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ABSTRACT

This paper presents a system for morphing between audio record-
ings in a continuous parameter space. The proposed approach
combines matrix decompositions used for audio source separa-
tion with displacement interpolation enabled by 1D optimal trans-
port. By interpolating the spectral components obtained using non-
negative matrix factorization of the source and target signals, the
system allows varying the timbre of a sound in real time, while
maintaining its temporal structure. Using harmonic / percussive
source separation as a pre-processing step, the system affords more
detailed control of the interpolation in perceptually meaningful di-
mensions.

1. INTRODUCTION

The term morphing is often used in sound synthesizers to refer to
continuous interpolation in a timbre space, such as in wavetable
synthesis. It was used in early audio spectral synthesis litera-
ture to refer to interpolation between sounds analyzed in the time-
frequency domain [1, 2]. This often includes consideration of the
temporal evolution of sounds, beyond real-time morphing of indi-
vidual spectral frames. As noted in [3], there is little consensus
about what morphing really means in the acoustic domain. The in-
terpolation is typically an affordance of the computational models
or signals, which does not guarantee an interpolation in the per-
ceptual features of the resulting sound. Regardless, the concept
is established in practice, and implemented in well-known com-
mercial products such as Zynaptiq Morph [4] or MeldaProduction
MMorph [5].

Existing audio recordings are generally used to guide user in-
teraction in many spectral processing techniques. A broad distinc-
tion can be made between the use of large corpora (e.g. concatena-
tive synthesis and mosaicing), and methods for hybridizing short
sounds (for which the term cross-synthesis is often used).

In this paper we propose an extension of a cross-synthesis al-
gorithm based on non-negative matrix factorization (NMF) to con-
tinuous morphing, using optimal transport. This allows morphing
between two sounds independently in several dimensions corre-
sponding to structural components of both sounds. We then ex-
plore the use of harmonic-percussive source separation (HPSS) as
a pre-processing step, which allows applying the morphing algo-
rithm independently to the harmonic and percussive parts of the
sounds. This enables devising an interface for morphing using
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perceptually relevant interpolation parameters, independent of the
number of NMF components.

Audio hybridization is generally useful in creative applications
related to audio, allowing the creation of new sounds and the pro-
duction of multiple variations based on perceived features of audio
samples. Our algorithm offers more nuanced control of the process
by providing a continuous parameter space. After a non-realtime
analysis, the parameters affecting the morphing can be operated in
real time.

In the next section we briefly review existing approaches to
audio morphing and cross-synthesis. We then describe the NMF-
based method as originally applied to cross-synthesis. In Section
4 we describe the extension to continuous morphing. We then in-
troduce the HPSS pre-processing step in Section 5, and summarize
the phase generation strategy in Section 6. In Section 7 we present
two implementations of the proposed algorithm and discuss the
effect of different parameters.

2. RELATED WORK

The idea of morphing between sounds has been investigated since
the early days of audio spectral analysis / synthesis research. In
[6] an application of the STFT was described where the spec-
trum of a modulator sound is smoothed and multiplied with a car-
rier sound, thus combining the timbre of the modulator and the
pitch of the carrier. The system in [1] similarly involved separate
matching of pitch and timbre components through the inversion of
mel frequency cepstral coefficients (MFCC). In this case, however,
the temporal dimension was taken into account by aligning the
sounds using dynamic time warping (DTW). Several approaches
were proposed focusing on sinusoidal models [7, 3, 8, 2]. This
allows a more nuanced approach with respect to perceptual quali-
ties of the interpolation, but typically requiring a specific focus on
musical instrument sounds and human or animal voices.

More recently, with the popularization of the concatenative
synthesis and mosaicing paradigms, most innovations have focused
on dictionary-based methods, particularly matching pursuit (MP)
[9]. Such approaches offer a promising theoretical framework for
audio morphing, but it is still hard to obtain convincing sound
quality. Non-negative matrix factorization can be seen as another
dictionary-based method that can be naturally applied to audio by
leveraging the 2D structure and positive nature of magnitude spec-
trograms.

NMF-based cross-synthesis was proposed in [10] using two
separate decompositions. Another NMF method (more in line
with dictionary-based methods) was proposed in [11], where the
NMF optimization is used to reconstruct a target spectrogram us-
ing an existing recording as a dictionary. We discuss these meth-
ods in more depth in the next section. Our approach uses the same
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method described in [10], but extends it to continuous morphing.
Optimal transport has recently gained popularity in machine

learning [12, 13]. It has been applied to unmixing within an NMF
framework in [14], under strong harmonicity assumptions. In [15]
optimal transport was used to obtain “automatic portamento” be-
tween audio streams, which is in effect a form of frame-level audio
morphing. By applying this technique to the NMF decomposition,
our system allows component-wise morphing, including the tem-
poral dimension.

Finally, some recent work has explored the application of the
popular style transfer mechanism developed for images using con-
volutional neural networks (CNN) [16, 17, 18]. The structure is
similar to previous approaches in that one sound is used as the
“content” while the other is used as “style”. Some works have also
explored the use of neural networks for morphing between musical
instrument sounds using WaveNet [19] or variational autoencoders
(VAE) [20]. Deep learning is generally promising for the task of
audio morphing and hybridization but—given the costs of train-
ing and the limitations of supervised models—unsupervised tech-
niques such as NMF are still appealing, considering the computing
resources available in current music production setups.

3. NMF-BASED CROSS-SYNTHESIS

NMF is a very established technique in audio signal processing,
since its introduction for transcription [21]. Using Wiener filter-
ing, it can be used for basic audio source separation [22], which
works well for simple signals such as drums or piano recordings.
The decomposition is usually applied to a magnitude spectrogram
V , which is approximated as the product of a matrix W—whose
columns can be interpreted as spectral frame prototypes—and a
matrix H where the rows represent the continuous activation of
the prototypes in W :

V̂ = WH (1)

The main parameter is the rank which corresponds to the num-
ber of columns of W and rows of H . The decomposition thus
represents the sound as an additive combination of spectral com-
ponents that can occur simultaneously.

The matrices W and H can be obtained via multiplicative up-
dates rules, often using an extension of the the Kullback-Leibler
(KL) divergence to positive matrices:

D(V, V̂ ) =
∑
kn

(V (k, n)log
V (k, n)

V̂ (k, n)
−V (k, n)+ V̂ (k, n)), (2)

where k is the frequency index and n is the time index. A straight-
forward way to hybridize sounds is thus to decompose each one
with the same rank using NMF, and multiply the activations of one
with the spectral bases of the other. This way two spectrograms
can be obtained: V1 = W1H2 and V2 = W2H1. In this case,
one of the sounds is used for the activations, but the corresponding
spectral frames are substituted for those of the second sound. In
this paper we will explore interpolating between the bases of the
first decomposition and those of the second decomposition, while
using the activations of the first one. Hence, from now on we will
use V s (approximated by W sHs) to denote the “source” spectro-
gram, and V t (and correspondingly W tHt) for the “target” spec-
trogram.1

1Note that this is different to the wording used in other works (e.g. [11])

The activations, H , will typically capture rhythms and gen-
eral structure, while the spectral bases, W , will represent pitches
and timbre. This approach was described in [10], using euclidean
distance instead of KL divergence as the NMF minimization cost.
Such a procedure produces a new spectrogram that has not been
generated from a waveform, and the phase is commonly synthe-
sized using the Griffin-Lim algorithm (GL) [23]. In this paper we
use the phase gradient heap integration (PGHI) algorithm, a more
recent method that can run in real time [24].

A second approach, proposed in [11] is to use NMF to find
the activations that will allow a reconstruction of the first spec-
trogram, using the frames of the second spectrogram as the W
matrix. Here the multiplicative updates are only applied to the H
matrix and only one NMF computation is required. The phase of
the second spectrogram is used in the reconstruction by multiply-
ing the obtained real H matrix with the complex spectrogram used
for the bases. This algorithm follows the concatenative synthesis
paradigm of reconstructing a sound with a dictionary of spectral
frames. The work in [25] proposed some extensions and provided
an open implementation. Another implementation has been in-
cluded in the NMF Toolbox in [26].

In our experience with these implementations, it is quite hard
to obtain good results for hybridizing short sounds. Since concrete
spectral frames are used as spectral bases (as opposed to the pro-
totype bases learnt by a separate NMF process), the reconstruction
suffers from the superposition of spectral frames and the repeti-
tion of frames with the same phase. To avoid these problems, the
authors in [11] introduced a number of additional constraints that
result in a sparse H matrix. This matrix no longer represents the
activation of the components of the target spectrogram but rather
the selection of frames from the source spectrogram, given the con-
straints. In addition, in order to obtain reasonable results, large
dictionaries are required (potentially on the order of thousands,
corresponding to frames in the spectrogram used as W ), which
implies computing an NMF with a very large rank.

In this paper, we extend the original method in [10], based on
separate decomposition of source and target. This has the problem
that the decomposition V̂ = W sHt no longer represents a valid
NMF problem, and V̂ no longer comes from an existing spectro-
gram. However, from a usability perspective, it has the advantage
that the NMF framework is used to model the main components
of each sound as a set of spectral templates and their activations,
which are then combined. The temporal and spectral properties of
each sound can thus be perceived in the result, and the process can
be easily understood. Figure 1 shows an example of crossing the
activations of a drum pattern with three piano chords using rank 3.

In the system proposed in [10], the rank is mostly chosen to
capture musical notes or harmonics. However in the general case
the optimal rank for the decomposition is not known. In order to
estimate the rank, we use the approach proposed in [27], based on
singular value decomposition (SVD). The rank is chosen using a
parameter p that accounts for the proportion of the sum of singular
values of the SVD decomposition of V s with respect to the total.
The number of singular values is the rank estimate.

Another issue is how to match the columns of W t with the
rows of Hs. Each assignment of basis to activation will lead to
a different result. For low ranks (e.g. less than 10), it may be
intuitive enough to do the assignment manually. However, since

where the W matrix used for its timbre is denoted as the “source”, and the
spectrogram used for activations is seen as the “target”. Here the target is
the “destination” of the morphing.
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the algorithm is initialized with random matrices, the order of the
result is not guaranteed to be the same each time, which requires
some additional analysis for sorting the columns. For large ranks
(e.g. in the order of tens of components, as commonly obtained us-
ing the SVD estimate), manual assignment is not viable. One way
to automate this process is to assign to each activation the basis
of the timbre spectrogram that is most similar to its original corre-
sponding activation. However, there is the risk of the same column
of W s being assigned to more than one activation and vice versa.
The distribution of spectral features is known to produce hub vec-
tors that dominate similarity spaces [28]. Therefore given very
different materials we could find that a few bases of one sound are
similar to all the bases in the other sound. To avoid this, an injec-
tive constraint was proposed as a user option in [10]. In this paper
we propose a more automated approach, which allows the use of
larger ranks. We treat this mapping as an assignment problem,
defined by the cost matrix

Cij = d(ws
i, w

t
j), (3)

where d(x, y) represents the distance between two spectral bases
(defined in the next section), and ws

n represents the nth column of
the W s matrix and analogously for W t. The assignment is solved
using the Hungarian algorithm, as recently proposed for matching
spectral peaks to partial tracks in sinusoidal modeling [29]. The
algorithm works for rectangular matrices, but the number of as-
signments always corresponds to the smaller side, so no element is
used twice. Given the ranks ks, kt obtained via SVD for the two
NMF decompositions, we restrict kt to min(ks, kt), in order to
avoid using the same base twice.

Finally, an issue with this approach is that, depending on the
original amounts of energy represented by each of the components,
the new combinations driven by the unrelated activations can cre-
ate spectrograms that exceed the maximum magnitudes allowed
by the STFT representation. To avoid this, we simply scale the
resulting spectrogram based on the ratio of the RMS magnitude to
the original spectrogram’s as a gain factor:

g = max(1,
RMS(V s)

RMS(V̂ )
) (4)

4. DISPLACEMENT INTERPOLATION

The combination of the activations of one sound with the bases
of another source provides a way to create new spectrograms that
share some properties of both. The result will generally follow
the temporal energy patterns of the first source, encoded in the
activations, and the spectral energy patterns in the second source
(notes and / or timbre components depending on the material and
the NMF rank).

For each pair of matched spectral bases ws
i, w

t
j , we morph

between the original and new spectral patterns by interpolating be-
tween the two vectors. Linear interpolation would only give an
impression of mixing, as the peaks in each spectrum would ap-
pear in the result scaled by the interpolation factor. A more in-
teresting method was proposed in [15] based on optimal trans-
port. This algorithm implements displacement interpolation [30],
which has been applied previously to computer graphics [31]. The
framework of optimal transport—originally dealing with probabil-
ity distributions—applies naturally to NMF bases since they are
typically normalized during the computation, so that

∑
wn = 1.
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Figure 1: NMF-based cross-syntnesis. Top: piano, middle: drum
sound, bottom: result
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Optimal transport is commonly introduced as a problem of
mapping between two probability distributions [13]. For 1D dis-
crete distributions, the problem can be described as finding a plan
γ that minimizes the cost of moving from a distribution A to a
distribution B:

min
γ

∑
x

∑
y

c(x, y)γ(x, y). (5)

Here x and y represent positions in the support of A and B re-
spectively; c(x, y) represents the cost of moving one particle of
mass from location x to location y; and γ(x, y) is a plan that
specifies the connections between locations and the amount of
mass to be carried for each path. The plan needs also to satisfy∑

y γ(x, y) = A and
∑

x γ(x, y) = B, so that the mass of A
is preserved and distributed into B. This can be seen as a linear
program, which is relatively simple for 1D signals and closed cost.
In this case, the domain is the frequency axis, and the cost is de-
fined as c(x, y) = ||x− y||2. This defines a metric space where a
continuous path exists between both distributions.

In [15], the problem was defined for audio spectra by consider-
ing the fact that a spectral peak corresponding to a given frequency
component in the original signal is represented in the STFT by a
range of frequency bins. Thus, each peak is treated as a “spectral
mass” and interpolated separately. In [15] this is done via spectrum
reassignment [32], by cutting at the zero-crossings of the curve of
reassigned frequencies of the bins. In this paper we interpolate be-
tween prototype spectral bases for which we don’t have the origi-
nal phase, but the displacement of the spectral peak as a unit is still
of interest. Thus we simply segment the spectrum at the minima
between peaks. In this setting, locations x and y in eq. 5 can be
replaced by xi and yi, so that xi represents the frequency associ-
ated to the center bin of mass i in the magnitude spectrum A. The
corresponding mass is computed as the sum of the region of the
magnitude spectrum corresponding to peak i.

The optimal plan is then represented by the matrix Γ(i, j).
Following [15], the matrix is constructed using the north-west cor-
ner rule, which is a commonly used heuristic for transportation
problems [33]: starting from (0, 0), the smaller of the two masses
is placed at i, j and consumed from the other mass. The index of
the depleted mass is incremented. The process continues until all
mass has been consumed. The matrix is thus zero in most entries,
and loosely follows a diagonal depending on the balance of masses
across frequency.

The matrix Γ(i, j) also provides a basis for the Wasserstein
distance defined over the spectral masses at xi and yj :

d(A,B) = (
∑
i

∑
j

||xi − yj ||2Γ(i, j))1/2 (6)

This allows us to define the distance between the columns of
W s and the columns of W t in eq. 3 as the minimum cost of trans-
porting the mass of the peaks from the source to the target NMF
basis across the frequency axis.

Displacement interpolation is then accomplished by sliding
through the non-zero entries of the transport matrix: given an inter-
polation parameter λ, each pair of masses in the matrix are interpo-
lated to (1−λ)xi +λyi and added to the output spectrum. Figure
2 shows 10 interpolation steps between one base corresponding to
a piano chord and one corresponding to a drum sound.
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Figure 2: Displacement interpolation between NMF bases of a
piano (top) and a drum (bottom) (λ = 0, 0.1...1)

5. HPSS PRE-PROCESSING

Interpolation between NMF bases offers an interesting possibility
as long as the NMF decomposition represents a meaningful de-
scription of both spectrograms. In the above example, by having
a separate interpolation parameter for each drum sound, we could
choose to independently move each one towards the correspond-
ing piano chord. However, in the general case we do not have such
a clear mapping. Most often a large rank results in better sound
quality, making it impractical to interpolate each component inde-
pendently.

We thus introduce a pre-processing step to obtain signal com-
ponents that are perceptually relevant by applying the popular har-
monic / percussive source separation (HPSS) method by Fitzgerald
[34] based on median filtering. Both Vs and Vt are decomposed
into harmonic and percussive components, and the NMF process
is performed independently for each component. This also helps
the matching of similar components between Vs and Vt, at the ex-
pense of additional NMF computations (which can be run in paral-
lel). As a result, our algorithm allows the use of one interpolation
parameter for all the harmonic components, and another one for all
the percussive components. This is similar to the perceptual inter-
polation space proposed in [1], but here using the median filter in-
stead of MFCC-based smoothing. The basic morphing algorithm
is summarized in Figure 3, while the HPSS version is shown in
Figure 4.

6. PHASE GENERATION

Either through the basic or the HPSS variants, the algorithm ends
up with the synthetic magnitude spectrogram of the morphed sound.
In order to obtain a time domain waveform, the corresponding
phase spectrogram needs to be synthesizeed as well. We accom-
plish this on a frame-by frame basis using Phase Gradient Heap
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Figure 3: Block diagram for the basic morphing algorithm

Integration (PGHI) [35]. PGHI approximates the phase from a
magnitude spectrogram by leveraging a theoretical result show-
ing that the STFT phase has an algebraically expressible relation-
ship to the derivative of the log magnitude spectrum. Even though
this result only holds in the continuous domain using a Gaussian
window with infinite support, the authors in [35] show that an ac-
ceptable approximation is possible in the discrete domain using
non-Gaussian windows with finite support. The algorithm seeks
to reconstruct the phase by focusing first on the ridges of the mag-
nitude spectrogram (i.e. the points with the greatest energy) by
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Figure 4: Block diagram for the HPSS-based morphing algorithm

applying the integration using a heap structure that places the bins
with peaks at the top, before proceeding to estimate the phase for
the surrounding bins. The real-time extension of this algorithm
[24] makes it possible to estimate the phase from frame to frame,
incurring only a single frame’s worth of latency or, at the cost of
some extra error, no additional latency at all. Since the displace-
ment interpolation algorithm can run in real time, each frame of
the morphed spectrogram is computed according to the interpo-
lation parameter, and then the phase for that frame is computed
accordingly in real time.

7. RESULTS AND DISCUSSION

In order to assess the proposed approach, we have implemented
it in a Python library, which allows experimenting with the main
variants in an offline fashion. In order to test the real-time mor-
phing, we have implemented an object for the Max patching lan-
guage2, which we plan to introduce in the Fluid Corpus Manip-
ulation Toolbox3 [36]. Both the Python and the Max implemen-
tations can be downloaded from the companion website of this

2https://blockding74.com
3https://www.flucoma.org
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paper4. The real-time implementation performs an offline analysis
phase which computes the HPSS and NMF decompositions and
the matching of bases. It is then possible to morph between W t

and W s for both the harmonic and the percussive components of
the target signal, while the sound is playing according to the acti-
vations in Ht.

With respect to the basic cross-synthesis algorithm in [10], our
system introduces several novel contributions: the automatic rank;
the automatic assignment with the Hungarian algorithm; the use
of real-time PGHI for phase synthesis; the extension to morphing;
and the HPSS pre-processing. We tested the system with a vari-
ety of signals, generally in the order of a few seconds, including
tonal and percussive material and polyphonic mixtures, in order
to assess these contributions. Some examples can be heard in the
companion website.

With respect to the rank, we noted that in general it is useful
to keep the ability to define it manually when the material con-
tains clear melodies or patterns, so each pitch or spectral pattern
can be captured for an NMF base. However, for more complex
signals such as polyphonic mixtures, low ranks result in a char-
acteristic grainy sound, arising from the reduction of information.
Also, as with the original approach in [15], interpolation between
bases representing pitches is affected by the discrete nature of the
interpolation, so the displacement of pitches is quantized to fre-
quency bins. This can be partially alleviated by zero-padding the
spectrum by a sufficient amount. Using the automatic rank allows
us to get good sounding results in the general case, where no as-
sumptions are made about the content of the signal. The parameter
p (controlling the rank) can be used as a tradeoff between sound
quality and computational cost.

With respect to the automatic assignment, we observed that
while interesting results could be obtained with arbitrary map-
pings, the proposed approach provided consistent results for larger
ranks. In general, using a lower rank for W t than W s and thus
repeating bases for different activations could lead to very poor re-
sults, which motivated the restriction proposed in Section 3. The
automation also helps giving a predictable outcome given the ran-
dom initialization of NMF. In addition to the Wasserstein distance
in eq. 6, we obtained interesting results with the symmetrized KL
divergence between spectral bases. In general, more parameters
for controlling the assignment of bases are interesting for experi-
menting with and obtaining new sounds.

With respect to PGHI, we noted that the sound quality is gen-
erally improved with respect to using GL, especially in the har-
monic component. Both algorithms provide good approximations
for existing sounds, but inventing a phase for synthetic sounds is
more of a challenge. Using a large rank tends to result in a good
magnitude reconstruction, which also helps with obtaining a good
phase estimate. This can be noted when λ = 0, i.e. when the mor-
phing algorithm reconstructs the original spectrogram V s with a
synthetic phase estimate.

Real-time synthesis of the phase also enables real-time morph-
ing, as the corresponding magnitude frame in V̂ can be computed
by multiplying the current frame in Ht with the interpolated spec-
tral base. This feature showed great creative potential and allows,
for example, the automation of dynamic timbre movements ac-
cording to different rhythms. Since the NMF decomposition takes
into account activations over time, the effect of the parameters may
not be heard immediately in some cases. In practice, of course,

4https://www.flucoma.org/DAFX-2020

real-time operation allows for a more intuitive control and facili-
tates quick experimentation, as well as automation and modulation
of the interpolation parameters. The target sample can thus be ap-
plied to the source sample as if it was an effect. One limitation
of the proposed approach is that the interpolation is linear in fre-
quency. This results in a noticeable exponential effect of the inter-
polation parameter. In this sense it would be interesting to apply
the proposed approach to an invertible constant-Q transform such
as [37].

Finally, the use of HPSS as a preprocessing step further in-
creases the possibilities of the morphing approach, while often re-
sulting in more traditional sonorities with emphasized percussive
and tonal components. Splitting the match of NMF bases into har-
monic and percussive components generally results in more nat-
ural sounding morphs, particularly as it avoids the repetition of
noisy patterns as if they were stationary. The introduction of the
HPSS decomposition also introduces more parameters that can be
used to improve the result, such as the size of the median filters
used in the decomposition, as well as separate parameters of the
morphing algorithm for each of the components. The results of
each component can also be remixed with arbitrary gains. The
HPSS variant of the algorithm also introduces a significant in-
crease of the computational cost of the analysis stage. In our
experience, the most valuable aspect of this variant is the ability
to morph between the harmonic components of the source and
target spectrograms. The percussive part is made of short tran-
sients which are often perceived similarly for both sounds. When
the source spectrogram contains sharp transients (e.g. for rhyth-
mic material) it is sometimes convenient to use the percussive part
from the source spectrogram, in which case the NMF and morph-
ing computations for the percussive part be switched off.

8. CONCLUSIONS

Beyond source separation and transcription, NMF decomposition
of spectrograms provides a useful framework for creative applica-
tions based on transformation of sounds containing temporal vari-
ations of spectral patterns. In this paper we have presented an
application to continuous morphing, leveraging the application of
optimal transport for audio spectra. With respect to the system
presented in [15], which works at a frame level, the application
to the NMF cross-synthesis allows for flexible morphing of audio
in multiple dimensions. In addition, we have shown how further
decomposition of the spectrogram using HPSS can be used to pro-
vide a more intuitive interface.

Our approach can be seen as a framework into which other de-
compositions of the spectrogram could be plugged, allowing for
further granularity. As such, the combination of matrix decom-
positions with displacement interpolation offers a promising envi-
ronment for audio transformation that affords intuitive interfaces
and relatively low computational requirements. As an example,
our approach has been implemented on a popular computer music
system, which allows its use in current creative workflows.
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