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ABSTRACT

A major problem in the emulation of discrete-time nonlinear sys-
tems, such as those encountered in Virtual Analog modeling, is
aliasing distortion. A trivial approach to reduce aliasing is over-
sampling. However, this solution may be too computationally de-
manding for real-time applications. More advanced techniques
to suppress aliased components are arbitrary-order Antiderivative
Antialiasing (ADAA) methods that approximate the reference non-
linear function using a combination of its antiderivatives of dif-
ferent orders. While in its original formulation it is applied only
to memoryless systems, recently, the applicability of first-order
ADAA has been extended to stateful systems employing their state-
space description. This paper presents an alternative formulation
that successfully applies arbitrary-order ADAA methods to Wave
Digital Filter models of dynamic circuits with one nonlinear ele-
ment. It is shown that the proposed approach allows us to design
ADAA models of the nonlinear elements in a fully local and modu-
lar fashion, independently of the considered reference circuit. Fur-
ther peculiar features of the proposed approach, along with two
examples of applications, are discussed.

1. INTRODUCTION

In the recent years, much work has been done to develop faithful
and computationally lightweight Virtual Analog models of nonlin-
ear audio circuits [1-8]. Several techniques have been developed
for the digital emulation of analog synthesizers [9-11], distortion
pedals [12] and audio amplifiers [13, 14], that contain nonlinear
circuit elements such as diodes [15-19], transformers [20], tran-
sistors [21] and tubes [22]. A major problem in Virtual Analog
modeling is that nonlinear digital signal processing could poten-
tially generate aliasing distortion in the output signals. This issue
occurs when a band-limited input signal is processed by a non-
linear function, which may add to the signal spectrum additional
frequency components that overcome the Nyquist frequency and
are mirrored into the signal base-band as distortion artifacts, caus-
ing inharmonicity, beating, and heterodyning [23].

Aliasing could trivially be attenuated by using high oversam-
pling factors, however, in real-time audio applications, this may
be undesirable due to the large number of operations that need
to be carried out by the CPU. Therefore, alternative, less expen-
sive, antialiasing methods have been proposed for the implemen-
tation of oscillators for subtractive synthesis [23] and for the emu-
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lation of clipping stages employed in overdrive and distortion cir-
cuits [24,25].

A further approach to reduce aliasing, with a broad applica-
bility to a large class of nonlinear functions, called Antiderivative
Antialiasing (ADAA), has been introduced by Parker et al. in [26]
and is based on approximating the input signal as a continuous-
time piecewise linear function, applying the nonlinear function to
it, and convolving the resulting signal with the continuous-time
impulse response of a lowpass filter, before sampling it back to the
digital domain. This process leads to an approximation of the non-
linarity in terms of its antiderivatives, which introduces less alias-
ing. In [26], however, just first and second-order approximations
based on antiderivatives are discussed. Successively, Bilbao et al.
in [27] extended the method employing higher-order antideriva-
tives, reframing the approach as the repeated differentiation of a
pth-order antiderivative of the nonlinear function. As two major
flaws, ADAA presents a low-pass filtering effect and the introduc-
tion of a fractional delay of p/2 samples [28]. The first limitation
can be easily overcome through mild oversampling, or by design-
ing a simple linear filter. The additional introduced delay, however,
becomes problematic in systems having feedback paths. For this
reason, ADAA has been applied almost exclusively to memoryless
systems [26,27,29]. An extension to stateful systems has been pro-
posed by Holters in [30], and consists of a global parameter mod-
ification to the coefficient matrices of the state-space formulation,
to compensate for the additional delay introduced in the system by
the ADAA filter.

Inspired by the approach in [30], this paper presents a difter-
ent methodology for applying pth order ADAA to stateful Wave
Digital Filters (WDFs) with one nonlinearity. Such a methodol-
ogy allows us to exploit the inherent modularity property of WDFs
in the design of ADAA algorithms for Virtual Analog modeling.
Section 2 briefly revises the main properties of WDFs with one
nonlinearity such as their tree-like structure. Section 3 proposes a
novel method to integrate first-order ADAA [26] into WDFs with
one nonlinear element, while Section 4 generalizes the method
to higher-order ADAA. Section 5 presents explicit Wave Digital
(WD) exponential diode models suitable for first-order and second-
order ADAA and characterized by analytical expressions employ-
ing the Lambert function. Such models are then extended for ac-
commodating pairs of diodes in antiparallel in an explicit fashion.
The presented models are then tested in the examples of applica-
tion discussed in Section 6. Section 7 concludes this paper and
proposes possible future developments.
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2. BRIEF OVERVIEW OF WDF MODELING

WDF theory was first introduced by A. Fetteweis in the 1970s and
later reorganized in [31], as an efficient technique to model ana-
log reference circuits as digital filters, based on networks of input-
output blocks characterized by scattering relations and communi-
cating through port connections. In particular, a WDF is a port-
wise lumped model of a reference circuit that detaches the topo-
logical information from the models of circuit elements. The ref-
erence topology is described through scattering junctions, called
adaptors, enforcing Kirchhoff continuity laws, while circuit ele-
ments are derived from the lumped discretization of their constitu-
tive equations. A peculiarity of WDFs is the use of the so-called
wave variables, defined at one port of a circuit element as
a=v+ 21 b=v—Zi (1)
where v is the port voltage, ¢ is the port current, a is the wave
incident to the element, b is the wave reflected from the element
and Z is an additional free parameter, called reference port resis-
tance. This free parameter is set to adapt linear circuit elements,
thus obtaining explicit WD scattering relations in the discrete-time
domain in which the reflected wave does not depend on the inci-
dent wave. In this way, local delay-free loops arising from the
port connections of elements to WD junctions are eliminated. In
particular, dynamic elements (i.e., capacitors and inductors) imple-
mented with the trapezoidal discretization rule, when adapted, are
realized through mere one-sample delays. Constitutive equations
in the continuous-time Kirchhoff domain, discrete-time scattering
relations in the WD domain and the corresponding adaptation con-
ditions for the most common linear one-port elements are reported
in Table 1. Vy, R, C and L indicate a voltage source E, with inter-
nal series resistance Ry, a resistor, a capacitor and an inductor, re-
spectively. On the other hand, connection networks embedding the

Table 1: Wave mapping of common WD linear one-port elements.

Constit. eq. Wave mapping Adapt. cond.
Vo | v=FEy+ Rgi | blk] = Ey[k] Z =R,
R v=Ri blk] =0 Z=R
C | it)y=0c%D | k] =alk—1] z="5
L| ot)=L% | bjk]=—ak—1] | Z=2

topological information of the reference circuits are implemented
in the WD domain using scattering junctions characterized by scat-
tering matrices, and called adaptors [31] in WDF theory. General
formulas for computing the scattering matrix of arbitrary recipro-
cal or nonreciprocal connection networks in the WD domain are
discussed in [32-35].

2.1. WDFs as Connection Trees

In order to ensure the computability of a WD structure, the cor-
responding signal-flow diagram should not contain any delay-free
loop [31,36,37]. Sarti ef al. [38] proposed a systematic method
to implement WD structures that can accommodate up to one non-
linear element in an explicit fashion, i.e., without using iterative
solvers, and showed that computability is guaranteed if the net-
work of adaptors has a tree-like structure without delay-free-loops.

%
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The result is the so-called Binary Connection Tree (BCT), which
has one (nonlinear) element as root, an interconnection of series/pa-
rallel 3-port scattering junctions as nodes, and linear one-port ele-
ments as leaves. Moreover, each WD junction is adapted towards
the root, which means that ports of junctions connected to other
junctions (i.e., other nodes) and the one connected to the nonlin-
ear element (i.e., the root) are all made reflection free, by properly
setting the free parameters at those ports.

In the light of the recent advances in the WD modeling of re-
ciprocal [35] and non-reciprocal [34] junctions, the BCT concept
can be easily generalized to the concept of Connection Tree (CT),
whose root is a one-port nonlinear element, nodes can be N-port
adaptors with NV > 3 and leaves are linear elements. Under the
assumption that no delay-free-loops are present, also a CT can be
implemented in an explicit fashion.

The evaluation of a CT consists of three main phases. At first,
the forward scan phase is performed. It consists of traversing the
CT from the leaves to the root. At each sample k, the waves re-
flected from adapted linear one-port elements are given by the sim-
ple scattering relations reported in Table 1. Therefore it is possi-
ble to compute all the waves reflected from the junctions at their
adapted ports, performing the scattering operations in the correct
order (i.e., the computational flow goes from the leaves to the root).
The second phase consists of the local nonlinear scattering stage
at the root element, which outputs the wave incident to the adja-
cent adaptor. Lastly, the backward scan stage consists of traversing
the tree structure from the root to the leaves, updating the waves
incident to all the one-port elements.

3. FIRST-ORDER ANTIDERIVATIVE ANTIALIASING IN
NONLINEAR WDF

Let us consider the generic WDF in Fig. 1 characterized by a single
(reciprocal or nonreciprocal) N-port WD junction. N — 1 linear
one-ports and one nonlinear element are connected to the junction.
Since WDF in Fig. 1 has a CT structure (i.e., the nonlinear element
is the root, the linear elements are the leaves and the node is the V-
port junction), it can be implemented in an explicit fashion using
the procedure, based on forward scan, local nonlinear scattering
and backward scan, discussed in the previous Section. Depending
on the reference circuit the single node can be decomposed into
an interconnections of nodes without delay-free-loops (e.g., other
CTs with multiple nodes or BCTs). However, it is worth noticing
that we do not lose generality by describing the topological infor-
mation with a single node. The scattering matrix S characterizing
the (reciprocal or nonreciprocal) WD junction can be computed
according to the formulas presented in [34,35] and given the NV
free parameters Z1,...,Zn. The port of the WD junction fac-
ing the nonlinear element is made reflection free by choosing the
free parameter at that port in such a way that the corresponding
diagonal entry of the scattering matrix S goes to zero.

Matrix S relates incident and reflected waves at a sampling
time step k as

a[k] = Sb[k], 2)
Waves incident to the elements are collected into the column vec-
tor alk] = [ai[k],...,an[k]]T. We assume, that the WD one-

port elements are ordered as follows. Waves ai[k], ..., anm[k]
are incident to M dynamic elements (e.g., capacitors or induc-
tors) with M < N. The wave at position M + 1 of vector a[k],
called ae[k], is incident to the nonlinear element. Finally, waves
ar+2[k], - .., an[k] are incident to linear instantaneous elements
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(e.g., resistors or resistive sources). Therefore, vector a[k] can be
expressed as

a[k] = [(h[k’}, ey aM[k], adk], a1y1+2[l€], e aN[k”T.
Similarly we can define the vector b[k] as the column vector of
waves reflected from the elements and incident to the WD junction.
Waves reflected from linear elements are computed according to
Table 1, while the nonlinear element at the root is characterized by
the scattering relation b = f(a).

Let us now locally apply the first-order ADAA method pro-
posed in [26] to the nonlinear scattering relation b = f(a), by
substituting f with the approximation

Fi(alk)=Fi(alk-1]) alk] % alk — 1]

alk]—alk—1]
f (M) it alk] ~ alk — 1]

3
where a[k] and b[k| are the discrete-time wave signals and F} is
the first-order antiderivative of f.

Unfortunately, as outlined in [26, 30], the first-order ADAA
filter introduces half-sample delay in the digital structure, altering
the temporization of the system. In particular, at each time-step
k, the non-antialiased version of the same system would have a
unitary delay that temporarily stores the state, to be used at time-
step k + 1. However, the additional delay introduced by ADAA
in the feedback path sums up to the unitary delays implementing
capacitors and inductors, while causing the total delay to become
1.5-samples long. In addition to the altered temporization of the
system, ADAA introduces a misalignment in time between the sig-
nals entering the WD junction with scattering matrix S during the
backward scan stage.

Let us consider (2) as the generic scattering operation, at time
step k, performed throughout the backward scan stage. The col-
umn vector b[k] of waves reflected from the elements and incident
to the WD junction is given by

flalk),alk —1]) = {

b[k] = [ba[K], ..., bar[k], be[k], barra[k], ..., bu (K],
where, in turn, be[k] is defined as

belk] = f(ag[k], alk —1]) . ©)
Since f introduces a half sample delay, it becomes clear that there
is a misalignment in time between b¢ [k] and all the other elements
of b[k]. To synchronize the signals, we apply a half-sample delay
filter with Z-domain transfer function H(z) = $(1+ 27") to all

the entries in b[k] but be[k]. It is worthwhile noticing that such a
filter H(z) acts as the ADAA filter (3) in the linear case; hence,
to some extent, we are applying the same antialiasing filter even to
the linear elements of the system. Thus, we obtain a synchronized
version of (2), expressed as

a[k] = Sbik]

()

where b[k] = [b1[k], ..., bar[k], be[k], bars2[k], . . ., b [k]]T and

B[] %(bn[k]mn[kq]) with 1<n<N A n#t

(6)

2
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Figure 1: Single-junction WDF with one nonlinear element.

The half-sample delay filter applied to each entry of b[k], with
the exception of l~7§ [k], resolves the issue of time misalignment be-
tween the waves incident to the WD junction during the backward
scan. The last open problem to be addressed is the altered timing
due to the added delay. If we further expand (5), considering the
waves reflected from dynamic elements, according to Table 1, we
obtain

blk] = [£ai[k—1],. .., an[k—1], be[k], baria[k], ..., bn[K]]"
@)
where an[k — 1] = %(an[k — 1]+ anlk — 2]).

Equation (7) puts in evidence that the introduced half sam-
ple delay results in a 1.5-samples total delay in the feedback path
of the system. The additional delay is compensated employing a
similar method to that described in [30] for state-space represen-
tations. Since the coefficient in S depends on the sampling period
T, we can modify them for the “expanded” sampling period 75 =
1.57, by noticing that a 1.5 samples delay corresponds to a one
sample delay at the reduced sampling frequency of f; = 2f,/3.
Thus, (2) is approximated with

a[k] ~ Sb[k], ®)

where b[k] represents the vector b[k] after the application of the
synchronization delays in (5) and (6). Matrix S is defined as
S = S(T;), which means that the free parameters Zi,...,Zn
essential for the computation of the scattering matrix need to be
changed according to the expanded sampling period 7. In par-
ticular, for capacitors we set Z, = T5/(2C,,) and for inductors
Zn = 2L,/ T,. Finally, operating the system at its original sam-
pling frequency fs, but with modified coefficients, allows us to
compensate for the additional delay, resulting in the adaptation of
the ADAA method to nonlinear stateful WDFs.

The implementation procedure is resumed in the following
pseudo-code snippet, considering an input signal Vin[k] coming
from a voltage source connected to the jth port of the WD junction.
Let us assume that the output signal is the port-voltage Vou[k] at
the Ith port. Moreover, we define s¢ as the £th row vector of matrix
S.
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Algorithm 1 ADAA in One-Junction WDFs
1 for k=1:length(Vi,) do

2 bilk],...,bulk] < far[k —1],..., Fam[k — 1]

3 bilk] < Vinlk] M+2<j<N > Input Signal
4 blk] = [b1[k], ..., bam[K], 0, bars2[k], ..., b [E]]T

5 aglk] < S¢blk] > Forward Scan
6  belk] < flaclk], aclk —1]) > Ist-order ADAA
7 bulk] < S(bnlk] +balk —1]) n#E

8  blk] = [bilk], ..., bal[k], be[k], bar—a[K], ..., bn[k]]T

9 a[k] « Sblk] > Backward Scan
10 alk] = z(ak] + alk - 1)

11 Voulk] < 3 (au[k] + bi[k]) > Output Signal

12 end for

In order to compute the output voltage Vo, the wave incident
to the Ith element needs to be aligned with its reflected wave, as
shown in line 10 of Alg. 1.

4. HIGHER-ORDER ANTIDERIVATIVE ANTIALIASING
IN NONLINEAR WDF

The approach described in Section 3 can be extended to higher-
order ADAA methods, to obtain improved aliasing suppression.
As before, we consider the same WDF of Fig. 1, with the differ-
ence that the nonlinear mapping f is substituted with a generic
pth-order ADAA approximation. Thus, the wave reflected from
the nonlinear element b [k] is now defined as

belk] = flag[k], ..., aelk — p)), ©)

where f(ag[k], ..., ac[k — p]) is the pth-order ADAA approxi-
mation of b = f(a). In [26] a second-order ADAA method is
provided, while an alternative general formulation for ADAA of
arbitrary order p is presented in [27]. As an example, second-order
ADAA proposed in [27] (i.e., p = 2) and applied to the reference
function f(a) yields

2
(a[k] a[k_ 1] a[k }) mx
<F2(a[k}) — Fy(alk —1])  Fa(alk —1]) — Fa(alk — 2]))
alk] — a[k — 1] alk — 1] — alk — 2] ’

10)

where F3 is the second-order antiderivative of f. For the treatment
of numerical ill-conditioning of (10), possibly occurring when a[k]
~ alk — 1], a[k] = a[k — 2] or a[k — 1] = a[k — 2], the reader is
referred to [27]. ~

In pth-order ADAA, the approximation f of f introduces a de-
lay of p/2 samples [28], causing the waves incident to the junction
in vector b[k] to be misaligned in time. Therefore, we need to ap-
ply synchronization delays, similarly to what done in (6). In partic-
ular, with higher-orders, the synchronization delays are fractional
only when p is odd. For instance, if p = 2 all the signals entering
the junction, but the wave reflected from the nonlinear element,
have to be delayed by one sample. To synchronize the signals, let
us introduce a (potentially) fractional delay of p/2 samples, with

%
e DRFx

Z-domain transfer function Hy(z). In this work, we use the delay
filter defined below.

1(,-15] —(L%JH)) if pis odd
Hy(z)= {2 (=78 +- fpiso an
z7P/? if p is even

Other choices of delay filters are possible; however, it is advisable

to use filters that are as spectrally flat as possible. If we define

B, (z) as the Z-transform of the discrete-time wave signal incident

to port n of the WD junction, i.e., b,[k], a synchronized signal

By,(z) with n # £ is obtained by applying the filter H,(z),
Bn(2) = Hy(2)Bn(2) with n=1,....N A n#¢,

) ) (12)

where B, (z) is the Z-transform of b, [k]. A synchronized version

of b[k] can now be defined as

blk] = [b1[K], ..., bar[K], be[k], bars2[K], ..., b [K]])".

However, as in the previous Section, we still need to com-
pensate for the additional delay of p/2 samples introduced in the
feedback path of the WDF by the pth-order ADAA method. Delay
compensation is achieved by modifying the coefficients of the sys-
tem according to the expanded sampling period Ty = (1+p/2)T;
In fact, a delay of (1 + p/2) samples at the reduced sampling fre-
quency fs = f./(1 + p/2) corresponds to a one-sample delay at
the reference sampling frequency f. This translates to the use of
a modified scattering junction S = S(T ) in both the forward scan
stage and in backward scan stage.

In the case of a multi-node CT structure, the procedure is anal-
ogous, having to adjust the coefficients for each junction according
to the expanded sampling period 75. We achieve signal synchro-
nization during the backward scan by applying the H,(z) filter to
waves incident to each junction, with the exception of waves inci-
dent to ports facing the nonlinear element or other junctions.

5. EXPLICIT WAVE DIGITAL ADAA MODELS OF
DIODES BASED ON THE LAMBERT W FUNCTION

Nonlinear elements commonly encountered in Virtual Analog ap-
plications are often described through implicit functions, thus re-
quiring iterative solvers (e.g., Newton-Raphson solvers) to run.
However, the scattering behavior of a single exponential diode or a
pair of exponential diodes in antiparallel can be expressed through
explicit relations between the WD port variables by employing the
Lambert W function, as discussed in [15,17,39]. This Section re-
vises the aforementioned scattering relations and introduces first-
and second-order antiderivatives of both wave mappings that can
be employed in first- and second-order ADAA.

5.1. Single diode

Let us consider the large-signal Shockley diode model, which re-
lates the current ¢ through the exponential p-n junction to the volt-
age v across it

i=1, (eﬁ—1), (13)

where I is the saturation current, V; is the thermal voltage, and n
is the ideality factor. The nonlinear equation (13) can be expressed
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in the WD domain as an explicit mapping b = f(a) [15,17];

(14)
wee ()

where w indicates the Omega Wright function, defined in terms
of the principal branch of the Lambert function Wy as w(z) =
Wo(e®) [39]. The first-order antiderivative of (14) is

fla) =g(a,Z,1s,Vz,n)

Z1I
=a+2Z1; — 2nVw (

nVi

a+ 21,
nVi

2

= & +2ZLa - *V2w($(a) (2 + w($(a))),

Fl(a) B

15)

while the second-order antiderivative reads as follows

a® 2 UBVts 2
Fa(a) = 54210 ——=w(¢(a))(12+90(¢(a))+2w(¢(a))")
(16)
where
é(a) = ’“;# + log (f‘i) . (17)

5.2. Pair of Diodes in Antiparallel

The hard clipping function commonly encountered in distortion
and overdrive circuits [2, 15-17,40] is often implemented through
a pair of identical diodes in antiparallel. In the considered WD
implementation they are modeled as a single nonlinear element
whose 7 — v characteristic is

i=1, [(e#—l)—(e%—l)}.

Assuming that only one of the two diodes is conducting at a given
time instant [15, 17], the following nonlinear wave mapping for
two identical antiparallel diodes can be formulated as

f(a) =sign(a)g(lal, Z, Is, Vi, m),

(18)

19)

where sign(a) is the sign function. The first-order antiderivative
of (19) has been derived as

Fi(a) = %Jr?Zfslal—nQVwa(\aD) 2+ w(o(lal) . 20)

The second-order antiderivative F» has been derived as

a3

@ Ver'sign(a)
6 6 (21)

w(9(la]) (12 + 9w(@(|a))) + 2w(¢(lal))?).

Equations (14) and (19) with their antiderivatives can be reused
to apply first- and second-order ADAA in WD structures describ-
ing different reference circuits containing diodes, due to the intrin-
sic modularity of WDFs.

Fg(a)

+ ZIsign(a)a® —

6. EXAMPLES OF APPLICATION

In this section, we propose the application of the methods formal-
ized in Section 3 and Section 4 to two Virtual Analog models
that are characterized by a significant amount of aliasing distor-
tion. The proposed WD implementations employ explicit nonlin-
ear wave mappings based on the antiderivates derived in Section 5.

%
e DRFx

6.1. Diode Clipper

A large number of digital emulations of musical circuits that gen-
erate aliasing distortion employs clipping and limiting functions.
This type of waveshaping is in fact common in guitar distortion
and overdrive effects, and many different Virtual Analog imple-
mentations have been discussed in the literature [2, 15-17,40]. A
common circuit implementation of a clipping stage is the passive
diode clipper shown in Fig. 2. This circuit, which consists of a RC
net and two antiparallel diodes, is used to “clip" voltage signals
whose amplitude exceed approximately +0.7 V.

Ry = 1kQ
MW °
+
C1 = 33nF
Vin ! I1:::: Vout

< °
Figure 2: Circuit schematic of the Diode Clipper stage.

The implemented WDF is shown in Fig. 3. It consists of one
series 3-port junction S and one parallel 3-port junction Py, and
the input signal has been modeled through a voltage generator
with internal series resistance Rj, = 0.15 2. The two antipar-
allel diodes are grouped together as one nonlinear element placed
at the root of a BCT structure and characterized by the explicit re-
lation (19). In particular, first-order ADAA is employed using (3)
in conjunction with (20). Second-order ADAA, instead, uses (10)
along with the first- and second-order antiderivatives (20) and (21).
Moreover, care must be taken when numerical ill-conditioning oc-
cur, as specified in [27].

R1 Cl
| |
T T
[ ] [ ]
Vin | HH H
SO 1] va

Figure 3: WDF implementation of the diode clipper.

The circuit has been tested with a sinusoidal input voltage
Vin(t) = 10sin(27 fot) with fundamental frequency fo = 1244.5
Hz, and reference sampling frequency f; = 44.1 kHz. The mag-
nitude spectra of the trivial implementation (i.e., without antialias-
ing) of the diode clipper circuit, as well as the versions with ADAA
filters are illustrated in Fig. 4. Harmonic components are high-
lighted with an ‘x’, while all the other spikes in the spectrum corre-
spond to aliased components. Fig. 4 shows how ADAA efficiently
suppresses aliased components, especially at lower frequencies.
However, it is worth recalling that high-frequency disturbances
are often inaudible due to auditory masking effects. Moreover,
results show that a X2 oversampling for the ADAA is sufficient
to obtain suppression of aliased components comparable to non-
antialiasied implementations with higher (x6) oversampling fac-
tors, especially employing the second-order ADAA method.

24007
DBEx



Proceedings of the 23" International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

0 0S=1, trivial
T
=)
=,
€ s0f 1
h=1
o
= \ ‘ LLLL \“ ‘ “\ ‘ ‘ . ‘ ‘ I
0 0.5 1 15 2
Frequency [Hz] 104
0 05:%, p=1
=)
=
< -50F 1
2
L
= ‘ H H A H 1 H L H L1 \I L1 ‘ [y
0 0.5 1 1.5 2
Frequency [Hz] «10*
0 03:2‘, p=2
=}
=
[
E -50 4
gﬁ 100
& \ L L Ll L Ll li I [
0 0.5 1 1.5 2
Frequency [Hz] «10*
0 0S-=6, trivial
T
)
€ s0f 1
= -100 1
- 0 o T ) A A R I O
0 0.5 1 15 2
Frequency [Hz] 104

Figure 4: Diode clipper spectra employing different ADAA orders
p and oversampling factors OS, with reference sampling frequency
fs = 44.1 kHz and a sinusoidal input at 1244.5 Hz, with amplitude
of 10 V.

A possible metric to measure the suppression of the aliased
components with respect to desired harmonic distortion compo-
nents of the clipping stage is the Signal-to-Noise Ratio (SNR),
here defined as a power ratio between desired harmonic compo-
nents and aliased components. The performances have been eval-
uated by measuring the SNR for a set of sinusoidal inputs at differ-
ent fundamental frequencies, ranging from 1 kHz to 10 kHz. The
desired harmonic components are found by evaluating the model
without any aliasing mitigation at a X128 oversampling factor.
Those harmonics are then subtracted from the spectra of various
simulations, with and without ADAA, at different oversampling
factors, obtaining as residuals the aliased components. Finally, the
ratio between the desired harmonics and the residuals is converted
to the dB scale. Since in audio applications the SNR is only mean-
ingful at audible frequencies, all signals were low-pass filtered to
18 kHz prior to the SNR evaluation. In figure 5, OS indicates
the oversampling factor that multiplies the reference sampling fre-
quency fs = 44100 Hz, and p indicates the ADAA order; trivial
refers to the output without any aliasing mitigation.
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Figure 5: Diode clipper SNR.
6.2. Envelope Follower

The envelope follower is a circuit used to detect the amplitude vari-
ation of an input signal, extracting from it a smooth voltage signal
that resembles its envelope, which may then be used to modify the
input amplitude dynamics in terms of attack and release, or even
to control other parameters. Its behaviour is governed by a single
diode that rectifies the signal, followed by an RC filter that smooths
rapid amplitude variations, creating the overall amplitude shape of
the input signal. The reference circuit schematic is depicted in
Fig. 6, while the corresponding WDF is shown in Fig. 7.
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Figure 6: Envelope follower schematic.
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Figure 7: WDF Model of the envelope follower.

ADAA is implemented employing (3) and (10) in conjunction
with the antiderivatives (15) and (16) of the single diode explicit
model (14). Results obtained from different simulations are re-
ported in Fig. 8. In particular, we show aliasing suppression per-
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Figure 8: Envelope follower spectra employing different ADAA
orders p and oversampling factors OS, with reference sampling
frequency Fy = 44.1 kHz and a sinusoidal input at 3 kHz, with
amplitude of 5V.

formances obtained employing first and second-order ADAA with
an oversampling factor of 2.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we showed how to integrate arbitrary-order ADAA
methods into dynamic WDFs with one nonlinear element. The re-
sults show good aliasing suppression performances, even with low
oversampling factors. It is worth noticing that the proposed ap-
proach for performing ADAA in the WD domain fully preserves
the modularity properties of traditional WDFs. It is indeed straight-
forward to change/replace the WD model based on ADAA of the
nonlinear element, with no need of redesigning the rest of the WD
structure. On the other hand, once an ADAA-based WD model of
a reference nonlinear element (e.g., diode or pair of diodes in an-
tiparallel) has been derived it can be reused for implementing com-
pletely different circuits containing the same nonlinear element.
Moreover, the proposed approach allows us to implement dy-
namic circuits with one nonlinearity in a fully explicit fashion
while performing aliasing reduction. This property is particularly
appealing when it comes to develop Virtual Analog applications
that need to run at real-time need with a low computational cost.
As a problem of ADAA filters, it is worth recalling that their
response is not spectrally flat, and, in particular, their inherent low-
pass filtering effect could be undesirable. Even if this effect could
be easily compensated employing a linear filter, additional spectral
shaping would be introduced when the method is applied to state-
ful systems. The remedy to such spectral shaping is mild over-
sampling, that limits the introduced distortion, while maintaining

2
e DRFx

superior antialiasing performances [30].

As interesting future developments, we wish to extend the pro-
posed ADAA approach to WD structures with multiple nonlinear-
ities, while maintaining the aforementioned modularity properties
as much as possible [18,41-43]. Another compelling develop-
ment would be to generalize ADAA techniques such that they can
be applied to nonlinear blocks with multiple inputs, e.g., employ-
ing ADAA for modeling multi-port nonlinearities like transistors
or vacuum tubes [21,42].
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