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ABSTRACT

In artificial reverb algorithms, gains are commonly varied over
time to break up temporal patterns, improving quality. We propose
a family of novel Schroeder-style allpass filters that are energy-
preserving under arbitrary, continuous changes of their gains over
time. All of them are canonic in delays, and some are also canonic
in multiplies. This yields several structures that are novel even in
the time-invariant case. Special cases for cascading and nesting
these structures with a reduced number of multipliers are shown as
well. The proposed structures should be useful in artificial reverb
applications and other time-varying audio effects based on allpass
filters, especially where allpass filters are embedded in feedback
loops and stability may be an issue.

1. INTRODUCTION

Manfred Schroeder’s work on artificial reverb in the 1960s [1,
2] introduced the “Schroeder” allpass filter (sometimes called the
“comb allpass”): a high-order, low-complexity allpass filter char-
acterized by the length of its single delay line and a single gain
coefficient. These are ubiquitous today. Schroeder allpass filters
are also commonly seen in “nested form,” following or preceding
the delay line(s) inside of comb filters [3,4], Feedback Delay Net-
works [5–8], or even another Schroeder allpass [2, 9–13]. Recent
work by Schlecht generalizes the Schroeder design, allowing the
allpass gain to be replaced by any stable filter whose magnitude
response is bounded by unity [14]. Time-varying 1st-order all-
pass filters (which can be considered a specific case of Schroeder
allpasses with a delay line length of 1) have also been explored
widely in digital audio effect and synthesizer design [8, 15–23].

Although reverb algorithms are almost always designed from
a linear time-invariant (LTI) prototype, it is common to vary gains
over time to break up resonances [3, 6, 9, 24–27]. It is essential
in varying these gains that the structure’s stability be preserved,
which can be accomplished by preserving the signal energy dur-
ing variation. Unfortunately, the Schroeder allpass filter has been
shown not to preserve energy as its coefficient is changed [6].

In this paper, we address this issue by introducing a novel fam-
ily of Schroeder-style allpass filters that are energy-preserving dur-
ing arbitrary and continuous change of their gain coefficient.

The rest of this paper is structured as follows. §2 reviews
Schroeder and 1st-order energy-preserving allpass filters. §3 pro-
poses a family of novel, energy-preserving, time-varying Schroe-
der allpass filters. §4 presents strategies for reducing the number
of multiplies in structures containing numerous proposed filters.
§5 shows the proposed filters in action. §6 concludes.
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2. PREVIOUS WORK

In this section we review the foundations of the proposed filter
structures in this paper: Schroeder-style allpass filters (§2.1), a
definition for the allpass property in the time-varying case (§2.2),
and Bilbao’s energy-preserving 1st order allpass filter (§2.3).

2.1. Classic LTI Schroeder allpass filters

M th-order Schroeder allpass filter have the transfer function

HM (z) =
Y (z)

X(z)
=

g + z−M

1 + gz−M
. (1)

Taking M = 1 gives the case of a 1st-order allpass filter. Evaluat-
ing the transfer function at z = e−jω

HM (e−jω) =
g + e−jωM

1 + ge−jωM
=

e−jωM
(
1 + ge+jωM

)
1 + ge−jωM

(2)

and noting that
∣∣e−jωM

∣∣ = 1 and
∣∣1 + ge+jωM

∣∣ = ∣∣1 + ge−jωM
∣∣

verifies that Schroeder allpass filters have unit magnitude response:

|HM (z)| = 1 −→ |X(z)| = |Y (z)| ,∀ω . (3)

Specifically, in this paper as with most audio applications, we are
concerned with the real-valued version with g = g ∈ R.

2.2. Energy-Preserving, Time-Varying Allpass

The z-transform cannot be used to characterize time-varying fil-
ters. This makes the standard frequency-domain definition of the
allpass property (3) impossible to apply. Therefore, we must in-
stead consider a property in the time-domain.

According to the discrete-time Parseval’s theorem

∞∑
n=−∞

|xn|2 =
1

2π

∫ π

−π

|X(ω)|2 dω ,

(3) implies, in the time-domain [8, p. 74] [15]:

||y.|| = ||x.|| , ∀xn (4)

where ||f.|| is the L2-norm (energy) of fn:

||f.|| =
( ∞∑

n=−∞

f2
n

)1/2

. (5)

Since the filter output’s energy is equal to the filter input’s energy,
we say that it is energy-preserving (or “lossless”). The property (4)
can be considered for time-varying systems as well. An energy-
preserving time-varying allpass filter should satisfy (4) for a time-
varying gain, and (3)–(4) for a non-time-varying gain (LTI case).
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Figure 1: Bilbao’s energy-preserving allpass filter (M = 1) and
the normalized (type V) proposed structure (M ≥ 1).

2.3. Bilbao’s time-varying allpass

In [15], Bilbao proposed several special allpass filters that fulfill
property (4). Here we review one which consists of two blocks.

First: A 1-sample delay1, of signal un

wn = un−1 . (6)

Since it is just a shift of the time index, it is simple to verify

||w.|| = ||u.|| , (7)

so a 1-sample delay is norm-preserving.
Second: An orthogonal matrix multiplication2 of the vector[

xn wn

]⊤ (input xn and delay-line output wn) by matrix Πn[
yn
un

]
=

[
gn

√
1− g2n√

1− g2n −gn

] [
xn

wn

]
, (8)

producing vector
[
yn un

]⊤ (filter output yn and delay-line input
un). This verifies

||x.||+ ||w.|| = ||y.||+ ||u.|| (9)

by the definition of Πn’s orthogonality. The matrix’s orthogonal-
ity can easily be seen since Π⊤

nΠn = I, where I is the 2 × 2
identity matrix.3 Fig. 1 shows a block diagram of this structure.

By subtracting (7) from (9), we recover (4), showing that the
structure is energy-preserving. In the special case of a fixed coeffi-
cient gn = g ∀n, this filter has a standard allpass transfer function

HBilbao(z) =
Y (z)

X(z)
=

g + z−1

1 + gz−1
. (10)

3. PROPOSED EXTENSIONS

In this section, we will propose a number of extensions to Bilbao’s
design, which yield a family of new energy-preserving allpass fil-
ter structures. These new structures exploit two main insights:

1. Energy preservation remains valid if the unit delay is re-
placed by any L2-norm-preserving block,

2. Besides four scalar multiplies, there are many ways to im-
plement the orthogonal matrix multiply Πn.

1Bilbao [15] uses the Wave Digital Filter (WDF) formalism [28, 29] in
his article, where (6) can be interpreted as a WDF model of a capacitor.

2In WDF terms, (8) is a 2-port power-wave parallel junction [15,28,29].
3Considering the delay as a particular case of a time-varying reactance

with the formalism used in [47], this is a power-wave simulation using Fet-
tweis’ time-varying reactance model. We might wonder if the flexibility
in time-varying reactance modeling provided by [47] and wave variable
choice provided by [29] might produce alternate structures similar to Bil-
bao’s design. However, they appear not to.

The first insight allows us to create more complex energy-
preserving allpass filters. Specifically, we focus on building high-
order, low-complexity (few multipliers) Schroeder-style allpass fil-
ters commonly used in audio processing, especially artificial re-
verb and more complex nested allpass filters [9–13], both of which
enjoy the same energy-preservation property.

The second insight allows us to propose a large class of struc-
tures for implementing a given time-varying allpass filter design,
including some that are canonic in both delays and multipliers.
These structures all have the same time-varying behavior, but dif-
ferent implementation tradeoffs. In addition to the novelty of en-
suring energy preservation in these structures, many of these struc-
tures have not been seen in the LTI Schroeder allpass context or
even the LTI 1st-order allpass context.

To present these findings, we will first discuss the algorithm’s
building blocks (§3.1), give a recipe for assembling structures from
those blocks (§3.2), and finally comment on these structures (§3.3).

3.1. Building blocks

On top of generalizing Bilbao’s design in these ways, we can also
generalize how the multiplication by orthogonal matrix Πn is im-
plemented. That is, we will use different arrangements of adds,
multiplies, and sign flips to implement that matrix multiplication.

Fig. 2 shows the building blocks of the proposed method:

1. A direct implementation of the multiplies in a two-port4 Λn

is shown in Fig. 2a. Nine specific ladder/lattice two-ports
are shown in Figs. 2b–2j. These two-ports are parameter-
ized by a time-varying gain −1 < gn < +1. Schroeder’s
original designs allow the gain gn to go all the way to the
extremal values (−1 ≤ gn ≤ +1). However, that leads to
marginally stable filters even in the LTI case, and here leads
to multiplier values of ±∞, so we enforce gn ̸= ±1.

2. A “transformer” pair of reciprocal multiplies with two-port
matrix Ξn =

[
0 1/ξn
ξn 0

]
is shown in Fig. 2k; the transform-

ers multipliers are shaded throughout just to make them eas-
ier to identify in the structures.

3. Finally, the length-M delay line is shown in Fig. 2l.

The nine two-ports come from the classic ladder/lattice syn-
thesis literature [30–32] and simple generalizations. The original
is the “Kelly-Lochbaum” 4-multiply [33] (Fig. 2c); we also con-
sider its transpose (Fig. 2d). The 3-multiply (Fig. 2e) was intro-
duced in ladder filter synthesis [31]; we also consider its transpose
(Fig. 2f). Simpler still are the 2-multiply “lattice” two-port [31]
(Fig. 2g) and its transpose [34] (Fig. 2h) which implement the
same matrix multiplication as the 3-multiply and its transpose.
Next is the 1-multiply (Fig. 2i) and its transpose [31] (Fig. 2j),
which each involve a sign flip and implement the same matrix mul-
tiplication as the 4-multiply and its transpose.5 Finally, we have
the power-normalized two-port [32] (Fig. 2b).

All nine two-ports can be described with five different types
of Λn (Fig. 2a). Each type except the power-normalized has two
implementations. The multipliers λ11,n, λ12,n, λ21,n, and λ22,n

for each type are given in Tab. 1. Notice that λ11,n = +gn and
λ22,n = −gn for all types. The transformer Ξn needed to create
an orthogonal matrix Πn is shown as well. Notice that for trans-
posed structures, λ12,n and λ21,n swap places, and ξn is inverted.

4“Two-ports” are blocks with two pairs of inputs and outputs.
5In the literature these have opposing “sign parameters.” We will call

them transposes for consistency with the other types.
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√
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−gn
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n

+gn
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+

+
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−gn
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+

+
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−gn

1 + gn

+gn
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+

+

−gn

1 − g2
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+gn
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+

+

1 − g2
n

−gn+gn
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+

+

−gn

+gn
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+

+

−gn

+gn
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+ +
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(l) M Delays.

Figure 2: Building blocks of the proposed algorithm, including ladder/lattice two-ports, transformer, and delay line.

Table 1: Two-port entries, corresponding transformer gains and inverses, and difference equation coefficients for unnormalized structures.

two-port Λn entries transformer mult. & inverse Un-corrected difference equation coefficients

name type λ11,n λ12,n λ21,n λ22,n ξn 1/ξn b0,n bM,n aM,n

1- & 4-mult. III +gn 1− gn 1 + gn −gn
√

1−gn
1+gn

√
1+gn
1−gn

+gn
1−gn

1−gn−M
gn−M

1−gn
1−gn−M

1- & 4-mult⊤ IV +gn 1 + gn 1− gn −gn
√

1+gn
1−gn

√
1−gn
1+gn

+gn
1+gn

1+gn−M
gn−M

1+gn
1+gn−M

2- & 3-mult. I +gn 1− g2n 1 −gn
√

1− g2n 1/
√

1− g2n +gn
1−g2n

1−g2
n−M

gn−M
1−g2n

1−g2
n−M

2- & 3-mult.⊤ II +gn 1 1− g2n −gn 1/
√

1− g2n
√

1− g2n +gn 1 gn−M

Normalized V +gn
√

1− g2n
√

1− g2n −gn 1 1 +gn

√
1−g2n

1−g2
n−M

gn−M

√
1−g2n

1−g2
n−M

3.2. Recipe

Our strategy is to augment one of the two-ports (Λn, Fig. 2b–
2j) with an appropriate “transformer” pair of reciprocal multiplies
(Ξn, Fig. 2k). With the correct transformer coefficient ξn, this
structure implements the same matrix multiplication as Πn. Fi-
nally, by terminating this two-port on a length-M delay line (Fig. 2l),
we create an energy-preserving Schroeder allpass filter.

An orthogonal two-port Πn is formed by cascading trans-
formers and ladder/lattice two-ports in one of two orientations, as
shown in Figs. 3a/3b. In general, two-ports do not commute—this
is a special property of Ξn. A proof given in Appendix A yields

Πn =

[
λ11,n λ12,n/ξn

λ21,nξn λ22,n

]
, (11)

showing that, regardless of whether the transformer Ξn is inside
or outside the ladder section Λn, the result is a scattering matrix
Πn whose off-diagonal entries π12 and π21 are scaled down and
up respectively by the transformer parameter ξn.

The resulting proposed filter structures are shown in Fig. 4.
The power-normalized (type V) structure was already shown in
Fig. 1 and has no distinction between transformer locations.

Each filter’s time-varying difference equation has the form

yn = b0,nxn + bM,nxn−M − aM,nyn−M . (12)

Without the transformer, the 17 structures have 5 distinct differ-
ence equations, with coefficients given in the last three columns
of Tab. 1. Once the normalizing transformer is added, all 17 have
the same difference equation as the normalized (type V) case. We

will not pursue this implementation further, nor any others involv-
ing gn−M , since the need for access to previous multiplier values
in computing aM,n and bM,n at least doubles the number of de-
lay registers needed, compared to the traditional Schroeder allpass
filters (from M to 2M , or more if the coefficients themselves are
delayed instead of g, or it is implemented in direct form). In con-
trast, all of the filter structures discussed in the rest of this paper
are canonic in delays.

3.3. Discussion of proposed structures

None of the 16 structures shown in Fig. 4, nor the structure in
Fig. 1 with M ̸= 1, appear to have been reported before. The im-
plementation costs of each filter structure—in terms of multiplies
(×), adds (+), sign inversions (inv.), and delay registers (T )—are
shown in Tab. 2. The 2-multiplier and its transpose have the same
cost as the normalized structure. The 3- and 4-mutliplier struc-
tures and their tranposes are more expensive. The 1-multiplier and
its transpose have the fewest multiplies, although they require an
extra add and a sign inversion compared to the other structures.

It’s likely that the most interesting structures are those with
the lowest cost (1-mult.(⊤)) and those resembling the common LTI
embodiment (2-mult.(⊤)). It could be interesting to study the over-
flow, noise, and sensitivity of the different designs, but it is beyond
the scope of the current study. Stilson’s work on studying the dif-
ferent LTI allpass forms could be a guide [34].

By ignoring the reciprocal transformer multiplies, we obtain
a family of 9 different LTI allpass filter structures (not 17, since
the transformer “inside”/“outside” distinction does not apply in the

DAFx.3

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

244



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

M

1/ξn

ξn

[Πn]

[Λn] [Ξn]
xn

yn

un

wn

(a) Transformer “inside.”

M

1/ξn

ξn

[Πn]

[Λn][Ξn]
xn

yn

un

wn

(b) Transformer “outside.”

Figure 3: Two ways of forming an energy-preserving allpass filter
from a two-port Λn, transformer Ξn, and length-M delay line.

LTI case). Several of these were known in the literature already.
The original Schroeder allpass was a 3-mult. version (Figs. 4i/j,
w/o transformers). 2-mult. versions were used, e.g. in the “Samp-
son box” at CCRMA [40–42]; these are the versions (Figs. 4e–h,
w/o transformers) most commonly encountered in the literature
today [5, 9, 39]. It appears not to be very well-known, but Moorer
also proposed a 1-multiply variant [43] (Figs. 4a/b, w/o transform-
ers). Figs. 4c/d, k/l, and m/n appear to be novel.

Taking M = 1, certain 1st-order versions of these structures
are known in the literature. Figs. 4a–d arise as a consequence of
the “multiplier extraction” method [44]. Figs. 4e/f are known [8,
45]. Figs. 4g/h have been studied for their scaling properties [34].

4. SPECIAL CASES WITH FEWER MULTIPLIES

We have derived energy-preserving versions of all known forms of
the basic Schroeder allpass filter (and a few apparently unknown
ones), which can be nested and cascaded while still retaining their
energy preservation property. In this section, we will point out
some special cases that form particularly efficient (in the sense
of having few multiplies) filter structures: Cascades with identi-
cal and inverse gains (§4.1) and up to four distinct gains (§4.2), a
“leapfrog” multiplier-sharing arrangement (§4.3), nestings (§4.4),
and a strategy based on periodic modulation (§4.5). None of these
proposed strategies put any restrictions on delay line lengths.

4.1. Identical- and inverse-multiplier cascades

For the filter structures with the transformer “outside,” the trans-
former multiplies ξ21,n = ξn and ξ12,n = 1/ξn appear outside
of any feedback loop as multiplications just after the input and
just before the output, respectively. This means that when two of
the proposed filters which have identical allpass gains gn are cas-
caded, the reciprocal multiplies ξn and 1/ξn cancel out, saving
two multiplies. This property holds true for any of the four un-
normalized types: I–IV. It does nothing for the normalized case,
however, since in that case ξn = 1/ξn = 1.

Although this is a special case, it is apparently an extremely
common one. Most reverbs in the literature which employ Schroe-
der allpasses use identical gains for each one. A summary of the
number of allpasses with identical gains in cascade for various re-
verbs is shown in Tab. 3. In Dattorro’s plate reverb [39], each pair
of “decay diffusers” has identical gains; however since they are not
adjacent, this trick could not be used there.

For 2/3-multiply (type I) cases and their transposes (type II),
this property also holds whenever gi+1,n = −gi,n. This type

Table 2: Implementation costs of proposed filter structures.

name type × + inv. T total op.

1-mult. / 1-mult.⊤ III / IV 3 3 1 M M + 7
2-mult. / 2-mult.⊤ I / II 4 2 0 M M + 6
3-mult. / 3-mult.⊤ I / II 5 2 0 M M + 7
4-mult. / 4-mult.⊤ III / IV 6 2 0 M M + 8
normalized V 4 2 0 M M + 6

Table 3: Summary of cascaded allpasses with identical gains in
reverbs. # AP denotes the number of allpasses in cascade and how
many times that cascade appears in the structure. Gain(s) g lists
the gains that are used in each cascade.

author name # AP gain(s) g

Manfred Schroeder [1] “colorless” 2 0.7
Perry Cook [35] PRCREV 2 0.7
John Chowning [8] JCREV 3 0.7
John Chowning [8] SATREV 3 0.7
Michael McNabb [36] NREV 3 0.7
Jezar Wakefield [8] Freeverb 4 0.5
Keith Barr [37, 38] FV-1 demo 2(×4) 0.5
Jon Dattorro [39] Plate 2(×2) 0.75, 0.625
William Gardner [9] Large Room 2(×2) 0.3, 0.2

of design occurs, e.g., in another one of Schroeder’s original re-
verbs [1], which has 5 allpasses in cascade with identical gains, up
to a sign flip: +0.7, −0.7, +0.7, +0.7, +0.7.

In certain cases, we can also eliminate pairs of multiplies by
alternating g’s sign as well as alternating between 1-mult.(⊤) im-
plementations (type III/IV). If stage i is type III (resp. IV), switch-
ing to type IV (resp. III) in stage i+1 allows the pair of multiplies
to be eliminated when gi+1,n = −gi,n. However, no such prop-
erty holds for the 2/3-multiply (type I) or its transpose (type II).

Outside the reverb context, a cascade of many identical 1st-
order allpasses can be used in string modeling [16]. This previ-
ously cost 4 multiplies per sample of maximum delay: 4N for N
stages. The proposed method reduces this down to N+2, using 1-
mult. or 1-mult.⊤, cutting (3N −2)/4N ≈ 75% of the multiplies.
The example in [16] has N = 126, so here the proposed method
would yield significant savings: 376 multiplies per time step.

4.2. More general cascades

A more elaborate generalization of this property allows for non-
identical gains. Recalling Tab. 1 and that the multiplier cancella-
tion property comes from ξn being identical in two adjacent stages
(satisfied automatically for identical topologies), notice that the
multiplier cancellation can also be achieved in certain cases by
choosing two different topologies and values for g.

Tab. 4 shows a set of functions, ftypei+1,typei(), which choose
a multiplier-saving gain gi+1,n for stage i + 1 based on the gain
gi,n of stage i. f±

III,I, f
±
III,II, f

±
IV,I, and f±

III,II are multifunctions with
positive and negative branches.

Several cases are degenerate in one way or another. First, there
is no combination of gi,n and gi+1,n that allows transitioning to
or from the power-normalized topology (type V). Second, fI,II and
fII,I have domains and ranges of {0}—they are only valid for the
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name type transformer “inside” transformer “outside”

1-multiplier III + + +M

−1

+gn

√
1+gn
1−gn

√
1−gn
1+gn

xn yn

(a)

+ + +M

−1

√
1+gn
1−gn +gn

√
1−gn
1+gn

xn yn

(b)

1-multiplier⊤ IV + + +M
+gn

−1

√
1−gn
1+gn

√
1+gn
1−gn

xn yn

(c)

+ + +M

√
1−gn
1+gn +gn

−1
√

1+gn
1−gn

xn yn

(d)

2-multiplier I + +M

−gn

+gn

√
1−g2

n 1
/√

1−g2
n

xn yn

(e)

+ +M

−gn

+gn
√

1−g2
n

1
/√

1−g2
n

xn yn

(f)

2-multiplier⊤ II + +M

−gn

+gn

1
/√

1−g2
n

√
1−g2

n
xn yn

(g)

+ +M

−gn

+gn

1
/√

1−g2
n

√
1−g2

n
xn yn

(h)

3-multiplier I + +M

√
1−g2

n 1
/√

1−g2
n

1 − g2
n

−gn

+gn

xn yn

(i)

+ +M

√
1−g2

n

1
/√

1−g2
n

1 − g2
n

−gn

+gn

xn yn

(j)

3-multiplier⊤ II + +M

√
1−g2

n1
/√

1−g2
n

1 − g2
n

−gn

+gn

xn yn

(k)

+ +M

1
/√

1−g2
n

√
1−g2

n

1 − g2
n

−gn

+gn

xn yn

(l)

4-multiplier III + +M

√
1−gn
1+gn

1 + gn 1 − gn

√
1+gn
1−gn

−gn

+gn

xn yn

(m)

+ +M

√
1−gn
1+gn 1 + gn 1 − gn

√
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Figure 4: Proposed allpass filter structures.

useless case of gi,n = 0, ∀n (a trivial cascade of two pure delay
lines). Also, not all gains gi can be mapped to a compatible gi+1,
restraining the valid domain of the different f()

For example, starting with g0,n = 0.7 can yield a cascade:

type I: g0,n = +0.7

type III: g1,n ≈ +0.3245 = fI,III(g0,n)

type IV: g2,n ≈ −0.3245 = fIII,IV(g1,n)

type I: g3,n = −0.7 = f−
IV,I(g2,n) .

This example illustrates two interesting properties. First, due to the
need for compatible domains and ranges between stages, type I and

type II structures cannot both appear in the same multiplier-saving
cascade, even if separated by other types. Second, the technique
described here never leads to more than four distinct gain values.

4.3. Leapfrog cascade

In cases where adjacent allpass stages with identical gains also lead
to adjacent branch points or sums, pairs of multiplies from adja-
cent stages can be combined to lower the total multiplier count,
sometimes all the way down to N + 3 for a cascade of N stages.

An example of this and the cascade type of multiplier reduc-
tion (§4.1) is shown in Figs. 5–6. Fig. 5 shows a cascade of four
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Figure 5: Cascade of four 2-mult. (outside) allpass filters with identical time-varying gains gn and different delays Mi, i ∈ {0 · · · 3}.

+ +M0

−gn·

+gn

+ +M1

−gn·

+gn

+ +M2

−gn·

+gn

+ +M3

−gn·

+gn
√

1−g2
n

1
/√

1−g2
n

xn yn

(a) Eliminating reciprocal 1/ξi,n and ξi+1,n, i ∈ {0 · · · 2}.
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(b) Combining +gi,n and −gi+1,n, i ∈ {0 · · · 2}.

Figure 6: Simplifying a cascade of several Schroeder allpasses.

energy-preserving 2-mult. Schroeder allpasses. Fig. 6a shows the
result of eliminating reciprocal multiplies. Fig. 6b shows the re-
sult of combining multiplies from adjacent stages. Note that in
Fig. 6b, the even-numbered stages have been flipped vertically to
keep the signal flow graph planar and easy to read. This structure
resembles the classic “Leapfrog” filter topology from active filter
synthesis [46]. Interestingly, besides the presence of the multiplies
accomplishing the energy normalization, this and the same idea
applied to 2-mult.⊤yield identical structures to the “delay-sharing”
allpass cascades proposed by Mitra and Hirano [44].

4.4. Nested allpass filters

In nesting structures [9–13] with identical allpass gains, we can
also eliminate multiplications. To expose transformer multipliers
to their inverses, we must alternate between “inside” and “outside”
structures as we nest. In a realizable nested structure, the delay line
is replaced with the cascade of one or more Schroeder allpasses
and at least a one-sample delay. This means that one of the two
pairs of reciprocal multipliers are not actually adjacent, only giving
us the chance to save 1 multiplier per nesting, not 2.

4.5. Periodic gain modulation

A somewhat restrictive way to save multiplies is to only modulate
the gains by certain periodic functions. When gn is periodic in M ,
i.e., gn = gn−M , ∀n, the two transformer multiplies cancel out
and hence can be eliminated, saving two multiplies. This can be
seen by considering the “inside” proposed structures (Fig. 4). An
equivalent filter is obtained by “pushing” ξn to the right through
the length-M delay line, giving a composite multiplier ξn−M/ξn,
which equals 1 (cancels out) when gn is periodic in M .

5. CASE STUDY

Fig. 7a shows one proposed filter and delay Mfb inside a feedback
loop. Feeding the system a single impulse, we expect the energy
stored in the structure (1.0) to stay constant over time. The simula-
tions are performed in GNU Octave, which uses double precision
floating point numbers, using a sampling rate of fs = 44,100 Hz,
delay line lengths of Map = 11 and Mfb = 101, and gain gn drawn
randomly from uniform distribution U(−0.999,+0.999) over the
10 second simulation. The plotted value en is the deviation of the
signal energy in the two delay lines from 1.0

en = 1.0−

√√√√Map∑
m=1

u2
ap,n−m +

Mfb∑
m=1

u2
fb,n−m , (13)

where uap,n−m and ufb,n−m are the mth samples in the delay lines.
Fig. 7b shows the energy error en for each of the structures.

The absolute error is shown on the left-side axis; it is very small, on
the order of 10−15. In fact, the quantization to machine precision
is visible. The spacing between representable numbers is called
machine epsilon, ε(e). For e ∈ [1.0, 2.0[, ε(e) ≈ 2.2204×10−16;
for e ∈ [0.5, 1.0[, ε(e) ≈ 1.1102× 10−16. The error, normalized
to ε(e), is shown on the right-side axis. This shows that the en-
ergy is preserved to machine precision, only picking up tens of εs
over a 10 second (4.41 × 105 samples) simulation under strenu-
ous coefficient variation. Each structure’s average, minimum, and
maximum for the simulation are given in Tab. 5.

6. CONCLUSIONS

We presented a family of 17 high-order Schroeder-style allpass fil-
ters which are canonic in delays and require (independent of filter
order) a low number of adds (2 or 3), multiplies (3–6), and sign
flips (0 or 1). No matter how the gain gn parameterizing these fil-
ters is varied over time, these filters retain their energy preservation
property. They also provide many alternatives for LTI implemen-
tations of the classic Schroeder filter. We also presented strate-
gies for cascading and nesting them to reduce the total number of
multiplies. These should be useful in various artificial reverb, dig-
ital audio effect, and sound synthesis applications which employ
Schroeder allpass filters or 1st-order allpass filters.
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Table 4: Setting the gain gi+1,n of the (i+ 1)th stage to ensure that reciprocal multiplies can be eliminated, in terms of the previous (ith)
stage’s gain gi,n. (Multi)function domains and ranges are shown as {domain} −→ {range} if different from ]−1,+1[.

filter structure for the (i+ 1)th stage

fil
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type I type II type III type IV
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Figure 7: Test of time-varying allpass filter in feedback loop. In the
block diagram, the 2-mult. “inside” case is shown as an example.

8. REFERENCES

[1] M. R. Schroeder and B. F. Logan, “ ‘Colorless’ artificial reverbera-
tion,” IRE Trans. Audio, vol. 9, no. 6, pp. 209–214, Nov./Dec. 1961.

[2] M. R. Schroeder, “Natural sounding artificial reverberation,” J. Au-
dio Eng. Soc., vol. 10, no. 3, pp. 219–223, July 1962.

[3] R. Väänänen, V. Välimäki, J. Huopaniemi, and M. Karjalainen, “Ef-
ficient and parametric reverberator for room acoustics modeling,” in
Proc. Int. Comput. Music Conf., Thessaloniki, Greece, Sept. 1997.

[4] R. Väänänen, “Efficient modeling and simulation of room reverber-
ation,” MSc. thesis, Helsinki Univ. Technology, Finland, June 1997.

[5] L. Dahl and J.-M. Jot, “A reverberator based on absorbant all-pass
filters,” in Proc. COST G-6 Conf. Digital Audio Effects, Verona,
Italy, Dec. 2000.

[6] S. J. Schlecht and E. A. P. Habets, “Time-varying feedback matrices
in feedback delay networks and their application in artificial rever-

Table 5: Error summary of 10 second test. Averages, minimums,
and maximums (each ×10−16) for all 17 structures.

Name Avg. Min Max Name Avg. Min Max

1-mult., in. −3.3 −15.5 −8.9 1-mult., out. 13.6 −32.2 4.4
1-mult.⊤, in. 8.4 −4.4 24.4 1-mult.⊤, out. 13.8 −2.2 26.6
2-mult., in. 9.8 −5.6 22.2 2-mult., out. 6.3 −7.8 22.2
2-mult.⊤, in. 10.0 −2.2 22.2 2-mult.⊤, out. 11.2 −4.44 26.7
3-mult., in. 9.8 −5.6 22.2 3-mult., out. 6.3 −7.8 22.2
3-mult.⊤, in. 10.0 −2.2 22.2 3-mult.⊤, out. 11.2 −4.4 26.7
4-mult., in. −5.7 −17.8 4.4 4-mult., out. 10.1 −7.8 22.2
4-mult.⊤, in. 1.5 −7.8 13.3 4-mult.⊤, out. 2.2 −16.7 22.2
Normalized −4.9 −14.4 8.9

beration,” J. Acoust. Soc. Am., vol. 138, no. 3, pp. 1389–1398, Sept.
2015.

[7] M. A. Gerzon, “Unitary (energy-preserving) multichannel networks
with feedback,” Electron. Lett., vol. 12, no. 11, pp. 278–279, May
1976.

[8] J. O. Smith III, Physical audio signal processing for virtual musical
instruments and audio effects, W3K Pub., 2010.

[9] W. G. Gardner, Applications of digital signal processing to audio
and acoustics, ch. Reverberation algorithms, pp. 85–131, Kluwer,
New York, 2002, Ed. M. Kahrs and K. Brandenburg.

[10] V. Kot, “Digital sound effects echo and reverb based on non-
exponentially decaying comb filter,” in Proc. 14th Europ. Signal
Process. Conf., Florence, Italy, Sept. 2006.

[11] H. H. Lee, T. H. Kim, and J. S. Park, “Design of a digital artificial
reverberation system using a dual all-pass filter,” J. Audio Eng. Soc.,
vol. 57, no. 3, pp. 121–130, Mar. 2009.

[12] M. R. Bai and H. Chen, “Comparative study of optimal design strate-
gies of reverberators,” Open Acoust. J., vol. 2, pp. 31–44, 2009.

[13] J. h. Ahn and R. Dudas, “Musical applications of nested comb filters
for inharmonic resonator effects,” in Proc. Int. Comput. Music Conf.,
Perth, Australia, Aug. 2013, pp. 226–231.

[14] S. J. Schlecht, “Frequency-dependent Schroeder allpass filters,”
Appl. Sci., vol. 10, no. 1, 2020, Article #187.

[15] S. Bilbao, “Time-varying generalizations of allpass filters,” IEEE
Signal Process. Lett., vol. 12, no. 5, pp. 376–379, May 2005.

[16] J. Pakarinen, M. Karjalainen, V. Välimäki, and S. Bilbao, “Energy
behavior in time-varying fractional delay filters for physical model-
ing synthesis of musical instruments,” in Proc. Int. Conf. Acoust.
Speech Signal Process., Philadelphia, PA, Mar. 2005, pp. 1–4.

[17] J. Pekonen, “Coefficient-modulated first-order allpass filter as dis-
tortion effect,” in Proc 11th Int. Conf. Digital Audio Effects, Espoo,
Finland, Sept. 2008, pp. 83–87.

DAFx.7

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

248



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

[18] V. Välimäki, J. S. Abel, and J. O. Smith, “Spectral delay filters,” J.
Audio Eng. Soc., vol. 57, no. 7/8, pp. 521–531, July/Aug. 2009.

[19] J. Pekonen, V. Välimäki, J. S. Abel, and J. O. Smith, “Spectral delay
filters with feedback and time-varying coefficients,” in Proc. 12th
Int. Conf. Digital Audio Effects, Como, Italy, Sept. 2009, pp. 157–
164.

[20] J. Kleimola, J. Pekonen, H. Penttinen, V. Välimäki, and J. S. Abel,
“Sound synthesis using an allpass filter chain with audio-rate coef-
ficient modulation,” in Proc. 12th Int. Conf. Digital Audio Effects,
Como, Italy, Sept. 2009, pp. 305–312.

[21] J. Kleimola, Nonlinear abstract sound synthesis algorithms, Ph.D.
diss., Aalto Univ., Helsinki, Finland, 2013.

[22] J. Timoney, J. Pekonen, V. Lazzarini, and V. Välimäki, “Dynamic
signal phase distortion using coefficient-modulated allpass filters,”
J. Audio Eng. Soc., vol. 52, no. 9, pp. 596–610, Sept. 2014.

[23] G. Surges, T. Smyth, and M. Puckette, “Generative audio systems
using power-preserving all-pass filters,” Comput. Music J., vol. 40,
no. 1, pp. 54–69, Spring 2016.

[24] J. O. Smith, “A new approach to digital reverberation using closed
waveguide networks,” in Proc. Int. Comput. Music Conf., Burnaby,
Canada, Aug. 1985, pp. 47–53.

[25] T. Lokki and J. Hiipakka, “A time-variant reverberation algorithm
for reverberation enhancement systems,” in Proc. COST G-6 Conf.
Digital Audio Effects, Limerick, Ireland, Dec. 2001.

[26] T. Choi, Y. C. Park, and D.-H. Youn, “Design of time-varying re-
verberators for low memory applications,” IEICE Trans. Inf. Systm.,
vol. E91-D, no. 2, pp. 379–382, Feb. 2008.

[27] S. J. Schlecht and E. A. P. Habets, “Reverberation enhancement sys-
tems with time-varying mixing matrices,” in Proc. 59th Int. Conf.
Audio Eng. Soc., Montreal, Canada, July 2015.

[28] A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE,
vol. 74, no. 2, pp. 270–327, Feb. 1986.

[29] K. J. Werner, Virtual analog modeling of audio circuitry using wave
digital filters, Ph.D diss., CCRMA, Stanford Univ., CA, Dec. 2016.

[30] J. D. Markel and A. H. Gray Jr., Linear prediction of speech,
Springer-Verlag, Berlin, Germany, 1976.

[31] A. H. Gray Jr. and J. D. Markel, “Digital lattice and ladder filter
synthesis,” IEEE Trans. Audio Electroacoust., vol. 21, no. 6, pp.
491–500, Dec. 1973.

[32] A. H. Gray Jr. and J. D. Markel, “A normalized digital filter struc-
ture,” IEEE Trans. Acoust., Speech, Signal Process, vol. 23, no. 3,
pp. 268–277, June 1975.

[33] J. L. Kelly and C. C. Lochbaum, “Speech synthesis,” in Proc. 4th
Int. Cong. Acoust., Copenhagen, Denmark, Sept. 1962, pp. 1–4.

[34] T. S. Stilson, Efficiently-variable non-oversampled algorithms in
virtual-analog music synthesis—a root-locus perspective, Ph.D.
diss., CCRMA, Stanford Univ., CA, June 2006.

[35] P. R. Cook and G. P. Scavone, “PRCRev class reference,” online,
1995, https://ccrma.stanford.edu/software/stk/
classstk_1_1PRCRev.html.

[36] B. Schottstaedt, “CLM,” online, unknown, https://ccrma.
stanford.edu/software/snd/snd/clm.html.

[37] K. Barr, “Audio effects: Reverberation,” online, un-
known, http://www.spinsemi.com/knowledge_base/
effects.html#Reverberation.

[38] S. Costello, “RIP Keith Barr,” online, Aug. 2010,
https://valhalladsp.wordpress.com/2010/08/
25/rip-keith-barr/.

[39] J. Dattorro, “Effect design, part 1: Reverberator and other filters,” J.
Audio Eng. Soc., vol. 45, no. 9, pp. 660–684, Sept. 1997.

[40] J. M. Chowning, J. M. Grey, J. A. Moorer, and L. Rush, “Computer
simulation of music instrument tones in reverberant environments,”
STAN-M 1, CCRMA, Stanford Univ., CA, June 1974.

[41] J. A. Moorer, “Signal processing aspects of computer music: A sur-
vey,” Proc. IEEE, vol. 65, no. 8, pp. 1108–1137, Aug. 1977.

[42] P. R. Samson, “A general-purpose digital synthesizer,” J. Audio Eng.
Soc., vol. 26, no. 3, pp. 106–113, Mar. 1980.

[43] J. A. Moorer, “About this reverberation business,” Comput. Music
J., vol. 3, no. 2, pp. 13–28, June 1979.

[44] S. K. Mitra and K. Hirano, “Digital all-pass networks,” IEEE Trans.
Circuits Systems, vol. 21, no. 5, pp. 688–700, Sept. 1974.

[45] D. C. Massie, “An engineering study of the four-multiply normalized
ladder filter,” J. Audio Eng. Soc., vol. 41, no. 7/8, pp. 564–582,
July/Aug. 1993.

[46] F. E. J. Girling and E. F. Good, “The leapfrog or active-ladder syn-
thesis,” Wireless World, vol. 76, no. 1417, pp. 341–345, July 1970.

[47] Ó. Bogason and K. J. Werner, “Modeling time-varying reactances
using wave digital filters,” in Proc. 21st Int. Conf. Digital Audio
Effects, Aveiro, Portugal, Sept. 2018, pp. 272–279.

A. PROOF OF COMMUTABILITY OF Λ AND Ξ

Two-port scattering matrices S and transfer scattering matrices
T relate a pair of incident waves a1 and a2 to a pair of reflected
waves b1 and b2 at ports 1 and 2 according to[

b1
b2

]
=

[
s11 s12
s21 s22

] [
a1

a2

]
,

[
b1
a1

]
=

[
t11 t12
t21 t22

] [
a2

b2

]
.

Here, the time index n is suppressed for compactness. These ma-
trices can be related to one another in the following way

S =
1

t22

[
t12 ∆T

1 −t21

]
, T =

1

s21

[
−∆S s11
−s22 1

]
, (14)

where ∆T and ∆S are the determinants of T resp. S:

∆T = t11t22 − t12t21 , ∆S = s11s22 − s12s21 .

In the transfer formalism, cascades are described by matrix mul-
tiplication, i.e., a cascade of K stages with transfer matrices Tk,
k ∈ {1 · · ·K} is simply

∏K
k=1 Tk.

Now consider our transformer characterized by parameter ξ
with scattering matrix

Ξ =

[
0 1/ξ
ξ 0

]
i.e. ξ11 = 0 ξ12 = 1/ξ

ξ21 = ξ ξ22 = 0
.

By (14), its transfer scattering matrix TΞ is

TΞ =

[
1/ξ 0
0 1/ξ

]
= I/ξ i.e. tξ,11 = 1/ξ tξ,12 = 0

tξ,21 = 0 tξ,22 = 1/ξ
,

where I is the 2× 2 identity matrix.
The scaled identity matrix I/ξ commutes with any other ma-

trix, meaning that for any transfer scattering matrix TΛ,

TΠ = TΛ(I/ξ)︸ ︷︷ ︸
TΛΞ

= (I/ξ)TΛ︸ ︷︷ ︸
TΞΛ

,
tΠ,11 =

tλ,11
ξ

tΠ,12 =
tλ,12
ξ

tΠ,21 =
tλ,21
ξ

tΠ,22 =
tλ,22
ξ

.

This shows that TΛΞ, the transfer scattering relationship of Λ cas-
caded with Ξ, is identical to TΞΛ, the transfer scattering relation-
ship of Ξ cascaded with Λ. We will call them interchangeably
TΠ. Hence, they have the same scattering matrix Π given by

Π =

[
λ11 λ12/ξ
λ21ξ λ22

]
i.e. π11 = λ11 π12 = λ12/ξ

π21 = λ21ξ π22 = λ22
.
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