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ABSTRACT

In virtual acoustics, it is common to simulate the early part of a
Room Impulse Response using approaches from geometrical acous-
tics and the late part using Feedback Delay Networks (FDNs). In
order to transition from the early to the late part, it is useful to
slowly fade-in the FDN response. We propose two methods to con-
trol the fade-in, one based on double decays and the other based
on modal beating. We use modal analysis to explain the two con-
cepts for incorporating this fade-in behaviour entirely within the
IIR structure of a multiple input multiple output FDN. We present
design equations, which allow for placing the fade-in time at an
arbitrary point within its derived limit.

1. INTRODUCTION

Convolution reverbs in the Ambisonics or the binaural domain
are well suited for accurately auralizing measured rooms. Albeit
the existence of fast convolution techniques, the computational ef-
fort of convolving a signal with a several second long impulse re-
sponses (IR) is very high, especially in multichannel scenarios. To
cope with this, hybrid reverbs have been introduced, e.g. [1]. In
such systems, convolution is only used for the early part of the
IR, obtained by measurement or simulation, while the late part is
synthesized using an IIR filter structure. These can be generalized
by feedback delay networks (FDNs), see [2] for an overview of
different techniques. Methods exist for matching the parameters
of the early and late part of the responses [3]. This hybrid con-
cept is especially advantageous, when turning towards 6 degrees
of freedom audio rendering. In this case, early reflections up to a
certain reflection order can be computed dynamically using the Im-
age Source Method (ISM) [4], and the late part can be synthesized
using a Feedback Delay Network. In one possible framework, e.g.
as used in [5], the ISM stage encodes the reflections in higher or-
der Ambisonics (HOA) along with the direct sound. The ISM may
include source directivity and reflection filters and can be updated
in real-time. For synthesizing the late part of the impulse response
response in such spatial audio applications, it is advantageous to
use a multiple input multiple output (MIMO) FDN. An example
of the components in a hybrid reverb is shown in Figure 1.

To avoid adding energy to the well designed and possibly adap-
tive first part of the response, the early part of the FDN’s response
should be removed. The simplest idea is to apply a window func-
tion, which serves the purpose [6], but is only possible if the FDN
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Figure 1: Example for hybrid reverberation using the Image
Source Method for the early part, and a Feedback Delay Network
for the late part of the response. Fade-in allows for cancelling the
FDN’s early response. The modelled room is the variable acous-
tics chamber at the Aalto Acoustics Lab.

output is pre-rendered and used in a convolver. This conflicts with
the motivation for using the FDN as an efficient IIR structure in
the first place. Another method is to add a phase inverted version
of the undesired part of the FDN response to the early, convolu-
tional part of the response [7]. Arbitrary fade-in behaviour can be
realized by windowing this part, but the length of the convolution
might be increased. Also, the simulated reflections might be sparse
in nature, which makes time-domain convolution of the reflections
efficient. This property is lost when using this convolutional fade-
in approach. We demonstrate IIR based fade-in in a basic MIMO
network. Such a network, as implemented in the FDNReverb1,
can for example be used as a send effect in Ambisonics [8]. In
this MIMO case, the presented IIR fade-in approach is especially
beneficial, as convolutional fade-in cancellation would need to be
done for every input-output pair.

1https://plugins.iem.at/
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Figure 2: MIMO Feedback Delay Network, where A symbolizes
the feedback-matrix, z−mi indicate delays and gi(z) attenuation
filters.

To obtain an FDN with fade-in that is entirely implemented
within the IIR structure, the output of a second networks with sim-
ilar parameters can be subtracted from the first. The double decay
idea of using a second network with faster decay has been intro-
duced in [9] and [10], and was applied in [11], but no comprehen-
sive description of how the network parameters should be chosen
in order to achieve a specific fade-in time exists so far. The second
novelty here is based on applying a small rotation to the feedback
matrix resulting in modal beating. We use modal analysis to ex-
amine examples of both techniques using the FDN toolbox [12].
All plots are reproducible with the provided Matlab code 2.

2. MULTICHANNEL FDN

The transfer function of the FDN shown in Figure 2 is given by

H(z) = [Dm(z)−1 −A]−1, (1)

where Dm(z) = diag
(
g1(z)z

−m1 , . . . , gN (z)z−mN
)

contains
delays with the lengths m in samples on rate fs and attenuation
filters gi(z). The transfer function from every input to every output
can be decomposed into a sum of N one-pole resonators, called
modes of the network [13]

H(z) =
N∑

i=1

ρi

1− λi z−1
. (2)

The time response of each mode is given by

hi(t) = ρiλ
t
i = |ρi||λi|teı(ωit+∠ρi) (3)

In this representation, where t is the discrete time variable and ı is
the imaginary unit, it becomes apparent how the pole-angles ωi =
∠λi represent the frequency of the mode, and the pole-radius |λi|
determines its decay time. Only the amplitudes |ρi| and phases
∠ρi of the residues are different for every input-output pair of the
MIMO FDN. Thus, the dynamic behavior is solely dependent on
the poles such that it is sufficient to focus on the single input single
output case to study the fade-in control.

We now define the time constant τi of every modal decay, such
that

|λi|t = e
− t

τi with τi =
−1

log |λi|
. (4)

2https://version.aalto.fi/gitlab/soundinvr_
public/fadefdn

+

-

ø ø
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Figure 3: 2 FDNs. The output of the second network with slightly
modified parameters Aø, gø is subtracted from the first.

This formulation helps to relate the modal decay to the rever-
beration time T60, which is defined as the time it takes for a system
to reach −60 dB of it’s initial energy. The time constant τi of the
exponential decay of each mode is related to T60 by

τi = − T60(ωi)fs

log
(
10−

60
20

) ≈ T60(ωi)fs
6.9078

. (5)

If the feedback matrix is chosen to be lossless, the reverberation
time T60 can be controlled by simply modifying the gain intro-
duced in the feedback paths. When assuming that the introduced
filters’ phase delay is small against the delay elements’ length mi,
the required gain in dB is determined by

|gi(eıω)| = −60
mi

fsT60(ω)
. (6)

3. FADE-IN CONTROL

To achieve the desired fade-in behaviour, the output of a second,
phase-inverted network is added to the first, see Fig. 3. The pa-
rameters of the second network will undergo a slight modification,
which is either based on changing the gains in the feedback paths,
as described in the next section, or on applying a small rotation to
the feedback matrix, which is shown in section 3.3.

3.1. Double Decay

The first way of modifying the second network is to change the
gains in the feedback paths, in order to obtain a faster decay of
the second network ø compared to the first (τø < τo) [9]. Due to
this modification, the pole radii of the second network are moved
closer to the unit circle, while their angles remain the same. The
envelope edouble(t) is turned into a double exponential curve, which
exhibits the desired fade-in behaviour, see Figure 4.

h(t) = e
− t

τo eıωt − e
− t

τø eıωt (7)

=
[
e
− t

τo − e
− t

τø

]
eıωt (8)

= edouble(t)e
ıωt. (9)

Note that the modal index i was omitted. This equation and all
following ones apply to all modes of the network.
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Figure 4: Modes and resulting envelope for fade-in through mod-
ified pole radius. tfade is defined as the maximum of the resulting
envelope edouble.

We now derive the important equations which allow choosing
the fade-in time according to some specification, for example ac-
cording to a mixing time of a recorded impulse response [14]. In
a hybrid reverb application, the fade-in time will correspond to the
time after which no more image sources are calculated. The "fade-
in time" tfade will be defined as the maximum point of the curve
and can be determined from the two time-constants as

tfade = log

(
τo

τø

)
τoτø

τo − τø
. (10)

When the reverberation time is given, the task is to find the
correct time constants to achieve a given tfade. To find the time
constant, Equation 10 has to be solved for τø. This is done using
the lower branch of the Lambert-W function, which is the inverse
function of f(x) = xex, see appendix.

τø = − tfade

W−1

(
− tfade

τo
e
− tfade

τo

) (11)

Figure 5 shows how the second time constant should be chosen
depending on the first. Using this method, the fade-in time can not
be placed at an arbitrary position, but the longest possible time
depends on the desired T60. If the time constant of the second
network asymptotically approaches the first,

t̂fade = lim
τø→τo

log

(
τo

τø

)
τoτø

τo − τø
(12)

= lim
τø→τo

− log

(
τo

τø

)
τo + τo = τo, (13)

the maximal fade-in time t̂fade is found to be equal to τo. This
means that the fade-in time may approach approximately T60

6.9078
,

which corresponds to about 14.4% of the desired reverberation
time T60. An example of an FDN response with the described
fade-in behaviour is shown in Fig. 7.

By the nature of the double exponential decay, the output level
of the FDN will decrease with increasing fade-in time, also see
Figure 6. In the limit case of eq. 13, in which both networks
are equal, there would in fact be no output at all. This loss in
level should be compensated for, such that the fade-in time can be
adjusted, while maintaining a sufficient output level. The maximal

Figure 5: Relation between τo and τø for different constant tfade

values. The curve values are only valid for tfade < τo. Please note
that for a constant fade-in time, longer τo requires a shorter τø.

Figure 6: Signal envelope for constant reverberation time with τo

(solid line) and varying τø (dotted lines). The difference envelope
is indicated by the dashed lines, whereas the maxima are the re-
sulting fade-in times tfade are indicated with ×.

value of the envelope value found at the fade-in time can be used
for normalization

edouble(tfade) =
(τø

τo

) τø
(τo−τø) −

(τø

τo

) τo
(τo−τø) . (14)

3.2. Frequency Dependent Double Decay

If filters are applied in the feedback path in order to obtain a fre-
quency dependent reverberation time T60(ω), the filter-gains have
to be adjusted according to Eq. 6. Graphic Equalizers can be
used in the feedback paths to obtain precise control over the fre-
quency dependent reverberation time [15], but care has to be taken
with respect to the filter design, as the recursive structure will am-
plify errors [16]. In most cases, the reverberation time should be
frequency-dependent, but in regular applications, the fade-in time
should be the same for all frequencies. This means that the sec-
ond time constant needs to be different in every frequency band as
well. In Section 3.4, we also show pole differences in a network
with reverberation time control in two frequency bands.
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Figure 7: Absolute value of an FDN response, and its normalized
RMS value along with the computed envelope.
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Figure 8: Fade-in behaviour due to modified pole frequency. The
resulting envelope is the first half-wave of a sinusoid, attenuated
by exponential decay.

3.3. Modal Beating

Network size against echo and modal densities are the central trade-
offs that needs to be negotiated in any FDN design [17]. The dou-
ble decay approach, however, has the main disadvantage that the
second FDN ø doesn’t contribute to density at all.

Another option for realizing fade-in behaviour is to keep the
attenuation gains of the second network equal to the first, and in-
stead introduce a slight modification of the feedback matrix Aø.
We have found that a small rotation yields the best results

Aø = AoR, (15)

where R is a rotation matrix close to the identity matrix. During
the first few iterations, the network output is cancelled out just as
in the double decay approach, but after a sufficient number of iter-
ations, the output signals become different. Thus, in contrast to the
double decay approach, both FDNs o and ø contribute equally to
the late tail, doubling the modal and echo density of the complete
system.

The rotated feedback matrix Aø results in modified frequen-
cies of the poles ωi. This difference does not lead to the double
exponential envelope seen before, but to modal beating, i.e. the
modal envelopes are modulated at the difference frequency of the

(a) Frequency difference of poles

(b) Difference impulse responses

Figure 9: Fade-in behaviour due to modified pole frequency. The
plots are offset by 2 Hz or 30 dB for better visualization, respec-
tively. Only the behaviour of networks with moderate rotations (or
long fade-in times) are described well by the mean pole rotation
angle.

original and rotated pole

h(t) = e−
t
τ eıωot − e−

t
τ eıωøt (16)

= 2e−
t
τ sin

(ωo − ωø

2
t
)
eı

ωo+ωø
2

t+ıπ (17)

= ebeat(t)e
ı
ωo+ωø

2
t+ıπ, (18)

where the sine component indicates the beating envelope ebeat(t).
If the frequency shift is small enough, the first period of the mod-
ulation serves as fade-in. Fig. 8 depicts the beating of two modes
with small difference and the corresponding pole positions.

As the rotation of an orthogonal matrix yields another orthog-
onal matrix, the magnitudes of the poles do not vary between the
two FDNs. However, the rotation of the feedback matrix is not
related to a rotation of the poles in a simple manner. In fact, typi-
cally each pole angle is modified differently. Thus, while the ini-
tial fade-in of the modal beating is in unison, the many different
frequencies create a dense response for the subsequent beating pe-
riods. We define a mean beating frequency

ω =
1

N

N∑
i=1

ωo,i − ωø,i

2
. (19)

Fig. 9 shows an example of four lossless fade-in FDNs with vary-
ing matrix modification. Fig. 9a shows the pole frequency dif-
ferences for each of the fade-in FDNs. Fig. 9b depicts the corre-
sponding impulse response with the fade-in envelope determined
from the mean beating frequencies ω.

In the following, we present a simple statistical relation be-
tween the rotation matrix and the resulting shift in pole angles. We
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Figure 10: Relation between mean frequency difference and rota-
tion matrix eigenvalue angle.

choose the rotation matrix such that for the eigenvalue decompo-
sition

R = Q−1ΛQ (20)
the eigenvectors Q are also eigenvectors of Ao and the eigenvalue
angles are of equal magnitude, i.e.,

|∠Λii| = ∠Λ for any 1 ≤ i ≤ N. (21)

As a consequence, all eigenvalues of Aø are rotated by a constant
angle compared to Ao. To determine the influence of the matrix
rotation on the FDN poles, we perform a Monte Carlo experiment.
We generated 500 FDNs with uniform distribution of N ∈ [4, 8],
mi ∈ [200, 2000] samples, ∠Λ ∈ [0, 2] Hz and random orthog-
onal matrices. For each instance, we apply the modal decompo-
sition and compute the frequency difference of the poles. Fig. 10
shows the scatter plot of the resulting values. From statistical sam-
pling, we can derive linear relation between rotation angle ∠Λ and
the mean beating frequency ω, i.e.,

ω ≈ ∠Λ
N

. (22)

In particular, low amount of rotation yields relatively accurate es-
timates of the fade-in behavior, while strong rotations have a wider
dispersion.

3.4. Examples

To evaluate the two principles, FDNs were created using
the FDNtoolbox [12]. Numerical modal decomposition based
on the Ehrlich Aberth Iteration method [13] reveals the ac-
tual modes of the systems. The fade-in time is set to
tfade = 0.1s. The base FDNs have the delays m =
[622, 1855, 592, 1946, 1128, 1362, 1655, 1185] samples and an
8× 8 random orthogonal feedback matrix.

Figure 12a shows a numerical example of the frequency-
independent double-decay method, see e.g. Figure 4. As expected,
the found poles of the two networks have the same frequencies,
but different amplitudes. When using a crossover in the feedback
paths, different reverberation times can be achieved for different
frequency bands. In order to maintain the same fade-in times in
all bands, the decay constant of the second network needs to be
adjusted individually, which leads to different pole amplitudes,
demonstrated in Figure 12b. A simple fourth order Linkwitz-Riley
crossover was used. Also the modal beating method can be verified
by means of numerical modal analysis. Figure 12c demonstrates
the changed pole frequencies of the second network with respect
to the first.

4. CONCLUSIONS

Two approaches for including fade-in behaviour in an FDN by sub-
tracting the output of a second, modified network were presented.
The proposed technique is computationally efficient, in particular
for MIMO systems, as it does not require cancellation using con-
volutions with the early part.

The double decay approach allows for easy control over the
fade-in time using the provided formulas, based on solving the
double exponential decay with the Lambert-W function. The max-
imal fade-in time is approximately 14.4% of the targeted T60. Fur-
thermore, it was shown that the approach works in a network with
frequency-dependent reverberation time.

The modal beating approach is based on introducing a small
rotation to the feedback matrix of the second network, which is
more efficient in achieving a high density with equal network size,
but it is harder to control. This makes it less suitable for frequency-
dependant reverberation. Modal decomposition has been used to
explain both approaches. Sound examples using both approach
can be found online, also applied to a hybrid model as mentioned
in the introduction.3 In the future, fade-in can be combined with
other recent FDN developments, such as delay feedback matrices,
direction-dependent design, and time-variation.
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7. APPENDIX: DERIVATIONS

Second Network’s Time Constant: Derivation of Eq. (11) with the
Lambert-W function, see Fig. 11.

tfade = log

(
τo

τø

)
τoτø

τo − τø
(23)

tfade
τo − τø

τoτø
= log

(
τo

τø

)
(24)

e
tfade

τo−τø
τoτø =

τo

τø
(25)

1

τo
e
− tfade

τo =
1

τø
e
− tfade

τø (26)

− tfade

τo
e
− tfade

τo = − tfade

τø
e
− tfade

τø (27)

W−1(−
tfade

τo
e
− tfade

τo ) =
tfade

τø
(28)

τø = − tfade

W−1(− tfade
τo

e
− tfade

τo )
(29)

Maximum Fade-in Time: Derivation of Eq. (12)

t̂fade = lim
τø→τo

log(
τo

τø
)

τoτø

τo − τø
(30)

= lim
τø→τo

d(log( τo
τø
)τoτø)/dτø

d(τo − τø)/dτø
(31)

= lim
τø→τo

− 1
τø
τoτø + log( τo

τø
)τo

−1
(32)

= lim
τø→τo

τo − log(
τo

τø
)τo = τo (33)

Envelope due to modified pole frequency: Derivation of Eq. (16)

h(t) = e−
t
τ eıωot − e−

t
τ eıωøt (34)

= e−
t
τ
[
eıωot − eıωøt

]
(35)

= e−
t
τ eı

ωo+ωø
2

t[eı
ωo−ωø

2
t − eı

ωø−ωo
2

t] (36)

= e−
t
τ eı

ωo+ωø
2

t2ı sin
(ωo − ωø

2
t
)

(37)

= 2e−
t
τ sin

(ωo − ωø

2
t
)
eı

ωo+ωø
2

t+ıπ (38)
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Figure 11: Lambert-W function for branches -1 and 0.
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(a) Frequency-Independent Double Decay

(b) Frequency-Dependent Double Decay

(c) Modal Beating

Figure 12: Numerical examples of fade-in FDN pole distribution and impulse responses. The left column shows the reverberation
time of the poles of the o and ø. The right column shows the impulse responses of the individual FDNs o and ø and their dif-
ference, which shows the fade-in behaviour. The fade-in time is set to tfade = 0.1s. The base FDNs have the delays m =
[622, 1855, 592, 1946, 1128, 1362, 1655, 1185] samples and an 8× 8 random orthogonal feedback matrix.
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