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ABSTRACT

Deep learning models have provided extremely successful solu-
tions in most audio application fields. However, the high accuracy
of these models comes at the expense of a tremendous computa-
tion cost. This aspect is almost always overlooked in evaluating the
quality of proposed models. However, models should not be eval-
uated without taking into account their complexity. This aspect
is especially critical in audio applications, which heavily relies on
specialized embedded hardware with real-time constraints.

In this paper, we build on recent observations that deep mod-
els are highly overparameterized, by studying the lottery ticket hy-
pothesis on deep generative audio models. This hypothesis states
that extremely efficient small sub-networks exist in deep models
and would provide higher accuracy than larger models if trained in
isolation. However, lottery tickets are found by relying on unstruc-
tured masking, which means that resulting models do not provide
any gain in either disk size or inference time. Instead, we develop
here a method aimed at performing structured trimming. We show
that this requires to rely on global selection and introduce a spe-
cific criterion based on mutual information.

First, we confirm the surprising result that smaller models pro-
vide higher accuracy than their large counterparts. We further
show that we can remove up to 95% of the model weights with-
out significant degradation in accuracy. Hence, we can obtain very
light models for generative audio across popular methods such as
Wavenet, SING or DDSP, that are up to 100 times smaller with
commensurate accuracy. We study the theoretical bounds for em-
bedding these models on Raspberry Pi and Arduino, and show that
we can obtain generative models on CPU with equivalent quality
as large GPU models. Finally, we discuss the possibility of imple-
menting deep generative audio models on embedded platforms.1

1. INTRODUCTION

Over the past years, deep learning models have witnessed tremen-
dous success in a wide variety of applications. Specifically, in
the audio signal domain, novel deep generative models [1] are
able to synthesize waveform data matching the acoustic properties
of a given dataset with unprecedented quality. This specific task
is highly challenging as the generation of high-quality waveform
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requires to handle complex temporal structures at both local and
global scales. Nevertheless, recent auto-regressive (WaveNet [2])
or recurrent (SampleRNN [1]) architectures successfully model
raw audio waveform. In order to attain this goal, all approaches
require extremely complex architectures with humongous num-
bers of parameters. This incurs significant energy and computa-
tional costs along with huge memory footprints. Unfortunately,
the complexity of resulting solutions and their extensive inference
time are almost systematically overlooked properties, obliviated
by the never-ending quest for accuracy. However, this goal be-
comes paramount when aiming to provide these systems to users in
real-time settings or on dedicated lightweight embedded hardware,
which are particularly pervasive in the audio generation domain.
Subsequently, none of the current deep generative audio models
can fit these computational constraints or memory limitations.

In parallel, it has been repeatedly observed that deep architec-
tures are profoundly over-parameterized. This implies that a large
majority of the parameters in deep models could potentially be re-
moved without significant loss in performance [3]. However, this
over-parameterization appears to be required for correctly training
deep models, as it allows the optimization process to search for
solutions in a simpler landscape [4]. The idea of pruning [5] has
been proposed to remove the less relevant weights from a trained
model in order to reduce its size. Unfortunately, the pruning ap-
proach usually only provides small compression ratios, in order to
avoid large losses in accuracy [6]. The recently proposed lottery
ticket hypothesis [7] conjectures the existence of extremely effi-
cient sparse sub-networks within very large models, already exist-
ing at initialization. These sub-networks could be able to reach a
similar, or even higher, accuracy if they were trained in isolation
and their weights are rewound to earlier epochs of training [8].
Furthermore, it appears possible to mask up to 99.5% of the model
weights without significant loss in accuracy, providing extremely
sparse solutions to the same task. Unfortunately, this approach
relies on masking selected weights (called unstructured pruning),
thus maintaining both the size and inference costs of large models.

In this paper, we propose to build on the lottery ticket hy-
pothesis by extending its use to structured scenarios. In these,
we seek to remove entire units of computation (equivalently con-
volutional channels), instead of only masking the corresponding
weights. This would allow to truly reduce the model size and cor-
respondingly its inference time. Hence, we first perform an eval-
uation of the original lottery ticket framework for generative au-
dio models, by implementing and pruning several state-of-art deep
generative audio models, such as Wavenet [2], SING [9] and DDSP
[10]. We show that the original lottery results hold for generative
models, but in a lower extent than discriminative tasks. Still, we
confirm the surprising results that we obtain higher accuracy by
masking up to 60% of the original weights, and we can main-
tain the original accuracy, even when masking up to 95% of the
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weights. Based on this, we show that even though we are able
to mask a stunningly large portion of the network, we can effec-
tively remove only a small portion of the computation units. To
alleviate this issue, we introduce several pruning criteria that can
account for global pruning scenarios. Indeed, we hypothesize that
performing local structured pruning only amounts to an expen-
sive form of architecture search (as we reduce all layers in the
network by an identical amount). Oppositely, performing global
structured pruning could allow to leverage the creation of bottle-
neck layers along the architecture. In order to take full advantage
of this idea, we propose a specific criterion based on information-
theoretic principles. We show that computational units that glob-
ally maximize the mutual information with respect to the target
are able to withstand a large level of compression, while main-
taining high accuracy. We evaluate our proposal on several audio
generative models, by assessing their memory, size and inference
time (FLOPs) requirements. We show that we can obtain ultra-
light generative audio models able to perform real-time inference
on CPU, with quality comparable to very large GPU models. Fi-
nally, we define and study the real-time and embeddable bounds of
our ultra-light generative audio models, in order to fit the require-
ments of the Raspberry and Arduino platforms. We show that deep
models can be embeddable on Raspberry and discuss a library for
performing embedded deep audio generation.

2. STATE-OF-ART

2.1. Audio waveform generation

In order to leverage deep neural networks for audio synthesis, sev-
eral approaches have first targeted the generation of spectral in-
formation, by relying on either variational auto-encoders [11] or
generative adversarial networks [12]. However, spectral represen-
tations suffer from multiple drawbacks in generative setups. No-
tably, learning schemes preclude the use of phase information,
which forces to rely on approximate phase reconstruction algo-
rithms [13], degrading the generation quality.

To address these limitations, several models have directly tar-
geted raw audio waveform, which must face the high sampling
rates and temporal complexity of such data. Indeed, these models
must process simultaneously local features to ensure audio qual-
ity, while being able to analyze longer-term dependencies in order
to generate coherent audio information. Given an audio waveform
x = {x1, . . . , xT }, we can define the joint distribution p(x) as a
product of conditional distributions, through the causality assump-
tion that each sample is only dependent on the previous ones

p(x) =

T∏
t=1

p(xt|x1, . . . , xt−1). (1)

Following this auto-regressive formulation, Wavenet [2] casts the
problem of predicting waveform samples as a classification task
over amplitudes with a µ-law quantization. This model is able to
handle long-term dependencies by using stacked layers of gated
dilated convolutions, which exponentially increase the receptive
field of the model. This approach is now an established solution
for high-quality speech synthesis and has also been successfully
applied to musical audio with the NSynth dataset [14]. However,
auto-regressive modeling is inherently slow since the samples can
only be processed iteratively. Moreover, large convolution kernels
and numbers of layers are required to infer even small-sized con-
texts. This results in computationally heavy models, with large

inference and training times. Based on similar assumptions, Sam-
pleRNN [1] relies on recurrent networks, performing computation
in a hierarchical manner. Multiple temporal scales are defined
through a sample-level auto-regressive module and a longer-term
network. Although this model provides convincing audio results,
it still incurs a heavy computational cost.

More recent streams of research rely on the differentiability
of the STFT to compute losses in the spectral domain, rather than
directly on waveform samples. This allows to produce different
waveforms with equivalent spectral content at a low computational
cost. Given a signal x with spectrogram Sw(x) = |STFTw[x]|2,
computed on a window w, the multiscale learning loss is

argmin
θ

∑
i

∥log (Swi(x) + ϵ) , log (Swi(x̂) + ϵ)∥1 (2)

where x̂ is the waveform produced by the model with parameters
θ. Based on this idea, the Symbol-to-Instrument Neural Genera-
tor (SING) [9] relies on an overlap-add convolutional architecture,
which constructs sequences of overlapping audio segments. The
model processes signal windows to reduce the input dimension-
ality entering an up-sampling convolutional decoder. A top-level
sequential embedding is trained on frames, by conditioning over
instrument, pitch and velocity classes. Given this specific archi-
tecture, the model is highly constrained to produce only individual
pitched instrumental notes of fixed duration. Several models have
extended this idea, by relying on stronger assumptions and induc-
tive biases from digital signal processing. First, the Neural Source-
Filter (NSF) model [15] splits the generation between successive
source and filtering modules, mimicking traditional source-filter
models. Hence, a sinusoidal (voiced) and noise (unvoiced) exci-
tations are fed into separate filter modules, allowing to model dif-
ferent types of signals. Similar to NSF, the Differentiable Digital
Signal Processing (DDSP) model [10] has been proposed to target
pitched musical audio. This architecture similarly implements an
harmonic additive synthesizer summed with a filtered noise syn-
thesizer (defined as a trainable Finite Impulse Response filter).
This approach can be seen as a form of amortization, that learns to
control a synthesis process based on fundamental frequency, loud-
ness and latent features extracted from the input waveform.

Despite the successes provided by these models, they still re-
quire large computational costs, only handled by modern GPUs.
Furthermore, these also entail large disk and memory usage, pre-
cluding any use of these models on embedded devices. This heav-
ily limits the use of deep networks in audio applications, which are
mostly real-time, on specific lightweight and non-GPU hardware.

2.2. Overparameterization of learning models

2.2.1. Model compression and pruning

The idea of model compression in neural networks has been pro-
posed quite early, with the pioneering approach of pruning pro-
posed by LeCun [5]. The underlying idea is to remove the weights
that least contribute to the accuracy of the network, as defined
by a pruning criterion. This method, which is still amongst the
most widespread, is based on three steps: (i) training a large over-
parameterized network, (ii) removing weights according to a given
criterion and (iii) fine-tuning the remaining weights to restore the
lost performance. Several methods have since been proposed and
can be broadly divided between structured and unstructured prun-
ing criterion. Structured pruning aims to remove structural parts
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of a network (such as entire convolutional channels), whereas un-
structured pruning acts directly on individual parameters, regard-
less of the underlying architecture.

Structured Pruning. Approaches in structured pruning mostly
revolve around the idea of removing channels in convolutional lay-
ers. With that aim, several criteria for determining the channels to
remove were proposed, such as computing the Ln-norm of differ-
ent filters [16]. Although structured pruning can allow to remove
large parts of a network, it remains at largely lower compression
and accuracy than unstructured methods [6].

Unstructured Pruning. Most of the proposed pruning meth-
ods are based on the magnitude of individual parameters [5], even
in the case of convolutional networks [17]. In these, the pruned
weights are masked instead of being removed, leading to sparse
weight matrices but with identical dimensionality. The advantage
of this masking approach is that it allows to handle any type of
layer indistinctly. However, the resulting model does not provide
any gain in size or inference time.

Finally, it should be noted that most pruning methods require
multiple trainings. In order to save training costs, some methods
aim to gradually prune the model across a single training phase
[18]. However, these approaches appear to be less efficient than
their multiple training counterparts [8].

2.2.2. Lottery ticket hypothesis

The lottery ticket hypothesis [19] conjectures the existence of ex-
tremely efficient sparse sub-networks already present in randomly
initialised neural networks. Those sub-networks, called winning
tickets (WT), would provide higher accuracy than their large coun-
terparts if they were trained in isolation, while allowing for mas-
sive amounts of pruning. Those WT are based on initial weights
and connectivity patterns with "lucky initialisation" that lead to
particularly effective training. Identification of the WT is per-
formed by first fully training the network and, then, masking the
smallest-magnitude weights. The structure of the WT is defined by
the unpruned weights, which are subsequently reset to their initial-
isation values and retrained. This procedure is repeatedly applied,
leading to Iterative Magnitude Pruning (IMP). On the MNIST and
CIFAR sets, removing up to 80% of the weights provide higher ac-
curacy than the original network, while the original accuracy can
be maintained even when removing up to 96.5% of the weights.

The reset operation is a crucial step in IMP as randomly re-
initialised tickets were shown to reach lower accuracy than the
original large network. In a further study for deeper networks [7],
the authors showed that it was beneficial to rewind the weights at
a given early epoch in the training, rather than at initialization val-
ues. Lottery tickets could still be uncovered in deeper architectures
only by relying on this rewinding operation.

Formally, a network is defined as a function f(x;W) with
weights W randomly initialized as W0 ∼ p(W). The network
is trained to reach accuracy a∗ in T ∗ iterations with final weights
WT∗ . A sub-network can be seen as a tuple (W,M) of weight
values W ∈ RD and a pruning mask M ∈ {0, 1}|W|, defining
the function f(x;M⊙W), where ⊙ is the element-wise product.
The lottery ticket hypothesis states that there exists a sub-network
(Wk,M) with a given pruning mask M, and iteration k ≪ T ∗,
such that retraining this sub-network will reach a commensurate
accuracy a ≥ a∗ in commensurate training time T ≤ T ∗ − k,
with fewer parameters ||M|| ≪ |W|. Given these definitions,
IMP training with rewinding can be implemented as follows

1. Initialisation. Initialise parameters W0 randomly and the
mask M to all ones, defining the network f(x;M⊙W0).

2. Network training. Train the parameters Wi of the net-
work f(x;M ⊙ Wi) to completion WT∗ , while storing
the weights Wk at iteration k, by performing

(a) Train the weights for k iterations, producing the net-
work f(x;M⊙Wk).

(b) Train the network for T ∗ − k further iterations, pro-
ducing the network f(x;M⊙WT∗).

3. Weight Selection. Prune the weights WT∗ by computing a
masking criterion M = C(WT∗). In the original paper, the
weights are ranked by their absolute magnitude values, and
the bottom p% are set to zeros in the mask M

4. Rewinding. Rewind the remaining parameters W to their
value in Wk producing the network f(x;M⊙Wk).

5. Iterate. Until a sparsity or accuracy criterion is met, retrain
the resulting sub-network by returning to step 2.(b)

This iterative training method remains costly as it requires to
repeatedly train the model several times. In order to address this
issue, Morcos et al. [20] evaluated the possibility to transfer the
found tickets across optimizers or datasets. They found that WT
indeed appear to learn generic inductive biases which improve
training on other datasets.

2.2.3. Limitations of the lottery ticket approach

Masking or trimming. One of the major issues in all unstruc-
tured approaches (including the lottery ticket) is that pruning only
amounts to masking the weight matrix. Hence, this operation hardly
produces any network compression, as the model size and infer-
ence time remain unchanged. In various papers, the authors pro-
pose to obtain true compression by post-processing the uncovered
pruning, and remove the units that are entirely masked. In order
to estimate the efficiency of this approach, we analyzed this post-
processing operation on the original lottery experiment [19]. We
compare the percentage of masked weights and the percentage of
units that could truly be pruned, as displayed in Figure 1. As we
can see, there is a huge divergence between the masking ratio (up
to 99.5%), and the real compression (only 25.4% with local prun-
ing) that is possible with this approach. Hence, the major question
we address here is if we could keep the efficiency of masking but
perform real pruning (termed trimming here). Note that a major
advantage of trimming is also that each re-training gets iteratively
faster, as we effectively remove weights from the network. Hence,
the resulting total training time could be largely reduced.

Local or global. Another major question in pruning is whether
we should rank weights globally (across layers) or locally (within
each layer separately). The advantage of local pruning, is that
we ensure that all layers preserve an adequate minimal capacity.
However, the local criterion cannot modify the relative importance
of different layers, and it has been shown that all layers are not
equally critical to performance [21]. Oppositely, the global crite-
rion can freely create bottleneck layers by adapting the size of less
important computation. In our case, as we aim to remove entire
units, the global pruning reveals an even more critical importance,
as it will allow to modify connectivity patterns of the network. In-
deed, as compared to masking, trimming can not work on connec-
tivity patterns within a layer. Hence, we hypothesize that trimming
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Figure 1: Real prunability of a network under masking approaches.
Even though masking appears to remove up to 99.5% of the
weights, in reality we can only remove a very slight fraction of
the units (one third of the network at best in global masking)

can only be truly efficient in global setups. Otherwise, this would
only amount to performing classical pruning, without truly lever-
aging the advantages of the lottery ticket hypothesis.

3. STRUCTURED LOTTERY PRUNING

Here, we discuss how we can leverage the lottery ticket hypothe-
sis for structured pruning. We define criteria that can be used to
truly decrease the model size rather than simply masking weights.
We introduce a novel criterion based on the mutual information
between units and targets. In the following, we use the term units
to refer to channels or fully-connected units interchangeably.

3.1. Formalization

We consider that networks can contain four types of prunable lay-
ers, namely linear, convolutional, recurrent and normalization.
We do not detail other types of layers (such as pooling and activa-
tion layers), as they will be unaffected by our trimming strategy.
We consider that each layer performs a function y = f(x;W ) pa-
rameterized by a set of weights W , where the input x ∈ RNin has
dimension Nin and the output y ∈ RNout has dimension Nout. In
the case of trimming, we need a criterion that returns a sorted list
of Nout indices, to decide which units to remove. In the follow-
ing, we will consider both weight-based (magnitude, gradient and
batchnorm) and output-based (activation and information) crite-
ria. In the case of output-based criteria, the list is computed based
on the output of each layer. Regarding weight-based criteria, we
need to adapt the computation for each type of layer.

In the case of linear layers, the operation f(x,W ) = Wx+b
implies a simple matrix W ∈ RNout×Nin . Hence, we will com-
pute weight statistics across j ∈ [1, Nin] to obtain Nout values.
In the convolutional case, the weights are distributed as kernels
Wj ∈ Rkd

, with a kernel of size k for d-dimensional convolu-
tions. Hence, we will compute statistics over each kernel with
j ∈ [1, kd]. Finally, the normalization layers preserve the dimen-
sionality of their inputs with Nin = Nout, and contain a scaling
vector γ ∈ R1×Nin . Apart in the case of the normalization cri-
terion, we propagate the trimming criterion to the normalization
layers from the layer directly preceding them.

3.2. Pruning criteria

We introduce the pruning criteria that are used to rank the units,
which can be used for masking, but are devised for trimming.

Magnitude. We define a magnitude-based criterion, similar to
that of the original paper [19]. However, in our case, we evaluate
the overall magnitude of the weights for a complete unit

C(W ) =

Nin∑
j=1

|Wi,j | (3)

Gradient. In order to see how each weight contribute to the
overall solution, we analyze their gradients with respect to the er-
ror loss. To do so, we perform a cumulative backward pass on the
entire validation dataset to obtain the gradient of the error given
each weight and then compute the global unit gradient as

C(W ) =

Nin∑
j=1

∣∣∣∣δL(Dv)

δWi,j

∣∣∣∣ (4)

with L(Dv) the loss function used for training the network com-
puted on the whole validation dataset Dv .

Activation. We can rely on the activation statistics of each unit
to analyze their importance. Hence, akin to the previous criterion,
we perform a cumulative forward pass through the network after
training the model and compute

C(W ) = argmini

Dv∑
k=1

|f(xk,W )i| (5)

where we sum across the examples in the validation dataset Dv .
Normalization. In this criteria, we rely on the scaling coeffi-

cient of the normalization layers, as a proxy to determine the im-
portance of the units in the preceding layer C(W ) = |γn

i |

3.3. Mutual information criteria

Given two random variables x and y, with marginal distributions
p(x) and p(y) and a joint distribution p(x,y), the mutual infor-
mation (MI) provides a quantitative measure of the degree of de-
pendency between these variables.

I(x;y) = DKL [p(x,y)∥p(x)p(y)] , (6)

where DKL [p∥q] denotes the Kullback-Leibler divergence between
distributions p and q. Hence, MI measures the divergence between
the full joint probability p(x,y) and its factorized version. There-
fore, the MI is positive I(x;y) ≥ 0 and null if x and y are in-
dependent variables (p(x,y) = p(x)p(y)). In our case, MI can
inform us on how the representation of each layer z = f(x,W )
contains information on the target y, or is independent from it,
defining the criterion

C(W ) = maxiI(zi;y) (7)

where we compute the output of each unit zi on the validation set
and compute their MI with the training target y. This criterion is
motivated by the fact that we would like to keep units that contain
the most information on the target. Unfortunately, MI can only be
computed if we have access to the analytic formulation of the dis-
tributions. Furthermore, in the case of deterministic networks with
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continuous variables y and z, the MI value I(z;y) is actually infi-
nite. To remedy this problem, the most straightforward approach is
to add noise to the hidden activity z′ = z+ξ, where ξ ∼ N (0, σ2)
to obtain a finite MI evaluation. In order to approximate the MI,
we rely on the Ensemble Dependency Graph Estimator (EDGE)
method [22], which combines hashing and dependency graphs to
provide a non-parametric estimation of MI.

3.4. Scaling

In order to perform global pruning, we need to adequately scale
criteria values across layers, to ensure a fair pruning. Indeed, there
is no clear bound to the weights or activation values (if we use non-
saturating functions). Hence, we explore two scaling operations.
First, we perform normalization of the criteria values by the max-
imal value in a given layer. Second, we perform scaling based on
the layer dimensionality. This has the advantage of ensuring that
we do not remove too much weights in a given layer, while being
related to successful initialization schemes, which rely on the fan
in and fan out of each layer.

4. EXPERIMENTS

4.1. Models

In order to evaluate model trimming for generative audio, we reim-
plemented several state-of-art models. Because of space constraints,
we provide minimal details but rely on all implementation choices
from the original papers, unless stated otherwise

Wavenet introduced by van Oord and al. [2] is implemented as
a stack of dilated convolutions to model the raw audio signal as a
product of conditional probabilities. We use 2 successive stacks of
20 layers of convolutions with 256 channels and 128 residual chan-
nels trained with a cross-entropy loss. The training process relies
on teacher forcing, leading to faster training (while the generation
remains sequential and slow).

SING. proposed by Défossez and al. in [9] is a convolutional
neural audio synthesizer that generates waveform given desired
categorical inputs. In this paper, we choose to focus on an auto-
encoding version of the model used at first to train the decoder,
composed of 9 layers of 1D convolution layers with 4096 channels
and stride of 256. The encoder mirrors the decoder with similar
settings. The architecture is calibrated for 4 second input signals.

DDSP. The Differentiable Digital Signal Processing model has
been introduced by Engel and al. in [10], and is a lightweight re-
current based architecture for raw audio generation. It implements
a reverbered harmonic plus noise synthesizer whose parameters
are infered by a gated recurrent unit, based on an input pitch and
loudness. We rely on a hidden size of 512 with 3 fully-connected
layers and latent size 128 for the Gated Recurrent Units (GRU).
The synthesis part uses a filter of size 160 and 100 partials.

4.2. Datasets

The models are evaluated by training on the following datasets.
NSynth contains 305,979 single notes samples from a range

of acoustic and electronic instruments divided into ten categories,
as detailed in [14]. This leads to 1006 instruments, with different
pitches at various velocities available as raw waveforms. All notes
last 4 seconds with a sampling-rate of 16kHz. As this incurs an
extremely large training time, we rely on subsampling, randomly
picking 10060 samples (ten notes per instrument).

Studio-On-Line provides individual note recordings sampled
at 44100 Hz for 12 orchestral instruments, as detailed in [11]. For
each instrument, the full tessitura is played for 10 different ex-
tended techniques, amounting to around 15000 samples.

For both datasets, we compute the STFT with 5 window sizes
ranging from 32 to 1024. Log-magnitudes are computed with a
floor value ϵ = 5e−3. All datasets are randomly split between
train (80%), valid (10%) and test (10%) sets before each training.

4.3. Training

All models are trained following their respective procedure de-
tailed in each corresponding paper. Hence, hyperparameters vary
depending on the models and datasets, but we use a common mini-
batch size of 64, the ADAM optimizer, a weight decay penalty
of 2e−4, initial learning rate of 1e−3, which is halved every 10
non-decreasing epochs. We train each model to completion and
perform masking or trimming for 30% of the weights at each iter-
ation. We repeat this process 15 times, leading to models with up
to 99.5% of their original weights removed.

5. RESULTS

We detail different aspects of our proposal to obtain very light
models for generative audio. First, we compare our trimming pro-
posal to the original lottery masking (Section 5.1), and confirm
our hypothesis on the importance of a global selection in trimming
(Section 5.2). Then, we evaluate the success of the different pro-
posed criteria (Section 5.3) for the trimming method with global
selection. To assess qualitative results, we provide audio samples
on the supporting webpage of this paper.

5.1. Masking or trimming

In this section, we evaluate the lottery ticket hypothesis for gen-
erative audio and compare the efficiency of pruning based either
on masking or trimming strategies. For masking, we use the same
setup as the original lottery ticket paper, by using a magnitude cri-
teria with a local selection [19]. For trimming, we rely on our
proposed information criterion, using a global selection. As a
reference point, we also compute the results of trimming with a
magnitude criterion and local selection. To observe the effect of
model pruning, we compute the mean test error rates across dif-
ferent models as we increasingly prune their weights, using the
different selection criteria. As different models rely on different
losses and evaluations, we normalize the results by the accuracy
obtained by the largest model, and analyze the variation to this
reference point. This leads to the test error multiplier, which ex-
plains the relative ratio to the errors across models, regardless of
their absolute values. As discussed in Section 2.2.3, there is a
huge discrepancy in the effective gain that can be obtained from
the masking approach. Nevertheless, we display the results com-
paring the amount of masking to the amount of trimming, as we
seek to maintain the accuracy of the lottery tickets with commen-
surate amount of pruning. We display this analysis in Figure 2.

First, as we can see in this figure, we confirm that lottery tick-
ets can be found in generative audio tasks, as shown by the re-
sults of the masking method. Indeed, in low pruning scenarios, we
found smaller models that have a higher accuracy than their larger
counterparts, with the lowest mean test error multiplier of 0.893
being obtained when masking 76.1% of the weights. The error of
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Figure 2: Comparison of masking and trimming in terms of test set error, when iteratively removing weights. We zoom in the error curves
(left) at low pruning ratios and show the difference between reinitializing or rewinding the weights (right).

models remain lower, even if we mask up to 95% of the weights.
Then, the error increases, but remains in an acceptable range from
the original model, even with up to 99% of the weights masked.
When observing the results for the trimming method, we can see
that we are able to maintain similar results. However, this method
leads to a true reduction of the model size and inference time.
In order to evaluate more precise aspects of the results, we also
closely analyze low pruning contexts (up to 90% of the weights re-
moved). With that comparison, we see that our approach performs
in the same range as the original lottery, by providing smaller error
rates for low pruning and reaching a factor of 0.912 when remov-
ing 80% of the weights. As an increasing amount of units are
removed, the trend seems to be reversed but the trimmed models
manage to remain in commensurate accuracy, with a factor of 1.2
even when removing up to 99% of the weights. Hence, one of
the strongest result in this paper, is that we can obtain models that
are more accurate, while being ~10 times smaller. An other strong
result is that we can reduce models by ~100, and still keep a low
error rate. Note that the behavior of global and local depend on
low or high contexts, which we analyze in the next section.

5.2. Local or global selection in trimming

In this section, we evaluate our original hypothesis, that global se-
lection is required to perform efficient trimming, whereas local se-
lection can only provide a sub-efficient form of architecture search.
Hence, we perform the same analysis as in the previous section, for
our trimming method across all selection criteria, either for local or
global selection. We display the results of this analysis in Figure 3

As we can see, both selection criteria can provide lower error
rates when evaluated at low pruning ratios. This seems to con-
firm the first part of the lottery ticket hypothesis, even in situations
where we effectively remove (trim) units from the network. It ap-
pears that the global criterion provides lower error rates for lower
pruning ratios (up to 90%). This seems to corroborate our initial
hypothesis on the crucial importance of using a global selection
when performing trimming, to adapt the underlying connectivity.
However, as we increase the amount of pruning, the global se-
lection quickly degrades, while local selection seems to maintain
error range. This might come from the fact that global selection
create bottlenecks too quickly, which causes the performance to
degrade. This warrants the need to define more subtle normaliza-
tion operators, or using global selection in the first phase of com-
pression, to then rely on local for higher pruning contexts.
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Figure 3: Comparison of test error rates between local and global
selection in trimming, when iteratively removing weights.

5.3. Selection criteria comparison

In this section, we evaluate the efficiency of the various selection
criteria proposed in Section 3.2. To do so, we evaluate the full
training with the trimming method and global selection across dif-
ferent models. The results are displayed in Figure 4.

As we can see, most criteria can perform an adequate trim-
ming in low pruning contexts. However, when dealing with high
pruning scenarios, the differences are more pronounced. In low-
pruning situations, our proposed mutual information criterion ap-
pears to outperform the other ones. With this criterion, the best
performing models appear after removing 80% of the weights and
outperform the accuracy of larger models. We are able to remove
up to 95% of the weights without loosing any accuracy, which
leads to models that are 20 times smaller, with equivalent quality.
However, passed this point it seems that the information criterion
quickly degrades, whereas other criteria maintain a constant error
augmentation. This could be explained by the fact that we are re-
lying on an approximation of the true MI, which can lead to biased
estimations. This bias is further worsened by the fact that the eval-
uation is only performed on subsets of the dimensions and limited
number of examples because of memory constraints.

DAFx.6

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

322



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Magnitude
Gradient
Activation
Information

Low pruning context High pruning contextRemoved weights (%)

Te
st

 e
rr

or
 m

ul
tip

lie
r

50 90 999050
.9

1.1

9995

1

2

Figure 4: Comparison of various pruning criteria in the case of trimming with global selection in terms of test set error, when iteratively
removing weights. We detail two specific parts of the error curves (left) at low pruning ratios, we obtain a lower error than larger models
and (right) in high pruning contexts, we obtain extremely small models that still maintain a commensurate error rate.
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Figure 5: Evaluating theoretical embeddability of the light models for deep generative audio on Arduino and Raspberry Pi platforms.

Model CPU FLOPS∗ Drive RAM
Arduino
ATMega1280 16 MHz 160 K. 128 K. 8 K.
ATMega2560 32 MHz 320 K. 256 K. 16 K.
Raspberry Pi

RPi 1B 700 MHz 41 M. 256 M. 512 M.
RPi 2B 900 MHz 53 M. 1 G. 1 G.

Table 1: Properties of different Arduino micro-controllers and
Raspberry Pi embedded platform (*: FLOPS are inferred values).

6. EMBEDDING DEEP GENERATIVE AUDIO

As discussed earlier, the goal of our aggressive pruning approaches
is that we could obtain deep audio models that fit on embedded
hardware. However, these systems have very strong constraints, as
summarized in Table 12.

6.1. Evaluating theorical embeddability

In order to assess the performances of light models on embedded
architectures, we evaluate aspects specifically pertaining to model

2These properties were gathered from the user manuals and the FLOPS
are inferred from the listed CPU properties

compression and complexity with three different metrics.
Floating point operations (FLOPs) describes the number of

operations required to generate an audio sample at inference time.
Model disk size exhibits the size taken by the model (more

precisely by its parameters dictionnary) when saved to disk.
Read-write memory computes the combined number of mem-

ory accesses (read and write operations) when generating a sample.
This measures can be broadly grouped as evaluating either a

theoretical real-time bound or an embeddable bound. The real-
time bound assess if the model can sample audio in real-time on a
given platform. Hence, this is directly measured by the FLOPS
required by a single pass of the model to produce one second
of audio. The embeddable bound measures if the model fit the
size requirements of the target platform, both being able to store
the model on disk, and having a fitted read-write memory usage.
To evaluate these various constraints, we rely on models that are
trimmed using our approach, at their smallest pruning step. We
plot these results for every models depending on their requirements
and corresponding error rates in Figure 5.

Globally speaking, it seems that the models are still quite far
from being embeddable on highly constrained hardware such as
Arduino. Notably, the memory and FLOPS usage remains largely
higher than what the platform can handle. Although it seems that
the model size requirements could be obtained for some models,
this would come at the price of a highly increased error rates (with
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the smallest embeddable error being 2.5 times the original one).
We denote in the figure the models that strike an optimal balance
(in the Pareto sense) between these two objectives. Several of our
lightweight models could be already embedded and run on less
constrained hardware, such as Raspberry Pi. Notably, the model
size and memory requirements seem to largely fit the constraints,
even for the Rasperry Pi 1B. The only issue would relate to FLOPS
that seem to be borderline to the CPU capacity. However, more
aggressively pruned models could provide a sufficient reduction,
with only marginal increases of the error rates.

7. CONCLUSIONS

In this paper, we devised a method to produce extremely small
deep neural networks for generative audio, by leveraging the lot-
tery ticket hypothesis. We have shown that this approach could
be applied in that context, but that it did not provide gains in the
effective size and efficiency of the resulting models. To allevi-
ate these limitations, we developed novel methods of structured
pruning that allow to truly remove units from the models. We
showed that it is possible only by leveraging global selection cri-
teria, to adapt the connectivity patterns in the network. This also
confirmed the surprising result that smaller models tend to provide
higher accuracy than their heavy counterpart. We showed that we
could remove up to 95% of the network without significant loss
in accuracy. Finally, we discussed the possibility of embedding
these light models in constrained architectures such as Arduino
and Raspberry Pi, by testing the final model properties against the
requirements of the architectures.
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