
Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

DIFFERENTIABLE IIR FILTERS FOR MACHINE LEARNING APPLICATIONS

Boris Kuznetsov, Julian D. Parker and Fabián Esqueda

Native Instruments GmbH
Berlin, Germany

firstname.lastname@native-instruments.de

ABSTRACT

In this paper we present an approach to using traditional digital IIR
filter structures inside deep-learning networks trained using back-
propagation. We establish the link between such structures and
recurrent neural networks. Three different differentiable IIR filter
topologies are presented and compared against each other and an
established baseline. Additionally, a simple Wiener-Hammerstein
model using differentiable IIRs as its filtering component is pre-
sented and trained on a guitar signal played through a Boss DS-1
guitar pedal.

1. INTRODUCTION

The deep learning approach to machine learning has made great
strides in many application areas, including signal processing, over
the past 10 years. This approach has had success both in general-
ized audio modelling tasks [1, 2] and in more constrained musical
signal processing tasks [3–7].

When applied to 1-dimensional signals, the common building
blocks of deep-learning systems can broadly be thought of as non-
linear extensions of some familiar signal processing concepts. For
example, convolutional neural networks (CNNs) can be thought of
as a type of non-linear FIR filter, and recurrent neural networks
(RNNs) as a type of non-linear IIR filter. Building up a deep-
learning model can be approached much like building up a signal
processing chain. Recent work [8] has made this analogy explicit
by pointing out that the more general and expressive components
of typical deep learning models can be substituted with much more
constrained signal processing components in suitable problems,
thus encoding structural knowledge in the model and potentially
making training easier and models smaller. Engel et al. demon-
strate this by constructing a synthesis system using differentiable
signal processing components including FIR filters, oscillators and
convolutions.

In this paper we propose the use of IIR filters in the differen-
tiable DSP (DDSP) context. We discuss how the analogy between
IIRs and RNNs present a number of useful insights into how such
structures should be trained. We then present some approaches for
constructing IIR filters in this context, and compare their perfor-
mance when applied to several simple example problems. These
example problems include fitting linear transfer functions and ap-
proximating the behaviour of a non-linear system using a Wiener-
Hammerstein model.

Copyright: © 2020 Boris Kuznetsov et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

2. IIR FILTERS AS RECURRENT NEURAL NETWORKS

The Elman network is one of the earliest and simplest forms of a
recurrent neural network, introduced in 1990 as a way to model
human language [9]. It is described by the difference equation:

h[n] = σh(Whh[n− 1] + Uhx[n] + bh) (1)
y[n] = σy(Wyh[n] + by), (2)

where the vectors h, y, x are the hidden states, outputs and inputs
of the system, respectively. The matrices W , U are the trainable
weights of the RNN, and the vectors b are the biases. The func-
tions σ are (usually non-linear) activation functions.

Given some familiarity with signal processing, it should be
clear that if we choose linear activation functions σ and set the
biases b to zero, we essentially have an all-pole linear IIR filter:

h[n] = Whh[n− 1] + Uhx[n] (3)
y[n] = Wyh[n]. (4)

This illustrates the strong parallel between RNNs and IIR fil-
ters - they are both recursive systems that operate element-by-
element on a sequence of numerical data, storing information in
their internal states along the way. Hence, if we want to utilize
IIR filters in a machine-learning context we can treat them as a
specialized type of RNN and re-use the techniques and knowledge
already developed around RNNs.

2.1. Training

RNNs are generally trained using backpropagation through time
(BPTT), which can be trivially regarded as a regular backpropa-
gation through the computational graph of the network when un-
rolled over a number of time steps. Instead of applying BPTT
on the whole input time-sequence, the dataset is typically split up
into short sequences (typically between 512 and 2048 samples for
audio problems), over which the BPTT is applied [10] indepen-
dently. This is known as truncated backpropagation through time
(TBPTT). This process can be applied to differentiable IIR filters
unmodified.

If multiple filters are to be used, the forward pass of the net-
work can proceed as in a normal signal processing graph. Looping
over the input sequences can either be performed for the whole
sequence for each filter in turn (analogous to block-based process-
ing in an audio graph), or sample by sample. The computational
graphs produced in either approach are equivalent.

2.2. Vanishing or exploding gradients

Typically, RNN structures suffer from two major problems during
training - vanishing gradients and exploding gradients. The for-
mer is largely mitigated when training a linear IIR filter, whilst the
latter still requires some consideration.

DAFx.1

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

297

http://creativecommons.org/licenses/by/3.0/

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Vanishing gradients result from the repeated composition of
non-linear activation functions in a deep network, exacerbated by
the graph unrolling utilized in BPTT. Since linear IIRs contain no
activation functions, they do not suffer from vanishing gradients.

Exploding gradients are typically encountered when the re-
cursion learned by an RNN is unstable, resulting in unbounded
growth of the states and output. This is still an issue for IIR fil-
ters, but it can largely be mitigated by sensible initialization of
coefficients, or by working with higher-level parameters for which
stability bounds are easily derived.

2.3. Implementation

To use IIR structures in a machine-learning context, they should
be implemented within a framework such as PyTorch or Tensor-
flow [11,12] that allows automatic differentiation of computational
graphs. This is a relatively trivial task as the structures contain
only basic arithmetic operations for which the frameworks already
have derivatives. Therefore, we only need to implement the for-
ward pass of the system, which is equivalent to its difference equa-
tion. Reference implementations for PyTorch are provided at the
accompanying website 1.

3. IIR STRUCTURES FOR DDSP

In this section we present a number of IIR filter structures that can
be used in a differentiable DSP context.

3.1. First-order section

The general z-domain transfer function for a first-order IIR filter
having one pole and one zero is given by:

H(z) =
b0 + b1z

−1

1 + a1z−1
. (5)

In practice, this transfer function can be implemented using the
following difference equation:

y[n] = b0x[n] + h[n− 1]

h[n] = b1x[n]− a1h[n− 1].
(6)

3.1.1. Initialization

It has been shown that initializing the weights of a layer in a neu-
ral network with a random distribution is generally desirable [10].
Since the unconditional stability of the system depends solely on
the value of a1, random initialization poses no problems for coef-
ficients b0 and b1. For the case of a1, it can be initialized to any
random value that satisfies the stability condition |a1| < 1.

3.2. Direct-Form second-order section

The z-domain transfer function of a general second-order IIR filter
having 2 poles and 2 zeros is given by:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
. (7)

Since this transfer function is the ratio of two quadratic functions,
it is commonly referred to as a biquad filter.

1https://github.com/boris-kuz/differentiable_
iir_filters

One approach would be to train the transfer function directly
via the parameters b0, b1, b2, a1 and a2. The natural structure for
this application would one of the four direct-form IIR topologies,
as they contain these parameters directly as coefficients. For this
work, the Transposed Direct Form-II (TDF-II) was chosen, given
its desirable numerical properties [13]. The difference equation for
(7) using TDF-II is given by:

y[n] = b0x[n] + h1[n− 1]

h1[n] = b1x[n] + h2[n− 1]− a1y[n]

h2[n] = b2x[n]− a2y[n].

(8)

3.2.1. Initialization

Whilst random initialization can be applied to the coefficients
b0, b1, b2 with no restrictions, it poses a problem for coefficients
a1 and a2. These coefficients define the poles and hence the sta-
bility of the system. We need to initialize them in such a way as to
ensure that the resulting poles fall inside the unit circle. By solving
the quadratic equation in the denominator of the transfer function,
we can derive a closed-form expression for the magnitude of the
largest pole radius for a given set of coefficients. This expression
can be written as:

r =

|a1|
2

if a2
1 = 4a2

|a1|+
√

a2
1−4a2

2
if a2

1 > 4a2

√
a2 if a2

1 < 4a2.

(9)

The first and last condition dictate |a1| ≤ 2 and |a2| ≤ 1.
Together with the second condition, we get an area of convergence
in the shape of a triangle. We can now choose a region inside this
triangle for which the stability of the filter is guaranteed. If we
place the constraint that a1, a2 should be initialised in the same
range, the region defined by |a1| ≤ 0.5 and |a2| < 0.5 provides
the greatest area within the stable limits whilst still being centered
on the origin.

3.3. SVF

An alternative approach to producing a second-order filter is to use
a filter structure with higher-level parameters. A good fit for this
task is the digital state-variable filter (SVF) [14]. This structure
has the advantage of decoupled control of both pole frequency and
magnitude, along with the possibility to freely mix its three outputs
to produce arbitrary zeros. This allows it to produce any second-
order transfer function, whilst still having easily interpretable pa-
rameters.

The difference equation of the SVF is given by:

yBP[n] =
g(x[n]− h2[n− 1]) + h1[n− 1]

1 + g(g + 2R)

yLP[n] = g yBP[n] + h2[n− 1]

yHP[n] = x[n]− yLP[n]− 2RyBP[n]

h1[n] = 2yBP − h1[n− 1]

h2[n] = 2yLP − h2[n− 1]

y[n] = cHP yHP + cBP yBP + cLP yLP,

(10)

where g is a coefficient controlling the cutoff frequency of the fil-
ter (usually derived from an analog frequency using prewarping,

DAFx.2

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

298

https://github.com/boris-kuz/differentiable_iir_filters
https://github.com/boris-kuz/differentiable_iir_filters

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

but here used directly), and cHP, cBP and cLP, are the mixing coeffi-
cients for the three filter outputs. Parameter R sets the damping of
the filter, with self-oscillation occurring at R = 0. The trainable
parameters for the SVF are then cHP, cBP, cLP, R and g.

3.3.1. Initialization

The parameters cLP, cBP, cHP can be initialized randomly without
great concern for the range. On the other hand, parameters g and R
must be constrained in their initialization to positive values in order
to produce a stable filter. Practically, it makes sense to place an
upper bound on both g and R upon initialization. Sensible upper
bounds are R = 1/

√
2, which corresponds with a Butterworth

filter shape, and g = 1, which places the cutoff at approximately
12 kHz for a sample rate of 44.1 kHz.

3.4. State-Space Form

The above described direct-form and SVF structures have the abil-
ity to fit any transfer function, but are constrained in their topol-
ogy. If we want to relax this restriction, we can use the generalized
state-space form, given by:

h[n+ 1] = Ah[n] +Bx[n]

y[n] = Ch[n] +Dx[n]
(11)

where A,B,C,D are matrices.
This form has the additional advantage of scaling to arbitrary

order to fit higher-order transfer functions.

3.4.1. Initialization

Random initialization is trivial for the B,C,D matrices, but the A
matrix must be handled with care as it defines the stability of the
system. We must find a bounding value α of the matrix elements
aij such that any random A matrix containing only values in the
interval [−a, a] produces an unconditionally stable system.

It is well known that any linear state-space system is stable
if |λi| < 1, ∀ i where λi are the eigenvalues of the A matrix. It
is also well known that the Frobenius matrix norm ||.||F provides
an upper-bound for the spectral radius, and hence the magnitude
of the largest eigenvalue of a matrix. The Frobenius norm for a
square matrix of dimension n is given by:

||A||F =

√√√√ n∑
i=1

n∑
j=1

|aij |2 (12)

Therefore, we can derive the bounding value α by examining the
worst-case scenario where |aij | = α,∀ i, j, and ||A||F = 1, giv-
ing: √√√√ n∑

i=1

n∑
j=1

|α|2 = 1 (13)

which implies:

α =
1

n
. (14)

Hence, we are guaranteed a stable initial system if A is initialized
with uniform random values in the interval [−1/n, 1/n], where n
is order of the system.

4. EVALUATION

In this section we evaluate the performance of the proposed struc-
tures by examining several linear filtering test cases. A 1D convo-
lutional layer, a common building block in machine learning appli-
cations, will be used as a baseline method during the evaluations,
as in practice it is equivalent to an FIR filter. Additionally, we
present an example application of differentiable IIRs for non-linear
system identification. As the choice of amount of epochs trained
for each model is arbitrary, constrained only by time and compu-
tational resources, the models have been trained until at least two
models reached a minimum, i.e. a point at which the loss has not
improved for at least 100 epochs.

4.1. Training Data

All models were trained on a signal composed of a 90-second long
logarithmic sine sweep ranging from 20 to 20 kHz with a constant
amplitude followed by 90 seconds of white noise at 0 dB. For val-
idation and comparison, a 60-second long sine-sweep was used.
For the non-linear case, a 90-second electric guitar recording was
used for training and a different 60-second recording was used for
the validation. All examples were implemented at a fixed sample
rate of 48 kHz.

During training, these signals were divided into sequences of
2048 samples, which were then organised into batches to utilize
GPU parallelism.

4.2. Loss Function and Loss Surface

The loss function chosen for the evaluation was the commonly-
used mean squared error (MSE), defined as:

EMSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, (15)

where Y and Ŷ are the target signal and the output of the network,
respectively. Before evaluation of the MSE for each sequence of
data, both Y and Ŷ have the first few samples truncated to al-
low time for the filters to stabilize. Recent research in audio mod-
elling using deep learning has proposed the use of perceptually-
informed loss functions [15]. The use of perceptual loss functions,
such as A-weighting, can help improve the perceived accuracy of
a network without affecting its performance. Due to the domain-
specific nature of the networks proposed in this study, an evalua-
tion of the effects of this advanced training technique falls out of
scope and is therefore left for future work.

To evaluate the performance of the proposed structures we ex-
amine the magnitude of their frequency response after training as
well as their loss history, i.e. the evolution of the model loss as
a function of epochs. While the loss history provides important
insights into the smoothness of the loss surface of the different
networks, it does not give a full picture of the network properties
given the chosen structure. This is because the choice of optimizer
and its associated hyperparameters, such as learning rate, can eas-
ily influence the form this plot takes. In [16], Li et al. propose
a method to visualize the evolution of the model loss that is not
influenced by the choice of optimizer. This method consists in
evaluating the loss of the model at points along a line in parame-
ter space connecting the initialized model and the trained model.
Models with a monotonously falling loss are expected to behave

DAFx.3

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

299

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

102 103 104

Freq/Hz

−20

−10

0

A
m

p
li

tu
d

e/
d

B

Ref

One-Pole

FIR

0 200 400 600 800 1000
Epochs

10−3

10−2

10−1

L
os

s

10−3

10−2

10−1

Figure 1: Final frequency response (top) of the reference signal,
the FIR-model and the one-pole-model, loss history (middle) and
linear interpolation of the loss surface from the initial model to the
converged model (bottom) for the model trained on the first-order
lowpass.

better while training, i.e. converge smoothly to a sensible mini-
mum.

4.3. First-Order Lowpass Filter

In order to validate the differentiable first-order IIR filter, the train-
ing signal was processed through a one-pole lowpass with a cutoff
frequency at 1 kHz. The reference convolutional layer has a kernel
size of 32 and was trained for the same amount of epochs. As can
be seen in Figure 1, the differentiable one-pole model achieves a
very good fit, only deviating slightly near the Nyquist frequency.

The final MSE values for the trained models are:

Model Loss
One-Pole 5.061956E-04
FIR 1.832063E-05

4.4. Second-Order Lowpass Filter

The second test case consisted of fitting the response of a single
second-order non-resonant lowpass filter with a cutoff frequency
at 4 kHz. Four different differentiable structures were trained to
match the target response: a TDF-II, an SVF, a linear state-space
filter (LSS) of order 2 and a convolutional layer with kernel size
of 16. The top part of Fig. 2 shows the magnitude response of
the models after training, against that of the reference system. As
shown, the SVF and LSS networks achieve a good match of the tar-
get response, while DFT-II presents minor deviations in the stop-
band.

We can gain further insights into these results by observing the
evolution of the loss curve during training, depicted in the mid-
dle plot of Fig. 2. From this curve we can observe that, while

102 103 104

Freq/Hz

−30

−20

−10

0

A
m

p
li

tu
d

e/
d

B

Ref

SVF

TDF-II

LSS

FIR

0 500 1000 1500 2000
Epochs

10−3

10−2

10−1

L
os

s

10−2

10−1

L
os

s

Figure 2: Final frequency response (top), loss history (middle) and
linear interpolation of the loss surface from the initial model to the
converged model (bottom) for each model trained on the second-
order lowpass.

the TDF-II and LSS networks exhibited lower loss values than the
SVF during the first epochs, the SVF and LSS converged to a sen-
sible loss much faster than the TDF-II network. These results sug-
gest that either fully restricting the parametrization, as in the SVF,
or giving the network complete freedom over both its topology and
parametrization, as in the LSS, is more advantageous for training
purposes. On the other hand, the TDF-II loss appears to continue
decreasing, suggesting that given enough time the model will con-
verge. The loss surface exhibits similar smoothness for all three
models as shown in the bottom section of Fig. 2.

The final MSE values for each of the trained models are:

Model Loss
SVF 3.058363E-04
TDF-II 5.340165E-04
LSS 3.046548E-04
FIR 4.077413E-07

4.5. Three-band Parametric EQ

The second test case consisted of three second-order linear filters
in series: a non-resonant highpass filter with a 50-Hz cutoff, a
peak filter with a 3-dB gain at 500 Hz and a high-shelf filter with
a cutoff at 5 kHz and a gain of –3 dB. The models used to fit the
target response were: three TDF-II networks in series, three SVFs
in series, a convolutional layer with a kernel size of 1024 samples
and an LSS of order 6.

The top part of Fig. 3 shows the magnitude response of the
three proposed networks after training and that of the target sys-
tem. As shown by these results, the TDF-II and LSS networks
struggle to fit the target curve particularly below 100 Hz and at
the resonant peak. On the other hand, the SVF achieves a good
match of the target spectrum, with only minor deviations below

DAFx.4

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

300

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

102 103 104

Freq/Hz

−10

0

A
m

p
li

tu
d

e/
d

B

Ref

SVF

TDF-II

LSS

FIR

0 100 200 300 400 500 600
Epochs

10−2

10−1

100

L
os

s

10−2

10−1

L
os

s

Figure 3: Final frequency response (top), loss history (middle) and
linear interpolation of the loss surface from the initial model to the
converged model (bottom) for each model trained on the paramet-
ric EQ.

x(n)
<latexit sha1_base64="+i1Kz5GqHLvSCuxZ12ZUHqXm/qk=">AAAB6nicbZDNSgMxFIXv1L9a/6ouBQkWoW7KjBt1IwU3Lis4ttAOJZNm2tAkMyQZsQx9BTcutLhx4RO5823MtF1o64HAxzn3kntvmHCmjet+O4WV1bX1jeJmaWt7Z3evvH/woONUEeqTmMeqFWJNOZPUN8xw2koUxSLktBkOb/K8+UiVZrG8N6OEBgL3JYsYwSa3nqryrFuuuDV3KrQM3hwq9ePJ5AMAGt3yV6cXk1RQaQjHWrc9NzFBhpVhhNNxqZNqmmAyxH3atiixoDrIprOO0al1eiiKlX3SoKn7uyPDQuuRCG2lwGagF7Pc/C9rpya6DDImk9RQSWYfRSlHJkb54qjHFCWGjyxgopidFZEBVpgYe56SPYK3uPIy+Oe1q5p751Xq1zBTEY7gBKrgwQXU4RYa4AOBATzDK7w5wnlxJs77rLTgzHsO4Y+czx/VbI/V</latexit>

x(n)
<latexit sha1_base64="+i1Kz5GqHLvSCuxZ12ZUHqXm/qk=">AAAB6nicbZDNSgMxFIXv1L9a/6ouBQkWoW7KjBt1IwU3Lis4ttAOJZNm2tAkMyQZsQx9BTcutLhx4RO5823MtF1o64HAxzn3kntvmHCmjet+O4WV1bX1jeJmaWt7Z3evvH/woONUEeqTmMeqFWJNOZPUN8xw2koUxSLktBkOb/K8+UiVZrG8N6OEBgL3JYsYwSa3nqryrFuuuDV3KrQM3hwq9ePJ5AMAGt3yV6cXk1RQaQjHWrc9NzFBhpVhhNNxqZNqmmAyxH3atiixoDrIprOO0al1eiiKlX3SoKn7uyPDQuuRCG2lwGagF7Pc/C9rpya6DDImk9RQSWYfRSlHJkb54qjHFCWGjyxgopidFZEBVpgYe56SPYK3uPIy+Oe1q5p751Xq1zBTEY7gBKrgwQXU4RYa4AOBATzDK7w5wnlxJs77rLTgzHsO4Y+czx/VbI/V</latexit>

y(n)
<latexit sha1_base64="/Czgdv/wFd/UV6eoW1+gSys/AVk=">AAAB6nicbZDNSgMxFIXv+FvrX9WlIMEi1E2ZcaNupODGZQXHFtqhZNJMG5pkhiQjDENfwY0LLW5c+ETufBszbRfaeiDwcc695N4bJpxp47rfzsrq2vrGZmmrvL2zu7dfOTh81HGqCPVJzGPVDrGmnEnqG2Y4bSeKYhFy2gpHt0XeeqJKs1g+mCyhgcADySJGsCmsrCbPe5WqW3enQsvgzaHaOJlMPgCg2at8dfsxSQWVhnCsdcdzExPkWBlGOB2Xu6mmCSYjPKAdixILqoN8OusYnVmnj6JY2ScNmrq/O3IstM5EaCsFNkO9mBXmf1knNdFVkDOZpIZKMvsoSjkyMSoWR32mKDE8s4CJYnZWRIZYYWLsecr2CN7iysvgX9Sv6+69V23cwEwlOIZTqIEHl9CAO2iCDwSG8Ayv8OYI58WZOO+z0hVn3nMEf+R8/gDW8o/W</latexit>

y(n)
<latexit sha1_base64="/Czgdv/wFd/UV6eoW1+gSys/AVk=">AAAB6nicbZDNSgMxFIXv+FvrX9WlIMEi1E2ZcaNupODGZQXHFtqhZNJMG5pkhiQjDENfwY0LLW5c+ETufBszbRfaeiDwcc695N4bJpxp47rfzsrq2vrGZmmrvL2zu7dfOTh81HGqCPVJzGPVDrGmnEnqG2Y4bSeKYhFy2gpHt0XeeqJKs1g+mCyhgcADySJGsCmsrCbPe5WqW3enQsvgzaHaOJlMPgCg2at8dfsxSQWVhnCsdcdzExPkWBlGOB2Xu6mmCSYjPKAdixILqoN8OusYnVmnj6JY2ScNmrq/O3IstM5EaCsFNkO9mBXmf1knNdFVkDOZpIZKMvsoSjkyMSoWR32mKDE8s4CJYnZWRIZYYWLsecr2CN7iysvgX9Sv6+69V23cwEwlOIZTqIEHl9CAO2iCDwSG8Ayv8OYI58WZOO+z0hVn3nMEf+R8/gDW8o/W</latexit>

LTI
<latexit sha1_base64="YlnA5EIuwr9atHEnavxzi6Kt62w=">AAAB6XicbVA9SwNBEJ3zM8avqKXNYhCswl0atZGAjYJFxJwJJEfY28wlS/b2jt09IYT8BBsLFVv/kZ3/xk1yhSY+GHi8N8PMvDAVXBvX/XZWVtfWNzYLW8Xtnd29/dLB4aNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4fXUbz6h0jyRDTNKMYhpX/KIM2qs9HDXuO2Wym7FnYEsEy8nZchR75a+Or2EZTFKwwTVuu25qQnGVBnOBE6KnUxjStmQ9rFtqaQx6mA8O3VCTq3SI1GibElDZurviTGNtR7Foe2MqRnoRW8q/ue1MxNdBGMu08ygZPNFUSaIScj0b9LjCpkRI0soU9zeStiAKsqMTadoQ/AWX14mfrVyWXHvq+XaVZ5GAY7hBM7Ag3OowQ3UwQcGfXiGV3hzhPPivDsf89YVJ585gj9wPn8ASA+NTg==</latexit>

LTI
<latexit sha1_base64="YlnA5EIuwr9atHEnavxzi6Kt62w=">AAAB6XicbVA9SwNBEJ3zM8avqKXNYhCswl0atZGAjYJFxJwJJEfY28wlS/b2jt09IYT8BBsLFVv/kZ3/xk1yhSY+GHi8N8PMvDAVXBvX/XZWVtfWNzYLW8Xtnd29/dLB4aNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4fXUbz6h0jyRDTNKMYhpX/KIM2qs9HDXuO2Wym7FnYEsEy8nZchR75a+Or2EZTFKwwTVuu25qQnGVBnOBE6KnUxjStmQ9rFtqaQx6mA8O3VCTq3SI1GibElDZurviTGNtR7Foe2MqRnoRW8q/ue1MxNdBGMu08ygZPNFUSaIScj0b9LjCpkRI0soU9zeStiAKsqMTadoQ/AWX14mfrVyWXHvq+XaVZ5GAY7hBM7Ag3OowQ3UwQcGfXiGV3hzhPPivDsf89YVJ585gj9wPn8ASA+NTg==</latexit>

LTI
<latexit sha1_base64="YlnA5EIuwr9atHEnavxzi6Kt62w=">AAAB6XicbVA9SwNBEJ3zM8avqKXNYhCswl0atZGAjYJFxJwJJEfY28wlS/b2jt09IYT8BBsLFVv/kZ3/xk1yhSY+GHi8N8PMvDAVXBvX/XZWVtfWNzYLW8Xtnd29/dLB4aNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4fXUbz6h0jyRDTNKMYhpX/KIM2qs9HDXuO2Wym7FnYEsEy8nZchR75a+Or2EZTFKwwTVuu25qQnGVBnOBE6KnUxjStmQ9rFtqaQx6mA8O3VCTq3SI1GibElDZurviTGNtR7Foe2MqRnoRW8q/ue1MxNdBGMu08ygZPNFUSaIScj0b9LjCpkRI0soU9zeStiAKsqMTadoQ/AWX14mfrVyWXHvq+XaVZ5GAY7hBM7Ag3OowQ3UwQcGfXiGV3hzhPPivDsf89YVJ585gj9wPn8ASA+NTg==</latexit>

LTI
<latexit sha1_base64="YlnA5EIuwr9atHEnavxzi6Kt62w=">AAAB6XicbVA9SwNBEJ3zM8avqKXNYhCswl0atZGAjYJFxJwJJEfY28wlS/b2jt09IYT8BBsLFVv/kZ3/xk1yhSY+GHi8N8PMvDAVXBvX/XZWVtfWNzYLW8Xtnd29/dLB4aNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4fXUbz6h0jyRDTNKMYhpX/KIM2qs9HDXuO2Wym7FnYEsEy8nZchR75a+Or2EZTFKwwTVuu25qQnGVBnOBE6KnUxjStmQ9rFtqaQx6mA8O3VCTq3SI1GibElDZurviTGNtR7Foe2MqRnoRW8q/ue1MxNdBGMu08ygZPNFUSaIScj0b9LjCpkRI0soU9zeStiAKsqMTadoQ/AWX14mfrVyWXHvq+XaVZ5GAY7hBM7Ag3OowQ3UwQcGfXiGV3hzhPPivDsf89YVJ585gj9wPn8ASA+NTg==</latexit>

NL
<latexit sha1_base64="Qm2WiVYEbKL1q1wTC1EoCuTeSQI=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFS5p1EYCNhYiUTwTSI6wt9lLluztHbtzQjjyD2wsVGz9SXb+GzfJFZr4YODx3gwz84JECoOu++0UVlbX1jeKm6Wt7Z3dvfL+waOJU824x2IZ63ZADZdCcQ8FSt5ONKdRIHkrGF1N/dYT10bE6gHHCfcjOlAiFIyile5vb3rlilt1ZyDLpJaTCuRo9spf3X7M0ogrZJIa06m5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342u3RCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuG5nwmVpMgVmy8KU0kwJtO3SV9ozlCOLaFMC3srYUOqKUMbTsmGUFt8eZl49epF1b2rVxqXeRpFOIJjOIUanEEDrqEJHjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QOrEIz1</latexit>

NL
<latexit sha1_base64="Qm2WiVYEbKL1q1wTC1EoCuTeSQI=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFS5p1EYCNhYiUTwTSI6wt9lLluztHbtzQjjyD2wsVGz9SXb+GzfJFZr4YODx3gwz84JECoOu++0UVlbX1jeKm6Wt7Z3dvfL+waOJU824x2IZ63ZADZdCcQ8FSt5ONKdRIHkrGF1N/dYT10bE6gHHCfcjOlAiFIyile5vb3rlilt1ZyDLpJaTCuRo9spf3X7M0ogrZJIa06m5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342u3RCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuG5nwmVpMgVmy8KU0kwJtO3SV9ozlCOLaFMC3srYUOqKUMbTsmGUFt8eZl49epF1b2rVxqXeRpFOIJjOIUanEEDrqEJHjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QOrEIz1</latexit>

Figure 4: Block diagram of a Wiener-Hammerstein model.

approx. 30 Hz. The model loss surfaces, as observed by their lin-
ear interpolations the bottom part of Fig. 3, show that both the
SVF and the LSS models had a “bump“ to overcome, whereas the
loss surface of the TDF-II model seems to be smoother. The loss
history plot in the middle of Fig. 3 tells a slightly different story,
showing the TDF-II model to behave in a more unpredictable man-
ner as compared to the SVF and LSS, which exhibited very similar
training performance. In contrast to the previous test case, the loss
for the TDF-II model is approximately the same as for the other
two, suggesting that for more complex systems the choice of filter
structure does not matter as much as for the simple case. While
none of the recurrent models fit the target exactly, it is still clear
that they approximate the shape nonetheless and are trainable us-
ing backpropagation.

The final MSE values for each of the trained models are:

Model Loss
SVF 3.920308E-03
TDF-II 3.951538E-03
LSS 3.947347E-03
FIR 1.039456E-06

4.6. Wiener-Hammerstein Model

In this section we present an example application of differentiable
IIRs within the context of block-oriented nonlinear system mod-
elling using a Wiener-Hammerstein structure. Previous research
on virtual analog (VA) modeling has studied the use of block-

0 50 100 150 200 250 300 350 400
Samples

−0.5

0.0

0.5

A
m

p
li

tu
d

e SVF

TDF-II

LSS

FIR

Ref

0 250 500 750 1000 1250 1500 1750
Epochs

10−2L
os

s

10−2

L
os

s

Figure 5: Sample output (top), loss history (middle) and lin-
ear interpolation of the loss surface from the initial model to the
converged model (bottom) for each Wiener-Hammerstein model
trained on the nonlinear signal.

oriented structures to emulate a wide variety of non-linear music
systems, such as guitar amplifiers [17] and audio distortion cir-
cuits [18–21]. This approach falls under the category of black-box
modeling, an area of study that deals with the emulation of non-
linear systems based on input–output measurements of the device
under study. Figure 4 shows a block diagram representation of a
Wiener-Hammerstein model which consists of a static, or memory-
less, nonlinearity surrounded by two LTI filters. This same general
structure is used, e.g., in [21] to model a tube-based pre-amplifier
pedal.

We can design a differentiable Wiener-Hammerstein model by
implementing the LTI filters and the static non-linear function in
Fig. 4 with differentiable IIR filters and a multi-layer perceptron
(MLP) [10], respectively. The proposed architecture has two desir-
able properties. First, the model is now fully differentiable and all
three sections can be trained simultaneously in an end-to-end fash-
ion. Secondly, we do not need to make any assumptions regarding
the shape of the non-linear stage. The MLP, being an universal ap-
proximator, should be able to learn any arbitrary static non-linear
function provided it has enough capacity.

The MLP structure chosen for this specific case consisted of
four densely-connected layers, with two being hidden layers of
width 20. The first layer maps the input width, which is one in
this case, to the width of the hidden layers, i.e. 20. The final layer
maps the signal back to the desired output width of one. The ac-
tivation function was chosen to be tanh and placed after every
hidden layer. Two differentiable second-order IIRs were used to
complete the Wiener-Hammerstein model, one before and one af-
ter the MLP. This structure can be extended with relative ease, at
the cost of increased computational complexity, by increasing the
number of filters used and and by modifying the size of the MLP.
For the FIR reference model, a kernel size of 128 was chosen for
both input and output filters.

DAFx.5

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

301

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

The proposed structure was used to model a Boss DS-1 guitar
distortion pedal [22]. For this model, all knobs on the pedal were
set to 50% of their value. Training was conducted by using a test
signal consisting of a 90-second passage of electric guitar playing.

As shown in the top section of Fig. 5, the TDF-II, LSS and
FIR models behave quite similarly, while the SVF model diverges
slightly. Though none of the models fit the target perfectly, they all
perform relatively well. Audio examples for the proposed models
and validation signal used can be found in alongside the accompa-
nying code for this paper.

It is notable that the accuracy achieved is comparable to that
achieved in [17, 20, 21], but without the use of a specialized mea-
surement signal and the optimization process employed in this pre-
vious work. This indicates the suitability of differentiable IIR fil-
ters and an end-to-end machine learning approach for this type of
black-box modeling of nonlinear systems.

The final MSE for each nonlinear model is:

Model Loss
SVF 3.690291E-03
TDF-II 1.001991E-02
LSS 3.763787E-03
FIR 4.327687E-04

4.7. Computational Cost

The following table gives an overview of the floating-point oper-
ations per sample (adds, multiplies) for each considered structure
for a second-order section. The accompanying code has been used
as a basis for these operation counts.

Model Multiplies/Sample Adds/Sample
SVF 10 8
TDF-II 5 4
LSS 9 6

5. CONCLUSIONS

In this work we made the connection between the RNN, a familiar
class of structures in the machine learning domain, and IIR filters,
providing several implementations of such filters within a machine
learning context. These differentiable IIR filters can be employed
as part of established machine learning model structures and train-
ing processes, particularly in the audio domain. We evaluated and
compared the implementations with a more computationally inten-
sive baseline model and showed that they can, broadly, approach
the performance of this baseline. Lastly, we presented an example
of how these structures can be integrated within a larger machine
learning system by using them along with an MLP to construct a
Wiener-Hammerstein model of a Boss DS-1 pedal.

6. REFERENCES

[1] A. van den Oord et al., “Wavenet: A generative model for
raw audio,” CoRR abs/1609.03499, 2016.

[2] S. Mehri et al., “SampleRNN: An unconditional end-to-end
neural audio generation model,” in Proc. Int. Conf. on Learn-
ing Representations (ICLR), Toulon, France, 2017.

[3] E.-P. Damskägg, L. Juvela, E. Thuillier, and V. Välimäki,
“Deep learning for tube amplifier emulation,” in Proc.
IEEE Int. Conf. Acoustics, Speech and Signal Proc. (ICASSP
2019), Brighton, UK, 2019, pp. 471–475.

[4] A. Wright, E.-P. Damskägg, and V. Välimäki, “Real-time
black-box modelling with recurrent neural networks,” in
Proc. 22nd Int. Conf. on Digital Audio Effects (DAFx-19),
Birmingham, UK, 2019.

[5] V. Välimäki and J. Rämö, “Neurally controlled graphic
equalizer,” IEEE/ACM Trans. Audio, Speech, and Lang.
Proc,, vol. 27, no. 12, pp. 2140–2149, 2019.

[6] J. Parker, F. Esqueda, and A. Bergner, “Modelling of non-
linear state-space systems using a deep neural network,” in
Proc. 22nd Int. Conf. on Digital Audio Effects (DAFx-19),
Birmingham, UK, 2019.

[7] M. Martinez Ramirez and J. Reiss, “End-to-end equalization
with convolutional neural networks,” in Proc. 21st Int. Conf.
on Digital Audio Effects (DAFx-18), Aveiro, Portugal, 2018,
pp. 296–303.

[8] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “DDSP: Dif-
ferentiable digital signal processing,” in Proc. Int. Conf. on
Learning Representations (ICLR), Addis Ababa, Ethiopia,
2020.

[9] J. L. Elman, “Finding structure in time,” Cognitive Science,
vol. 14, no. 2, pp. 179–211, 1990.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, 2016, http://www.deeplearningbook.
org.

[11] A. Paszkeand et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural
Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

[12] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, Software available from
tensorflow.org.

[13] J. O. Smith III, Introduction to Digital Filters with Audio
Applications, W3K Publishing, http://www.w3k.org/books/,
2007.

[14] A. Wishnick, “Time-varying filters for musical applications,”
in Proc. 17 Int. Conf. Digital Audio Effects (DAFx-14), Er-
langen, Germany, Sept. 2014, pp. 69–76.

[15] A. Wright and V. Välimäki, “Perceptual loss function for
neural modelling of audio systems,” in Proc. IEEE Int.
Conf. Acoustics, Speech and Signal Proc. (ICASSP 2020),
Barcelona, Spain, 2020, pp. 251–255.

[16] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visual-
izing the loss landscape of neural nets,” Advances in Neural
Information Processing Systems, pp. 6389–6399, 2018.

[17] F. Eichas, S. Möller, and U. Zölzer, “Block-oriented gray box
modeling of guitar amplifiers,” in Proc. 20th Int. Conf. Digi-
tal Audio Effects (DAFx-17), Edinburgh, UK, Sept. 2017, pp.
184–191.

[18] A. Novak, L. Simon, P. Lotton, and J. Gilbert, “Chebyshev
model and synchronized swept sine method in nonlinear au-
dio effect modeling,” in Proc. 13th Int. Conf. Digital Audio
Effects (DAFx-10), Graz, Austria, Sept. 2010, pp. 423–426.

DAFx.6

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

302

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.w3k.org/books/

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

[19] R. Cauduro Dias de Paiva, J. Pakarinen, and V. Välimäki,
“Reduced-complexity modeling of high-order nonlinear au-
dio systems using swept-sine and principal component anal-
ysis,” in Proc. 125th AES Conv., Helsinki, Finland, March
2012.

[20] F. Eichas, S. Möller, and U. Zölzer, “Block-oriented model-
ing of distortion audio effects using iterative minimization,”
in Proc. 18th Int. Conf. Digital Audio Effects (DAFx-15),

Trondheim, Norway, Dec. 2015, pp. 243–248.

[21] F. Eichas and U. Zölzer, “Black-box modeling of distor-
tion circuits with block-oriented models,” in Proc. 19th Int.
Conf. Digital Audio Effects (DAFx-16), Brno, Czech Repub-
lic, Sept. 2016, pp. 39–45.

[22] Roland Corp., “Boss DS-1 Service Notes,” Dec. 1994.

DAFx.7

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

303

	1 Introduction
	2 IIR filters as recurrent neural networks
	2.1 Training
	2.2 Vanishing or exploding gradients
	2.3 Implementation

	3 IIR structures for DDSP
	3.1 First-order section
	3.1.1 Initialization

	3.2 Direct-Form second-order section
	3.2.1 Initialization

	3.3 SVF
	3.3.1 Initialization

	3.4 State-Space Form
	3.4.1 Initialization

	4 Evaluation
	4.1 Training Data
	4.2 Loss Function and Loss Surface
	4.3 First-Order Lowpass Filter
	4.4 Second-Order Lowpass Filter
	4.5 Three-band Parametric EQ
	4.6 Wiener-Hammerstein Model
	4.7 Computational Cost

	5 Conclusions
	6 References

@inproceedings{DAFx2020_paper_52,
 author = "Kuznetsov, Boris and Parker, Julian and Esqueda, Fabian",
 title = "{Differentiable IIR Filters for Machine Learning Applications}",
 booktitle = "Proceedings of the 23-rd Int. Conf. on Digital Audio Effects (DAFx2020)",
 editor = "Evangelista, G.",
 location = "Vienna, Austria",
 eventdate = "2020-09-08/2020-09-12",
 year = "2020-21",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "1",
 doi = "",
 pages = "297--303"
}

