
bals or gongs may even exhibit chaotic behaviour [6, 7], an ex-
treme form of nonlinear behaviour.

Many of the nonlinear digital audio effects are based on purely
mathematical models going from simple static or dynamic non-
linear functions [1] to more complicated block-oriented models
[8, 9]. Other nonlinear effects are based on physics [10, 11] or
on modern techniques such as deep learning [12] to imitate the
physics.

This work aims to study the main properties of bistable sys-
tems, that are described in section 2, and implement them into
a real-time digital audio effect (section 3) capable of generating
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unique sounds driven by the nonlinear features of the system. Bi-
stability, a phenomenon that arises in many real-world systems,
means that a dynamical system can have two stable equilibrium
states [13]. Such a system can lead to many kinds of nonlinear
behaviours [14] and consequently to many interesting effects that
can be implemented in digital domain.

2. BISTABLE SYSTEMS THEORY

This section describes the theory of bistable systems. It starts with
a brief introduction to monostable linear and nonlinear systems
with transitions into the bistable nonlinear systems and their prop-
erties. A mechanical prototype was build and video-recorded as
a pedagogical support for the theory. The bistable system is next
written in form of difference equations.

2.1. Bistable system properties

To understand what a bistable system is and how it works, one can
start with a simple one degree of freedom (1DOF) linear mass-
spring system (Fig. 1) with well known equations. It consists of
a mass m connected to the ground by a linear spring of stiffness
value k and a damper of value c. It is excited by an external force
f , and x is the displacement of the mass. The equation of motion
of such a system is [15]

mẍ+ cẋ+ kx = f(t), (1)

where x ≡ x(t) is a function of time and where ẋ and ẍ represent
the first and second time derivative, respectively. The resonance
frequency of such a system is expressed as

f0 =
1

2π

√
k

m
. (2)

m

k c

f x

Figure 1: Damped mass-spring system.
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Figure 2: Bistable system.

By introducing a nonlinear stiffness, the monostable linear
system can become nonlinear [16]. The equation that describes
such a system, called the Duffing equation [17], is

mẍ+ cẋ+ αx+ βx3 = f(t), (3)

where β is the nonlinear stiffness parameter. Such a system can
also be used to generate audio effects [18, 19].

A bistable system can be obtained by adjusting the values of
α and β in Eq. (3), as explained below. A 1DOF scheme of a
bistable system is shown in Fig. 2. The system is presented as a
mass attached by two fixed springs, whose free length l0 (length
of the spring when it is not under tension) is greater than the half-
width of the frame [13], i.e. l0 > d, a necessary condition for
this system to be bistable. This structure exhibits two equidistant
stable positions and an unstable region in between them. If l0 ≤ d
the system is monostable. The excitation force f in this system is
applied from the base, which generates a mass displacement as a
consequence.

The governing equation of motion of a bistable system is

mẍ+ cẋ− k1x+ k3x
3 = f(t), (4)

where f(t) is the excitation force, x defines the displacement of
the mass, m is the mass, c is the damping factor, and k1 and k3
determine the nonlinear stiffness. Note, that a bistable system is
a special type of the more general Duffing System with a negative
linear stiffness coefficient.

Essentially, the bistable system behaves as a monostable sys-
tem with a nonlinear stiffness (stiffness depending on displace-
ment) expressed as a polynomial in the terms −k1x+k3x

3, shown
in Fig. 3. The curve obtained represents the relationship between
the force f and mass displacement x of the system.

The elastic potential energy for the nonlinear stiffness, de-
termined by

∫
F (x)dx, where F (x) are the conservative forces

F (x) = −k1x+ k3x
3, is

PE = −1

2
k1 x

2 +
1

4
k3 x

4. (5)

stable equilibria

unstable equilibrium

Figure 3: Force Displacement Relationship of a bistable system.

The lowest points on the energy potential curve shown in Fig. 4
indicate the two stable positions of the system. It also shows that
the system is unstable in between these positions, and with a small
perturbation, it is forced to move to one of the stable positions.

It can be noted that the potential energy is maximum at the un-
stable position, which prompts the system to move towards stable
positions with minimal energy input. This is also a unique charac-
teristic of the bistable system.

stable equilibria

unstable equilibrium

Figure 4: Stored Potential Energy of a bistable system.

2.2. Steady State Dynamics of Bistable Systems

One of the main characteristics of bistable systems is the presence
of different steady-state dynamics resulting from the same excita-
tion conditions. Particularly, this means that the dynamics of the
system can exhibit different behaviour in two experiments, even if
the excitation conditions are the same. The specific dynamic that
occurs in the system is also dependent on the initial conditions.

Commonly, they can be grouped into two regimes, intrawell
and interwell oscillations. The intrawell oscillations occur when
the mass vibrates around one of the two stable positions. The in-
terwell oscillations occur when the mass vibrates across the un-
stable position. Figs. 5 and 6 show the expected behaviour of the
intrawell and interwell oscillations.
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low amplitude
intrawell displacement

high amplitude
intrawell displacement

Figure 5: Intrawell Oscillations of a bistable system.

low amplitude interwell displacement

high amplitude interwell displacement

Figure 6: Interwell Oscillations of a bistable system.

A system dynamic where the system moves from one stable
equilibrium to another crossing the unstable zero displacement po-
sition is called a snapthrough. Interwell oscillations are made of
these snapthroughs.

Some nonlinear systems can oscillate aperiodically when sub-
jected to sinusoidal excitations. In contrast with noise-induced be-
haviours, this characteristic is not random and can be determined
with the equation that describes the bistable system. An example
of this chaotic effect is shown in Fig. 7. In this figure, one can no-
tice chaotic fluctuations in the displacement around the stable (in-
trawell oscillations) and unstable position (interwell oscillations).

2.3. Mechanical Demonstrator

To support the above-mentioned theory, a mechanical demonstra-
tor was made and video recorded. The aim of this demonstrator
is purely pedagogical: to demonstrate the dynamics of a bistable
system by visualizing its motion through a real-world mechanical
system.

The demonstrator is made of a post-buckled beam with cen-
tral mass [20]. A rectangle cut out from a transparent plastic
sheet (hereafter referred to as the membrane) was assembled with
a metal washer, as shown in Fig. 8. To generate mechanical actua-

Figure 7: Chaotic Oscillations of a bistable system.

tion, an old speaker was salvaged, and the cone and surround were
removed. A 3D printed cylindrical cap is fitted with a clamping
mechanism made from wood. A 3D printed spider is used to keep
the actuating cylindrical cap in place and also to prevent the col-
lision of the coil former to sides of the magnet. The membrane is
fixed between two wooden clamps. When the loudspeaker is fed
with a signal, it makes the former clamp-cap assembly move and,
in turn, excites the bistable membrane.

The entire assembly is mounted on a wooden platform for bet-
ter stability. A video recording of this mechanical system demon-
strating the intrawell and interwell oscillations is available online
at https://ant-novak.com/bistable_effect [21].

bistable membrane

Figure 8: A picture of the mechanical prototype to demon-
strate the bistable system dynamics, video online at https:
//ant-novak.com/bistable_effect [21].

2.4. Bistable System Discretisation

Since the objective of this work is to implement a bistable system
in the digital domain we need to transform the governing differen-
tial equation of bistable system (Eq. (4)) to a difference equation.
This is done using difference equation approximation [22] by set-
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ting

x → x[n− 1] (6)

ẋ → x[n]− x[n− 1]

Ts
(7)

ẍ → x[n]− 2x[n− 1] + x[n− 2]

T 2
s

(8)

f(t) → f [n], (9)

where Ts is the sampling period.
The resulting difference equation of bistable system is

x[n] =
f [n−1]−A2x[n−1]−A3x[n−2]− k3x

3[n−1]

A1
,

(10)
where

A1 =
m

T 2
s

+
c

Ts
, (11)

A2 = −2m

T 2
s

− c

Ts
− k1, (12)

A3 =
m

T 2
s

, (13)

and where m is the mass, c is the damping, and k1 and k3 are
the linear and nonlinear stiffness, respectively. A1, A2 and A3 are
constants obtained from the finite differences method to solve the
differential equation numerically.

Note, that all the physical quantities, such as mass m, damp-
ing c, or stiffness k, are, for the sake of simplicity, chosen unit-less.
The digital input of the system f [n] (corresponding to the force),
as well as the digital outputs x[n] and ẋ[n] (corresponding to dis-
placement and velocity), are also unit-less variables.

The initial value of the memory variables x[n−1] and x[n−2]
determine the initial conditions of the system, according to

x[n− 2] = x0, (14)
x[n− 1] = ẋ0 · Ts + x0, (15)

where x0 and ẋ0 are the corresponding initial values for displace-
ment and velocity. For the sake of simplicity, the initial conditions
of the sound effect are set to zero.

Note also that the current implementation using difference equa-
tion approximation with a third-order polynomial necessarily in-
herits common problems related to discrete-time implementation
of non-linear analog systems. The non-linear cubic operation can
extend the bandwidth and cause non-linear aliasing. There are
methods that try to avoid these problems [23, 24] but since they
are beyond the scope of this paper, we keep the implementation
simple and suggest using high sample rates or oversampling meth-
ods if necessary.

3. BISTABLE DIGITAL AUDIO EFFECT

This section presents the main results of our work. First, the differ-
ence equations of the bistable system are implemented in Matlab
and are studied as a single-input, single-output nonlinear system.
The excitation force f [n] is used as the system input and the ve-
locity ẋ[n] is used as the output. Note that the displacement x[n]
(Eq. (10)) cannot be directly used as an output since the speak-
ers or headphones that would be used to reproduce it are monos-
table systems. To give an example, for very small amplitudes, the

bistable system stays around one of its stable positions, for exam-
ple x = +1. Therefore, the membrane of the loudspeaker that is
used to reproduce the output signal would be displaced from its
rest position (if a DC-coupled amplifier was used). This would
force the speaker to move like a bistable membrane, which could
cause unwanted distortion and potential damage to the speaker.
The loudspeaker membrane would be in an offset position even if
no input signal was provided.

Next, the steady-state dynamics, and potential energy, are stud-
ied with respect to the final audio effect and the choice of range of
parameters is explained. Finally, since the best way to evaluate the
effect of bi-stability as a digital audio effect is to listen to it, we pre-
pared two realizations of the digital audio effect: 1) a VST-plugin,
2) an online web audio applet. References to both are provided at
the end of this section.

The C++ code of the main core of the implemented digital
auido effect is provided in Appendix A.

3.1. Steady-state Dynamics

To excite the system described by Eq. (10) a harmonic signal
f [n] = F0 cos (ω nTs), with angular frequency ω = 1000 rad/s is
used. First, the intrawell oscillations are studied for F0 = 0.1 and
F0 = −0.6. The sign of F0 is chosen different to achieve positive
or negative stable positions.1 The damping is set to c = 10−3, the
linear and nonlinear stiffness coefficients are set to k1 = k3 = 1,
and the mass is set as m = k1/ω

2. It can be seen in Fig. 9 that
the system can exhibit the intrawell oscillations around one of the
stable positions (x = ±1).
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Figure 9: Intrawell bistable system dynamics.

In Figs. 10 and 11 the interwell oscillations of the bistable sys-
tem are shown. In this particular example, the linear and nonlinear
stiffness coefficients are set to k1 = k3 = 1, the damping coeffi-
cient c = 10−4, and the mass is set as m = k1/ω

2. In Fig. 10 the
periodic cases of the interwell oscillations are shown for low am-
plitude F0 = 0.3 (blue curve) and for high amplitude F0 = −10
(red curve). Setting the amplitude to F0 = 0.25 leads to an aperi-
odic interwell behaviour as shown in Fig. 11.

1Note that the positive or negative stable position can be achieved by
changing the initial conditions
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Figure 10: Interwell bistable system dynamics.
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Figure 11: Chaotic oscillations in the bistable system.

The most important factors that determine whether the system
oscillates with intrawell or interwell oscillations are k1 and k3.
When the values for k1 and k3 are low, it is easier for the system
to move between the stable positions as the stiffness is low and less
force is needed to move the mass. On the contrary, when k1 and
k3 are high, a greater force is required to move the mass between
the two stable positions.

3.2. Potential Energy and Force-Displacement Relationship

The variation of the potential energy of a bistable system with dis-
placement for different values of k1 and k3 is shown in Fig. 12.
To simplify the study, k1 is chosen equal to k3, and also to estab-
lish the stable equilibrium positions of the system at x = −1 and
x = 1 for all scenarios.

Another essential characteristic curve of the bistable system is
the Force-Displacement curve, shown in Fig. 13 for several values
of k1 = k3. It shows that as the stiffness of the system increases,

a large amount of force is required to move the system out of its
equilibrium positions.
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Figure 12: Potential energy in a bistable system.
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Figure 13: Force-Displacement curve of the bistable system.

3.3. Digital Effect Implementation

The digital audio effect is implemented using equations that gov-
erns the bistable effect, presented in section 2. The effect output is
the velocity ẋ[n] calculated using Eq. (7) and Eqs. (10-13). Note,
that the input signal of the effect (equivalent the to force), noted as
f [n − 1] in Eq. (10), is delayed by one sample. Since this delay
only adds latency to the effect with no other consequence, it can
be replaced by f [n].

The variable parameters that will allow the user to modify the
sound effect produced are : 1) input gain control, 2) resonance
frequency f0, 3) damping coefficient, 4) nonlinearity parameter, 5)
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output gain control. These parameters directly or indirectly modify
the variables m, c, k1, and k3. To simplify the effect’s tuning k =
k1 = k3 is called the nonlinearity parameter. This condition fixes
the stable positions of the system respectively at x = −1 and
x = 1. Therefore, by increasing the nonlinearity parameter, the
slope of the polynomial curve increases as well as the amount of
excitation amplitude required to move across the stable positions.

The resonance frequency parameter allows to adjust the sys-
tem’s resonance frequency, changing the pitch of the sound effect.
With the two parameters mentioned previously, the value for the
mass is computed from Eq. (2) using only the linear part of the
stiffness k = k1 assuming small displacements of the mass to
simplify the problem.

A damping parameter is included to control the amount of in-
terwell and intrawell oscillations. Increasing this parameter will
reduce sustaining oscillations of the effect and can even restrict
the mass from going through a snapthrough.

The final algorithm is adjusted for input and output signal lev-
els. The input signal f [n], being a digital signal with values be-
tween −1 and 1 is adjustable by the variable input Gain Control.
The output signal ẋ[n], proportional to velocity is first divided by
104 to get the output values near the values corresponding to a
digital signal between −1 and 1, and then adjusted by the variable
output Gain Control.

3.4. VST Plugin and Online Demo Application

To provide a possibility to play and listen the effect, we built two
applications. The fist one is a VST plugin, the second one is an
online web-audio application. Both are using the same parameters
as the ones described above.

The VST plugin is implemented using the JUCE Framework
[25]. The source code, as well as compiled versions for MacOSX
and Windows, are available online at https://ant-novak.
com/bistable_effect [21]. A print-screen of the final VTS
plugin is shown in Fig. 14.

Figure 14: Bistable Plugin User Guide Interface.

The online web demo application of the bistable audio effect
developed using the Web Audio API [26] is available at
https://ant-novak.com/bistable_effect [21]. Its
print screen is shown in Fig. 15. The input signal is a short loop
of a guitar sample. Several presets are available to select different
configurations. Another part of the demo application is a graph
that shows the shape of the nonlinear bistable curve to visualize in
real-time the state of the displacement-force relation. The two grey

circles added to this graph show the real-time envelope (maximum
and minimum) of the output displacement.

4. CONCLUSION

This work was a part of the master student project in the frame of
the International Master’s Degree in Electro-Acoustics (IMDEA)
program at the Le Mans University (France). Its goal was to im-
plement a bistable system, a system well known from nonlinear
dynamics and vibrations research, as a digital audio effect.

Bistability in systems is a complex subject to model and ana-
lyze, let alone, to successfully implement its principle into an au-
dio effect. On the other hand, the sounds obtained by this approach
are unique and rewarding, leaving a big window for future research
and development on the usage of these systems to develop sound
effects.

Even though the model is simple to write and implement, achiev-
ing a pleasant sound that could be used for sound effects is not
an easy task. Indeed, it is crucial to fully understand the opera-
tion points of this system to fine-tune its parameters and get the
most out of this particular system. For this, the force-displacement
curve gives the best insight into how the system performs.

Due to the presence of co-existing steady-state dynamics, the
output of a bistable system is different each time, even though the
same excitation parameters are used. The bistable effect has no
unique sound, but a wide variety of different sounds that depend
on the combination of its parameters.

Future work will be focused on application of more sophisti-
cated difference scheme such as energy-consistent numerical meth-
ods ([27]) or application of port-Hamiltonian approach [10]), and
the accuracy of the discretized bistable system in comparison with
the original continuous-time system.
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A. APPENDIX: C++ CODE

The following C++ code shows the main loop of the bistable effect
implementation.

for (int sample = 0; sample < buffer.getNumSamples(); sample++)
{

prepare_parameters();

// read the new sample (amplify input)
yL[0] = buffer.getSample(0, sample) * in_gain;
yR[0] = buffer.getSample(1, sample) * in_gain;

// displacementequation
xL[0] = (yL[1] - A2 * xL[1] - A3 * xL[2] - k * pow(xL[1], 3)) / A1;
xR[0] = (yR[1] - A2 * xR[1] - A3 * xR[2] - k * pow(xR[1], 3)) / A1;

// velocity (normalized by 10000)
vL = (xL[0] - xL[1]) / Ts * 0.0001;
vR = (xR[0] - xR[1]) / Ts * 0.0001;

// shif buffers
yL[1] = yL[0]; xL[2] = xL[1]; xL[1] = xL[0];
yR[1] = yR[0]; xR[2] = xR[1]; xR[1] = xR[0];

// write output data
channelData_L[sample] = vL * out_gain ;
channelData_R[sample] = vR * out_gain ;

}

where the function prepare_parameters() is defined as

void prepare_parameters(){
// angular frequency
Wn = 2.0f * MathConstants<float>::pi * Fn;

m = k / pow(Wn, 2); // mass

// parameters for dispalcementequation
A1 = m / pow(Ts, 2) + c / Ts;
A2 = (-2 * m) / pow(Ts, 2) - c / Ts - k;
A3 = m / pow(Ts, 2);

}
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