Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

BLIND ARBITRARY REVERB MATCHING

Andy Sarroff and Roth Michaels

iZotope, Inc.
Cambridge, MA, USA
asarroff@izotope.com

ABSTRACT

Reverb provides psychoacoustic cues that convey information con-
cerning relative locations within an acoustical space. The need
arises often in audio production to impart an acoustic context on an
audio track that resembles a reference track. One tool for making
audio tracks appear to be recorded in the same space is by applying
reverb to a dry track that is similar to the reverb in a wet one. This
paper presents a model for the task of “reverb matching,” where
we attempt to automatically add artificial reverb to a track, making
it sound like it was recorded in the same space as a reference track.
We propose a model architecture for performing reverb matching
and provide subjective experimental results suggesting that the re-
verb matching model can perform as well as a human. We also
provide open source software for generating training data using an
arbitrary Virtual Studio Technology plug-in.

1. INTRODUCTION

The audio production industry relies on audio engineers to create
consistent, coherent narratives out of audio arriving from multi-
ple sources. For instance, re-recording engineers and mixers need
to mix audio from Automated Dialogue Replacement (ADR) into
scenes that already have production dialogue. The ADR audio
must be indistinguishable from originally recorded production di-
alogue. Documentary editors receive audio and video from sev-
eral sources and combine them together with voiceover to tell a
story. Audio segments might be sourced across multiple years and
recorded on different devices and microphones, as well as in dif-
ferent acoustic environments. Podcasters interview subjects in sev-
eral spaces, but they want all sources to sound like they’re having
a conversation in the same room. Subtle differences in audio can
disorient listeners, distracting them from the narrative. Creating
cohesion is integral to providing a good listening experience.

Consistent acoustic cues, such as reverb, are essential to cre-
ating the perception that all sources were recorded in the same
place [1]. In practice, an audio engineer might spend an enor-
mous amount of time hand-tweaking parameters of an artificial
reverb generator to make dry audio sources sound similar to re-
verberant ones. This is a challenging task because there may be
nearly infinite combinations of reverb generation parameters. In
other words, the audio engineer must manually search an incredi-
bly large parameter space to find the right sound. On top of this,
certain combinations of reverb parameters may interact with each
other in hard-to-predict ways.

Copyright: © 2020 Andy Sarroff et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 Unported License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

%
e DRFx

In this paper, we present a model for the task of “reverb match-
ing.” The model takes as input a reverberant audio signal and infers
the parameters or preset of an artificial reverb generator. These, in
turn, may be used to add reverb to a non-reverberant target au-
dio signal, saving an audio engineer the time-consuming effort of
manually searching the reverb parameter space. We also provide
open source software for generating a large amount of training data
through many audio plug-in instances running in parallel.

In the following section we provide an overview of related
work. Section 3 defines the reverb matching task, and Section 4
explains how we created a custom dataset for the task. Next we
describe the model architecture in Section 5. Finally, we provide
the statistical results of an experiment involving human subjects
(Section 6), followed by concluding remarks in Section 7.

2. RELATED WORK

The reverb matching task falls under the more general category
of “sound matching,” which has recently gained interest in the re-
search community. In the sound matching task, there exists some
target audio, and we wish for a model to infer a set of parameters
or a preset corresponding to an audio processing unit. When pop-
ulating the audio processor with the inferred parameters or preset,
it should be able produce audio that sounds similar to our target
audio. Most papers have attended to the task of sound matching
for virtual instrument synthesizers, which are capable of generat-
ing a highly diverse set of sounds, some of which imitate acoustic
instruments. In these cases a model is fed a target signal, and the
model infers the set of parameters associated with a synthesizer
that will generate audio having similar pitch, timbre, and envelope
characteristics.

Perhaps one of the first examples of sound matching for vir-
tual instrument synthesizers can be found in [2], which proposes a
simple linear regression model for inferring the parameters to an
arbitrary synthesizer. The authors test their model on a wide range
of synthesizers. Hand-picked features such as root mean square
energy and zero-crossing rate are the input to their model, along
with meta-features like first and second order time derivatives of
the features. Using principal components analysis (PCA), the au-
thors attempt only to infer parameters that contribute the highest
variance to their training data. Their model is capable of match-
ing sounds of arbitrary duration, as is ours. However, between
the design choices of linear model, hand crafted input features,
and method of choosing parameters, we expect that their approach
would have difficulty matching sounds where there’s a high degree
of interdependence between parameters.

Modern approaches to matching the sound of virtual instru-
ment synthesizers use deep learning methods. The real-valued
parameters of the Dexed synthesizer plug-in, which is based on
Virtual Studio Technology (VST), are matched in [3] from target

24007
DBEx

https://www.izotope.com
mailto:asarroff@izotope.com
http://creativecommons.org/licenses/by/3.0/

Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

sounds transformed to Mel-frequency cepstral coefficients. The
authors test the efficacy of several neural networks, including one
that has, similar to our proposed model, a bidirectional recurrent
layer. One of the advantages of using a recurrent network is that
input sequences may be of arbitrary length. However their models
were apparently only trained and tested on audio having a duration
of 1sec. In our case, we wish to match reverberant audio which
may be of arbitrary duration.

A custom synthesizer employing subtractive and frequency
modulation synthesis is matched in [4] using a deep convolutional
model. The input to the model is either the Short-time Fourier
transform (STFT) or raw audio and the outputs are the real-valued
parameters of the synthesizer, quantized to 16 discrete levels and
represented as one-hot vectors. This is the only work in our review
that conducted a formal listening test, as we do. Listening tests
are arguably at least as important as objective tests for evaluating
sound matching models, as it is difficult to map objective test error
to perceptual judgment of quality. Yet there exists several fun-
damental differences between our work and theirs. For instance,
we do not quantize real-valued parameters and we use a recurrent
neural net architecture. The convolutional architectures proposed
by [4] expect fixed-length input sequences and have small kernel
sizes providing receptive fields that are at most fractions of a sec-
ond long. Our architecture has no constraints on the signal length
and should be able to capture longer-term dependencies due to the
gated recurrent architecture. We believe these differences may be
important to characterize important attributes such as the length
and shape of a reverberant tail.

The Flow Synthesizer [5] is perhaps the most sophisticated
model, at the time of writing, for matching virtual instrument syn-
thesizer sounds. The authors of the Flow Synthesizer present a
generative model that includes a variational autoencoder which
provides a latent space for the target audio. The distribution over
the latent space is transformed through a bijective regression flow
to the parameters of the Diva synthesizer. As a result, the Flow
Synthesizer can simultaneously learn a lower dimensional mani-
fold for reconstructing the target audio, as well as a mapping from
the manifold to the parameters of the synthesizer. The model is
trained on real-valued parameters to the synthesizer and, similar to
[2], only attempts to infer parameters leading to the greatest vari-
ability in the data, as determined by PCA.

The sound matching task has not been applied to many do-
mains outside of virtual instrument synthesizers. An example of
reverb matching (which is explicitly defined in Section 3) can be
found in [6]. The authors first train a universal background model
(UBM) of reverberant audio. They subsequently adapt the UBM
to a Gaussian mixture model for each preset associated with a set
of reverb generators. This approach does not scale well when the
number of presets under consideration becomes large.

There have also been several proposals for "acoustic match-
ing." For instance, [7] suggests a method for characterizing record-
ings so that audio embeddings associated with the same impulse
response have smaller geometric distance than those associated
with differing impulse responses. The reference and target embed-
dings are subsequently used as conditioning signals in a waveform-
to-waveform model to transfer the acoustic context from one record-
ing to the next. An important difference between the work of [7]
and ours is that the former relies on strong assumptions that the
reverberant recordings can be fully characterized by an impulse
response.

A defining characteristic of our approach is the fact that our

%
e DRFx

system is designed to match natural as well as unnatural reverb.
Our model makes no assumptions about whether the reverb can be
characterized by an impulse response or that it was produced by
a linear time invariant system such as a physical acoustic space.
There is no requirement that the reverberant signal be decomposed
into a dry source and reverb kernel.

The reverb matching task has constraints that make it unique
from tasks that involve matching the sounds of a virtual instrument
synthesizer. First, a reverb generator may be thought of as an audio
“effect,” where an underlying audio source undergoes processing
and is mixed again with the original source. Because of this, we
want the model to “ignore” the underlying source material, mak-
ing an inference that is independent of the affected source. The
model must be able to reliably infer the correct reverb settings,
even when the reverberated target audio has been generated using
different source material. Second, the duration of a reverberated
source may vary greatly according to the reverb time of the reverb
generator. Virtual instrument synthesizers may also exhibit vary-
ing duration due to changes in release time, but the audible tail of
reverb may last many seconds, a less likely scenario with typical
virtual instrument synthesizer patches.

3. REVERB MATCHING

Consider an artificial reverb generator that reverberates an input
signal and mixes the reverberated output with the input. We denote
the set of all possible input signals, output signals, and parameters
that control the characteristics of the reverb generator as X,),
and & respectively, and we define a family of reverb generating
functions

G={gp: X =YV |¢cd}. (1)

(We denote vector-valued functions and variables in boldface, whereas
scalar values are denoted in normal typeface. Vector elements are
indicated using subscripts.) Thus, given an arbitrary dry input sig-
nal z € X, mixing ratio = € [0, 1], and reverb parameters ¢ € P,
a particular reverb system is summarized as following.

y=mnge(x)+(1—7m)a 2)

SN

In the reverb matching task, we’d like to recover g4 and 7
from y, without knowing anything about x. Notably, g4 may be
non-differentiable so that a direct solution is not possible or practi-
cal. We approach this task by training a temporally adaptive neural
net f parameterized by 0 so that, building on Equation 2, the fol-
lowing holds true.

3)
gp(x) + (1 —7)x @)

In this work, we take a data-driven approach to optimizing the pa-
rameters of the model. Due to the novelty of the task, there are
no off-the-shelf datasets available for reverb matching so we must
build a custom dataset. Our method for making training data is
described in general terms in the following section. (More explicit
details related to our experiment are provided in Section 6.)

24007
DBEx

Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

4. DATA

We build our own custom dataset by first choosing an artificial
reverb generator G that is capable of producing enough different
styles of reverb to satisfy our domain and codomain of interest, X’
and). In practice, we choose a VST version of a reverb audio
plug-in.

Starting with a corpus of non-reverberated audio, we synthe-
size a dataset,

D ={(g¢,m ®,y)
lgp€G, mel0,1],xc X, y=gs(x)}. ()

There are a few actively developed command line tools for batch
processing large-scale audio data through a VST plug-in, e.g., Mrs.
Watson' and RenderMan®. However we found that offline batch
processing tools such as these could fail to render audio properly
under certain conditions. In particular, unexpected results were
encountered with reverb plug-ins that render reverb tails extending
beyond the duration of the input audio file.

We mitigated these issues by writing a batch processing server
that generates audio data from an arbitrary VST plug-in. The
server, which we provide as open source software’, was built with
Max by Cycling *74*. The application runs an HTTP server writ-
ten in Node.js to process HTTP requests specifying a dry audio file
and arbitrary VST plug-in parameter values. Each request triggers
the application to processes the dry audio file through an instance
of a VST plug-in and saves an output audio file after the plug-in’s
output gain settles to zero.

Our server is designed to process many files concurrently. For
this work, the number of data files processed in parallel was lim-
ited to a hand-tuned number of reverb plug-in instances that could
safely run with the available CPU overhead on our hardware. An
area of future development is to detect audio dropouts due to CPU
overload and automatically adjust the number of data files being
rendered in parallel.

For each example of dry audio, we uniformly sample a rever-
berator g¢ from G and mixing ratio 7 in [0, 1]. We subsequently
generated one or more associated examples of reverberated audio
using the batch processing server. The specific dry data and set of
reverberators G, chosen to correspond to the codomain of interest,
are discussed with respect to our experiment in Section 6.

5. MODEL

The model, shown in Figure 1, is a non-causal temporally adaptive
neural network. Raw time-domain reverberant audio of arbitrary
duration is transformed to the frequency domain using an STFT.
Frames are further grouped into subsequences of maximum length
L frames. Frame groups are processed through a stack of bidirec-
tional recurrent layers [8]. A recurrent layer is a first-order stateful
function that is often applied to temporal sequences of inputs. The
output at the current time step is a nonlinear function of an affine

Thttp://teragonaudio.com/MrsWatson

Zhttps://github.com/fedden/RenderMan

3https://github.com/iZotope/max_vst_renderer

“https://cycling74.com/products/max

SWe’ve informally tested various transformations of the STFT as input,
including Mel-scale frequencies, log amplitudes, and cepstral coefficients.
Although not shown in our results, we found that the STFT input consis-
tently performed best for the reverb matching task.

%
e DRFx

transformation of the layer input and the current state. The current
state is typically the output of the previous step. A bidirectional
recurrent layer additionally applies the nonlinear function, with
different weights, to the sequence in reverse order.

The recurrent cell of each direction of each layer is a gated
recurrent unit (GRU) [9]. A GRU includes a reset and an update
gate. The reset and update gates are each a nonlinear function of
an affine transformation of the input and previous state. The reset
gate is used to create an intermediate state that “forgets” some por-
tion of its current state. An intermediate output is produced as a
nonlinear function of a different affine transformation of the input
and the intermediate state. The update gate is used to mix a portion
of the previous state with a complementary portion of the interme-
diate output. Hence a GRU may be trained to adaptively reset and
update relevant portions of the state, based upon the current input
and previous state. A bidirectional gated recurrent unit (BGRU)
applies two GRUs, one to the input sequence (forward GRU), and
another to the time-reversed input sequence (reverse GRU). The
output of the reverse GRU is time-reversed and concatenated with
the output of the forward GRU.

The final time step of the last recurrent layer is sliced and
followed by a fully connected layer, which projects the last time
step of the recurrent outputs to the required output dimensionality
D, optionally followed by an activation function. We apply mean
pooling over the inferences pertaining to groups of subsequences.
For training, we use a subset of the dataset D* C D. In the rest
of this paper, we let N = |D”|, and any particular element in the
training set is indicated by a superscript index.

We consider two versions of the model.

1. Aregression model, which infers the reverb parameters ¢ €
®, where ® C [0,1]".

2. A classification model, which infers the posterior probabil-
ity ¢(Gly), where D = |G]|.

In both versions, the model additionally infers 7, the mixing
coefficient. The objective function is

L=aLl +(1—a)L’, (6)

where £7 is the mean-squared error of the model’s mixing ratio
inference and « is a term that weights the relative influences of
the losses. Each model and its loss £Y is described in more detail
below.

5.1. Regression Model

The regression model directly infers reverb parameters J) € RP.
In this version, there is no activation function applied to the fully
connected layer, and the network can be described as follows.

fo(y) = [&,7]. o)

The objective function £9 is the mean-squared error of ground
truth and inferred reverb parameters, ¢ and ¢.

5.2. Classification Model

The classification model infers one of D discrete reverberators,
represented as a one-hot vector. Denote the following function h,
which maps a reverberator to a one-hot vector.

D
> pi= 1} : @®)
i=1

24007
DBEx

h:g—>{p€{0,1}D

http://teragonaudio.com/MrsWatson
https://github.com/fedden/RenderMan
https://github.com/iZotope/max_vst_renderer
https://cycling74.com/products/max

Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

BGRU Stack

(STFT)—»(SUbsequences)—»

(G ~—~(EGRD D

Subsequence

Pooling

p (Fully)
_> Connected —

Figure 1: Model architecture.

Table 1: List of PhoenixVerb parameters.

Parameter
Diffusion Diffuser Type Diffuser Size
Predelay Early Attack Early Time
Early Slope Envelope Attack Envelope Time
Envelope Slope Reverb Size Reverb Time
Xover Frequency Low Mid Balance = Damp Frequency
Damping Factor ~ Early Level Reverb Level
Width Output Filter Type Out Frequency

We denote the ground truth probability distribution of a particular
reverberator as p = h(gg). The first D elements of the fully
connected layer are passed through a soft-max activation function,
which we denote g so that the network can be described as follows.

©)

We use a cross-entropy loss function £7 of g relative to p.

6. EXPERIMENTS

We chose monophonic reverberant dialogue as our codomain of
interest. We used several speech corpora to build a dataset. (See
Section 4 for a description of how the reverberant data was gen-
erated.) By far, the largest amount of data was culled from the
VCTK speech corpus [10], which consists of 109 subjects reading
newspaper texts, and consists of approximately 44 hours of audio.
‘We randomly selected 86 subjects for training data and put the rest
aside for validation and testing. The VCTK speech corpus con-
sists largely of monotone non-emotional speaking, so we added a
few other datasets of emotional speech to the training data. These
included the Berlin Database of Emotional Speech [11] and the
Surrey Audio-Visual Expressed Emotion Database [12].

We chose the PhoenixVerb VST audio plug-in by Exponential
Audio, which has a broad set of tunable parameters for generat-
ing many types of natural-sounding reverb. The parameter list is
provided in Table 1. We note, however, that any reverb generator
satisfying one’s matching requirements should suffice. For each
dry audio file in our dataset, we chose at random a Phoenix Verb
preset form the list of presets shown in Table 2. These presets, se-
lected largely from the “ADR and Post” category of PhoenixVerb’s
presets, were chosen by an expert audio engineer for their appro-
priateness to the codomain of interest.

The model was trained and tested using reverberated mono-
phonic audio sampled at 16 kHz. (High quality resampling was
performed when necessary.) The STFT was computed using a
window size of 512 samples with the same number of coefficients.
The input to the model was the first 257 non-redundant magnitude
coefficients of the STFT. The hop size was 128 samples. We used
two stacked layers of BGRUs. The sub-sequence length L was set
to 122, resulting in groups of subsequences approximately 1sec

2
e DRFx

in duration. The outputs of the model corresponded to either the
90 presets listed in Table 2 or the 21 parameters listed in Table 1
(classification model and regression model, described below). We
used Adam [13] to optimize the model and trained it until there
was no improvement in loss for 20 epochs on a held-out validation
set.

Model performance was evaluated using MUSHRA (MUIti-
ple Stimuli with Hidden Reference and Anchor) [14], a method
designed to evaluate the quality of a lossy audio codec with re-
spect to an uncompressed reference. For the reverb matching task,
we adapt part of the MUSHRA protocol for the purpose of evalu-
ating the relative quality of several model variants. It is important
to point out that the goal of our task is to automatically add reverb
to a “dry” sound so that it sounds the same as a reverberated ref-
erence. Because we are not evaluating compression codecs, our
goal diverges slightly with MUSHRA. Nevertheless, MUSHRA is
a helpful tool to determine quality of algorithms. Our experimen-
tal design is discussed below, along with any significant variations
from the published MUSHRA protocol.

6.1. Design

Sixteen listening examples, or “trials”, were provided in random
order. The duration of each example ranged from 3.4 to 10.4 sec-
onds. Half of the examples were “synthetic” and half were “natu-
ral” (described below). Each trial had a “visible” reference track,
which is reverberated audio. For each trial, subjects were asked to
evaluate the pairwise similarity of the visible reference with each
of five stimuli, presented in random order. The stimuli are de-
scribed below.

Hidden reference The same audio as the visible reference.

Human model A reverberated example created by an expert au-
dio engineer, who used the PhoenixVerb plug-in in com-
bination with a digital audio workstation to manually per-
form the reverb matching task. The engineer was allocated
a maximum of 120 seconds, per trial, to perform manual
reverb matching. (Therefore the time limit imposed on the
engineer allowed at least an order of magnitude more time
than the duration of each trial example.)

Random model A PhoenixVerb preset (from Table 2) and the
value for mixing ratio were selected uniformly at random.

Regression model PhoenixVerb parameters (from Table 1 and mix-
ing ratio predicted by a trained regression model.

Classification model PhoenixVerb preset (from Table 2) and mix-
ing ratio predicted by a trained classification model.

The participants were asked to rate each example along a numeri-
cal continuum from O to 100. There was no time limit per trial.
Participants were presented one unused example before the ex-
periment began to get accustomed to the experimental environ-
ment. The experiment was conducted online using the open source
webMUSHRA interface [15]. Participants were asked to conduct

24007
DBEx

Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

the experiment in a quiet environment using high quality head-
phones, but no other specific controls were applied to the listening
context.

6.1.1. Synthetic References (Trials 0-7)

These examples were drawn from the test partition of the VCTK
corpus, in which adult men and women were recorded reading
fragments of newspaper stories. The vocal deliveries in the cor-
pus are generally not emotive, and the recording conditions are
consistent. The “dry” recordings were reverberated using presets
from PhoenixVerb. The presets were drawn randomly from a list
selected by an expert audio engineer (Table 2) and the mixing ratio
was drawn from a uniformly random distribution between 0 and 1.
These examples are very similar to the ones that were used to train
our models. However, none of the voice actors in this set had been
used when training the model.

6.1.2. Natural References (Trials 8—15)

These are internally sourced field recordings that are “natural,” in
the sense that they were recorded by a production team, either on
a sound stage, or at another naturally reverberant environment. In
some cases, we used paired dry and reverberant audio recorded
with different microphones located at different distances with re-
spect to the subject speaking. In other cases (Trials 8, 13, and 14),
we used unpaired reverberant recordings and dry versions were
created using [16]. Since “natural” field recordings were “from
the wild,” there were no ground-truth reverb parameter settings as-
sociated with these recordings.

6.2. Differences from MUSHRA

This section describes how our MUSHRA test deviated from the
established protocol, which was originally designed for evaluating
the quality of lossy audio compression algorithms. We note that
such deviations from the protocol are widely used in the literature
when subjectively evaluating generic audio algorithms.

6.2.1. Hidden Reference

In the established MUSHRA protocol, participants are instructed
that the reference is hidden among the comparison clips. Given
this knowledge, it is therefore expected that the participants rate at
least one example with a score of 100, per trial. This provides the
experimenters a mechanism for rejecting participants who provide
the hidden reference a low rating. Due to an oversight, we did not
provide this information to our participants. As a result some par-
ticipants rated the hidden reference lower than 100. However, we
applied statistical analysis to each individual’s ratings and deter-
mined that no participant rated other models higher than the hidden
reference, even when the hidden reference was given, on average,
a rating lower than 100.

6.2.2. No Anchors

We did not provide any hidden anchors in the comparison clips.
Because we were not evaluating audio quality, it was difficult to
design a true “anchor.” An anchor should degrade the reference
by a known quantity, but there are too many perceptually impor-
tant and confounding dimensions in reverberation for us to design
a true anchor. For instance, we could create an anchor that reduces

%
e DRFx

Table 2: List of PhoenixVerb presets used in training the classifi-
cation model and testing the classification and regression models.

Preset

Tight Snare

Tiny Ancient Plate 2
Dessert Plate

Sml Clean Chamb
Sml Mid Chamb 3
Skinny Cow Chamb
Recital Hall 2

Live Room

Live Room 3

Live Room 5

Live Room 7

Live Room 9

Muted Live Room
Cookin Kitchen
Balance Room

Airy Room 2

Room With a View Too
Smooth Vocal Booth
Wally Room 2
Polly’s Wall Room
Kick Boom Room 2
Empty Office 2

Lge Live Room 2
Carpet Crypt 2
Carpet Crypt 4

The Bear Gets You
Snowbird Diamond
Little Blue Car 2
Little Blue Car 4
50’s Hot Rod

Front Yard

Front Yard 3

Front Yard 5

Back Yard 2

Back Yard 4

City Street 2

City Street 4
Afterthump

Inverse
BongosMediumRoom
CongasSmallRoom
TamboraMediumRoom
GuiraRoom
KickAir
Hip-HopSnare 2

Tiny Ancient Plate
Tiny Vocal Plate

In the Nursery

Sml Mid Chamb 2
Chicken Chamber
Recital Hall
Ruby’s Cube 2
Live Room 2.

Live Room 4

Live Room 6.

Live Room 8

Live Room 10
Muted Live Room 2
Cookin Kitchen Too
Airy Room

Room With a View
Live Vocal Booth
Wally Room

Wally Room 3
Kick Boom Room
Empty Office

Lge Live Room
Carpet Crypt
Carpet Crypt 3
Carpet Crypt 5

Ski Slope

Little Blue Car
Little Blue Car 3
Little Blue Car 5
60’s Hot Rod

Front Yard 2

Front Yard 4

Back Yard

Back Yard 3

City Street

City Street 3

City Street 5
Boxed In

Inverse 2
BongosLargeRoom
CongasMediumRoom
TamboralLargeRoom
StereoKick
Hip-HopSnare
Bass Thumper

24007
DBEx

Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

100

60
40 I
0 .

Reference Human

Score

n
o

Regression Classification Random

Model

Figure 2: Average ratings and 95 % confidence intervals of mod-
els. (All trials.)

or increases the mixing ratio relative to the reference. However,
mixing ratio might be easily confused with reverberation time.
If the reference has a short reverberation time, the anchor would
be less meaningful and easier to confuse. Instead, the “Random
Model” provides the closest stimulus to a hidden anchor. The
random model provides us a mechanism for evaluating a baseline
performance and it is expected, on average, to be evaluated much
worse than the other stimuli.

6.3. Results

We had 28 adult participants in the experiment. All participants
are employees at an audio technology company where the average
employee may be considered a highly experienced listener. We
validated participants and trials by checking whether any model
was given a significantly better score than the reference.

Graphical results are depicted for the full set of trials, as well
as “synthetic” and “natural” partitions. The bar plots show the av-
erage ratings for each stimulus. Bar plot whiskers depict the 95 %
confidence interval, as computed using the bootstrap method with
1000 iterations. Overall, and as shown in Figure 2, the hidden ref-
erence was provided the highest score and the Random Model was
provided the lowest score. When examining the full set of trials,
we determine that the Regression Model performed about as well
as a human expert. This is apparent by observing the correspond-
ing overlapping confidence intervals in 2. We also note that the
regression model apparently performs better than the classification
model, with non-overlapping confidence intervals.

When examining the partition of trials that used only “syn-
thetic” examples (Figure 3), the regression model and classifica-
tion model, as evaluated by our experiment participants, was in-
distinguishable in performance from human reverb matching. This
observation is based on the overlapping confidence intervals for all
three models.

2
e D®Fx

100

Score

n
o

Reference Human

0

Regression Classification Random

Model

Figure 3: Average ratings and 95 % confidence intervals of mod-
els. (Synthetic trials.)

Reference Human

100

Score

n
o

0

Regression Classification Random

Model

Figure 4: Average ratings and 95 % confidence intervals of mod-
els. (Natural trials.)

2 27
DBFx

Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

When examining results corresponding to “natural” examples,
shown in Figure 4, human subjects showed a clear order of prefer-
ences: Hidden Reference > Human Expert > Regression Model
> Classification Model > Random baseline. All preferences were
determined to be statistically significant on the “natural” data. Even
though the “Regression” model does not perform as well as a hu-
man expert engineer, we note that it performs much better than the
baseline, and that the model takes orders of magnitude less time
than a human to provide its inferences.

7. CONCLUSION

We presented a model for the reverb matching task, in which one
would like to automatically transfer the reverberant characteristics
of a reference audio track to a “dry” audio track. Notably, the
underlying source material of the “wet” and “dry” tracks may not
be the same. Such a model helps an audio engineer to avoid an
exhaustive manual search over the parameter space of an artificial
reverb generator.

We presented a subjective study where the codomain of inter-
est is reverberant speech dialogue, of the type commonly used in
automatic dialogue replacement for movies and TV. We provided
results corresponding to test data partitioned into “synthetic” and
“natural” examples. Considering the results of the full test set and
its partitions, we determine that the regression model does a good
job at the reverb matching task. It is as good as a human expert,
especially when the testing data is similar to the data used to train
the model. It performs a little worse than an expert human on more
natural data, but far better than a random baseline. We expect that
we may improve the model’s performance for in-the-field record-
ings if we provide more varied data during training. As mentioned
above, the training data was overwhelmingly non-emotive, which
doesn’t align well to the types of recordings that would typically
occur for tasks like ADR. We leave training on a more heteroge-
neous dataset to future work.

8. ACKNOWLEDGMENTS

Many thanks to Kurt Werner for his invaluable insights while prepar-
ing this paper. We also thank the DAFx reviewers for their com-
ments.

9. REFERENCES

[1] Jens Blauert, Spatial hearing: The psychophysics of human
sound localization, MIT press, Cambridge, MA, 1997.

Katsutoshi Itoyama and Hiroshi G. Okuno, “Parameter esti-
mation of virtual musical instrument synthesizers,” in Joint
Proceedings of the 40th International Computer Music Con-
ference (ICMC) and 11th Sound & Music Computing Con-
ference (SMC), Athens, Greece, Sept. 2014, pp. 1426-1431.

Matthew J. Yee-King, Leon Fedden, and Mark d’Inverno,
“Automatic programming of VST sound synthesizers using
deep networks and other techniques,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no.
2, pp. 150-159, Apr. 2018.

[4] O. Barkan, D. Tsiris, O. Katz, and N. Koenigstein, “Inver-
Synth: Deep estimation of synthesizer parameter configura-
tions from audio signals,” IEEE/ACM Transactions on Au-

[2

—

[3

—

%
e DRFx

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

dio, Speech, and Language Processing, vol. 27, no. 12, pp.
2385-2396, 2019.

Philippe Esling, Naotake Masuda, Adrien Bardet, Romeo
Despres, and Axel Chemla—Romeu-Santos, “Flow synthe-
sizer: Universal audio synthesizer control with normalizing
flows,” Applied Sciences, vol. 10, no. 1, pp. 302, 2020.

Nils Peters, Jaeyoung Choi, and Howard Lei, “Matching arti-
ficial reverb settings to unknown room recordings: A recom-
mendation system for reverb plugins,” in Proceedings of the
Audio Engineering Society Convention 133, San Francisco,
USA, Oct. 2012.

Jiaqgi Su, Zeyu Jin, and Adam Finkelstein, “Acoustic match-
ing by embedding impulse responses,” in Proceedings of the
2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Barcelona, Spain, May
2020, pp. 426-430.

Mike Schuster and Kuldip K. Paliwal, “Bidirectional recur-
rent neural networks,” IEEE Transactions on Signal Process-
ing, vol. 45, no. 11, pp. 2673-2681, 1997.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in
Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), Doha, Qatar, Oct.
2014, pp. 1724-1734.

Christophe Veaux, Junichi Yamagishi, and Kirsten MacDon-
ald, “CSTR VCTK corpus: English multi-speaker corpus for
CSTR voice cloning toolkit,” 2012, Version 0.8.0.

Felix Burkhardt, Astrid Paeschke, Miriam Rolfes, Walter F.
Sendlmeier, and Benjamin Weiss, “A database of Ger-
man emotional speech,” in Proceedings of the 9th Euro-
pean Conference on Speech Communication and Technol-
ogy (INTERSPEECH-2005), Lisbon, Portugal, Sept. 2005,
pp- 1517-1520.

Sanaul Haq, Philip J. B. Jackson, and James D. Edge,
“Audio-visual feature selection and reduction for emotion
classification,” in Proceedings of the International Con-
ference on Auditory-Visual Speech Processing (AVSP’08),
Moreton Island, Queensland, Australia, Sept. 2008, pp. 185—
190.

Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the 3rd Interna-
tional Conference on Learning Representations (ICLR), San
Diego, USA, May 2015.

ITU-R recommendation BS. 1534-3: Method for the subjec-
tive assessment of intermediate quality level of audio, Inter-
national Telecommunication Union, Oct. 2015.

Michael Schoeffler, Sarah Bartoschek, Fabian-Robert Stoter,
Marlene Roess, Susanne Westphal, Bernd Edler, and Jiirgen
Herre, “webMUSHRA—A comprehensive framework for
web-based listening tests,” Journal of Open Research Soft-
ware, vol. 6, no. 1, 2018.

Shahan Nercessian and Alexey Lukin, “Speech dereverber-
ation using recurrent neural networks,” in Proceedings of
the 22nd International Conference on Digital Audio Effects
(DAFx-19), Birmingham, United Kingdom, Sept. 2019.

24007
DBEx

	1 Introduction
	2 Related Work
	3 Reverb Matching
	4 Data
	5 Model
	5.1 Regression Model
	5.2 Classification Model

	6 Experiments
	6.1 Design
	6.1.1 Synthetic References (Trials 0–7)
	6.1.2 Natural References (Trials 8–15)

	6.2 Differences from MUSHRA
	6.2.1 Hidden Reference
	6.2.2 No Anchors

	6.3 Results

	7 Conclusion
	8 Acknowledgments
	9 References

@inproceedings{DAFx2020_paper_5,
 author = "Sarroff, Andy and Michaels, Roth",
 title = "{Blind Arbitrary Reverb Matching}",
 booktitle = "Proceedings of the 23-rd Int. Conf. on Digital Audio Effects (DAFx2020)",
 editor = "Evangelista, G.",
 location = "Vienna, Austria",
 eventdate = "2020-09-08/2020-09-12",
 year = "2020-21",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "1",
 doi = "",
 pages = "24--30"
}

