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ABSTRACT

Biquad filters are a common tool for filter design. In this writing,
we develop two structures for creating biquad filters with nonlin-
ear elements. We provide conditions for the guaranteed stability of
the nonlinear filters, and derive expressions for instantaneous pole
analysis. Finally, we examine example filters built with these non-
linear structures, and show how the first nonlinear structure can be
used in the context of analog modelling.

1. INTRODUCTION

A “biquad” filter refers to a general 2nd order IIR filter. In digital
signal processing, biquad filters are often useful since any higher-
order filter can be implemented using a cascade of biquad filters.
While digital biquad filters are typically implemented as linear
processors, for audio applications it can be useful to implement
nonlinear filters. For example, previous works have developed
nonlinear simulations of analog audio circuits including Sallen-
Key filters [1, 2], the Moog ladder filter [3, 4, 5], and more [6].
More relevant to our current topic is [7], in which the author sug-
gests a method for altering a general digital feedback filter by satu-
rating the feedback path, with the goal of achieving a more analog-
like response. Finally, in [8], the author inserts dynamic range lim-
iters into the biquad filter, with the intention of creating a hybrid
limiter/filter effect. In this writing, we strive to develop more gen-
eral nonlinear filter structures. While these structures may be used
for analog modelling, they do not necessarily depend on analog
modelling principles to be understood and implemented.

2. STRUCTURAL ELEMENTS

2.1. Linear Filter

We begin with the equation for a biquad filter

y[n] = b0u[n] + b1u[n− 1] + b2u[n− 2]

−a1y[n− 1]− a2y[n− 2]
(1)

where y is the output signal, u is the input signal, and an and bn
are the feed-back and feed-forward filter coefficients, respectively.
There are several convenient “direct forms” for implementing bi-
quad filters. In this writing we will focus on the “Transposed Di-
rect Form II” (TDF-II), which is popular for its favorable numeri-
cal properties [9]. Note that the poles of the filter can be described
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Figure 1: Transposed Direct Form II

using the quadratic equation.

p =
−a1 ±

√
a2
1 − 4a2

2
(2)

Specifically, the pole magnitude is described by (ignoring the triv-
ial case where the poles are strictly real)

|p|2 = a2 (3)

and the angular frequencies of the poles are equal to.

∠p = arctan

(
±
√

4a2 − a2
1

a1

)
(4)

It is well known that a digital filter will be stable provided that the
magnitudes of the poles are strictly less than 1 [9].

2.1.1. State-Space Formulation

Another reason TDF-II is useful for implementing biquad filters
is that its behavior can easily be analyzed in state-space form.
The state-space formalism is commonly used for constructing non-
linear virtual analog systems; brief introductions can be found in
[10, 11]. To write the TDF-II biquad filter in state-space form, two
state variables are defined at the locations of the delay elements.

x1[n] = b1u[n]− a1y[n] + x2[n− 1]

x2[n] = b2u[n]− a2y[n]
(5)

Then the output of the filter can be written in terms of the states as,

y[n] = b0u[n] + x1[n− 1] (6)
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finally, the filter equation is written in a state-space form.x1[n+ 1]
x2[n+ 1]
y[n+ 1]

 =

0 1 −a1

0 0 −a2

1 0 0

x1[n]
x2[n]
y[n]

+

b1b2
b0

u[n] (7)

2.2. Nonlinear Elements

We now propose adding nonlinear elements to the above filter
structure. We will refer to these nonlinear elements as “base non-
linearities”. To keep the discussion as broad as possible, we con-
sider any one-to-one nonlinear function fNL(x).

In analog modelling literature, it is typical to analyze a nonlin-
ear system by "linearizing" the system about a certain operating
point. This process is typically done by constructing a Thevenin
or Norton equivalent circuit that represents the nonlinear function
at that operating point, where the resistance of the equivalent cir-
cuit is determined by the slope of the nonlinearity at the operating
point, and the source of the equivalent circuit is determined by the
DC offset of the linearized system at the operating point [12, 13].

In our purely digital formulation, we can linearize a nonlinear
function as a gain element plus a constant source (see fig. 2). For

Figure 2: A general digital nonlinear system (left), and a general
linearization of that system (right).

operating point x0

f̄NL(x) = f ′
NL(x0)x+ c(x0) (8)

where the offset c(x0) is described by

c(x0) = fNL(x0)− f ′
NL(x0)x0 (9)

In fig. 3, we show an example of linearizing the nonlinear function
fNL(x) = tanh(x) at x0 = 1.

Figure 3: tanh nonlinearity, linearized at x = 1.

2.2.1. Stability Constraints

In order to guarantee that the filter structures described in the next
section will be stable, we propose the following constraint on the
base nonlinearities used to construct nonlinear filters:∣∣f ′

NL(x)
∣∣ ≤ 1 (10)

In other words, the nonlinearities must never have a slope greater
than 1. Many typical musical nonlinearities satisfy this constraint,
including many saturating, dropout, rectifying, and wavefolding
nonlinearities. Note that this property is not satisfied by nonlinear
functions that have discontinuous derivatives, such as fNL(x) =
|x|. For functions of this type, we recommend using a smoothing
scheme, such as BLAMP [14], to achieve a continuous first deriva-
tive.

Of particular interest to us will be saturating nonlinearities, includ-
ing hard-clippers, soft-clippers, and sigmoid-like functions (see
fig. 4). Saturating nonlinearities satisfy the property that.

|x| → ∞, f ′
sat(x) → 0 (11)

Figure 4: Saturating Nonlinearities

2.3. Lyapunov Stability

As mentioned earlier, we can easily tell if a linear system is stable
by analyzing the pole locations. For nonlinear systems, we need
a more robust tool for analyzing stability; in this writing, we use
Lyapunov stability [15], as has previously been applied to nonlin-
ear digital waveguide networks [16], simulations of the Moog lad-
der filter [17], and direct form filters subject to fixed-point quanti-
zation [18]. To demonstrate that a system is Lyapunov stable, we
must form the discrete-time state-space equation of the system

x[n+ 1] = f(x[n]) (12)

If every element of the Jacobian matrix of f is less than 1, at some
operating point of the system, then the system is considered Lya-
punov stable about that point. As discussed in [17], note that Lya-
punov stability is a sufficient but not strictly necessary condition
for the more general bounded-input, bounded-output (BIBO) sta-
bility.
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3. NONLINEAR FILTER STRUCTURE 1: NONLINEAR
BIQUAD

Figure 5: Nonlinear Transposed Direct Form II. The “NL” blocks
refer to a generalized nonlinear element.

We now propose adding nonlinear elements to the TDF-II str-
cuture in the following fashion (see fig. 5). We will refer to this
structure as the “Nonlinear Biquad”. The equation for the nonlin-
ear biquad filter then becomes

y[n] = b0u[n] + fNL(b1u[n− 1]− a1y[n− 1]

+ fNL(b2u[n− 2]− a2y[n− 2]))
(13)

Here it can be useful to define the inputs to the nonlinearities.

χ1 = fNL(χ2) + b1u[n− 1]− a1y[n− 1]

χ2 = b2u[n− 2]− a2y[n− 2]
(14)

Note that for saturating base nonlinearities, as the input u grows
large, the other terms will become negligible.

Now we can replace the nonlinear elements with their linearized
models, using the state variables to define the operating points. To
make our notation more concise, we will denote the output of the
nonlinear functions as follows

f̄NLk (x) = gkx+ γk

gk = f ′
NL(χk), γk = c(χk)

(15)

Then eq. (13) can be re-written

y[n] = b0u[n] + g1(b1u[n− 1]− a1y[n− 1]

+ g2(b2u[n− 2]− a2y[n− 2]) + γ2) + γ1
(16)

Finally, we can re-write the filter coefficients as variables depen-
dent on the state variables.

b′0 = b0

b′1 = g1b1

b′2 = g1g2b2

a′
1 = g1a1

a′
2 = g1g2a2

(17)

y′[n] = b′0u[n] + b′1u[n− 1]− a′
1y[n− 1]

+ b′2u[n− 2]− a′
2y[n− 2] + g1γ2 + γ1

(18)

Note that the two γ terms in eq. (18) are simple offsets as defined
by our linearized model, and as such will not affect the pole loca-
tions, nor the filter stability.

3.1. Stability

Recall that the linear biquad filter equation can be written in state-
space form as in eq. (7). By writing the nonlinear biquad eq. (13),
in the state-space form defined by eq. (12), we findx1[n+ 1]

x2[n+ 1]
y[n+ 1]

 = h

x1[n]
x2[n]
y[n]

+

b1b2
b0

u[n] (19)

where,

h1(x1[n], x2[n], y[n]) =fNL(x2[n])− a1y[n]

h2(x1[n], x2[n], y[n]) =− a2y[n]

h3(x1[n], x2[n], y[n]) =fNL(x1[n])

(20)

then the Jacobian matrix of h can be written as follows.

J =

 0 f ′
NL(x2[n]) −a1

0 0 −a2

f ′
NL(x1[n]) 0 0

 (21)

From this analysis, we see that the nonlinear biquad filter will be
stable, provided that the constraint from eq. (10) is satisfied, and all
the a coefficients are less than 1. However, note that the constraint
on the a coefficients is required anyway for the corresponding lin-
ear filter to be stable, so the only “new” constraint that arises from
adding the nonlinear elements is that of eq. (10).

3.2. Pole Analysis

Since the coefficients of the biquad filter will be dependent on the
state of the filter, the instantaneous poles of the filter will be depen-
dent as well. In order to calculate the instantaneous poles of the
nonlinear biquad structure, we can adjust the formula from eq. (2).

p′ =
−g1a1 ±

√
g2l a

2
1 − 4g1g2a2

2
(22)

For saturating base nonlinearities, we can see from eq. (11) that as
the state variables grow large, the poles will go to zero.

The pole magnitude and angle with move as follows.

|p|2 = g1g2a2 (23)

∠p = arctan

±

√
4 g2
g1
a2 − a2

1

a1

 (24)

Note that while the two gain elements (g1, g2) are approximately
equal, the nonlinear pole will have the same angle as the corre-
sponding linear pole. An example of this pole movement can be
seen in fig. 6: note that as the state variables grow large and the g
factors become smaller, the poles and zeros both approach zero.
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Figure 6: Instantaneous poles for a nonlinear biquad resonant lowpass filter calculated from eq. (22), with g1 = g2 = g.

Figure 7: Nonlinear Feedback Filter.

4. NONLINEAR FILTER STRUCTURE 2: NONLINEAR
FEEDBACK FILTER

We now propose a different structure for adding elements to a
TDF-II Biquad filter, this time adding nonlinear elements to the
feedback paths (see fig. 7). Note that although the two structures
are developed separately here, they could certainly be combined
into a third structure, which will also be stable under the same
conditions as the two original structures. The equation for the fil-
ter can now be written.

y[n] = b0u[n] + b1u[n− 1] + b2u[n− 2]

− a1fNL(y[n− 1])− a2fNL(y[n− 2])
(25)

Again, we can replace the nonlinear elements with their linearized
models, this time using the y[n − 1] and y[n − 2] terms to define
our operating points.

f̄NLk (x) = gkx+ γk

gk = f ′
NL(y[n− k]), γk = c(y[n− k])

(26)

And again, the filter equation can be re-written as,

y[n] = b0u[n] + b1u[n− 1] + b2u[n− 2]

− a1(g1y[n− 1] + γ1)− a2(g2y[n− 2] + γ2)
(27)

or by re-writing the filter coefficients, we see.

b′0 = b0

b′1 = b1

b′2 = b2

a′
1 = g1a1

a′
2 = g2a2

(28)

y′[n] = b′0u[n] + b′1u[n− 1]− a′
1y[n− 1]

+ b′2u[n− 2]− a′
2y[n− 2]− a1γ1 − a2γ2

(29)

Again, the γ offset terms will not affect the filter stability.

4.1. Stability

We can now update eq. (7) for the nonlinear feedback filter de-
scribed by eq. (25), and by writing it in the form of eq. (12), we
see x1[n+ 1]

x2[n+ 1]
y[n+ 1]

 = h

x1[n]
x2[n]
y[n]

+

b1b2
b0

u[n] (30)

where,

h1(x1[n], x2[n], y[n]) =x2[n]− a1fNL(y[n])

h2(x1[n], x2[n], y[n]) =− a2fNL(y[n])

h3(x1[n], x2[n], y[n]) =x1[n]

(31)

then the Jacobian matrix can be written as follows.

J =

0 1 −a1f
′
NL(y[n])

0 0 −a2f
′
NL(y[n])

1 0 0

 (32)

Again, assuming that the corresponding linear filter is stable, the
nonlinear feedback filter will be stable provided the constraint from
eq. (10) is satisfied, that the absolute value of f ′

NL(x) is always
less than or equal to 1.

4.2. Pole Analysis

We can now calculate the locations of the instantaneous poles for
the nonlinear feedback filter, by adjusting the formula from eq. (2).

p′ =
−g1a1 ±

√
g21a

2
1 − 4g2a2

2
(33)
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Figure 8: Instantaneous poles for a resonant lowpass filter with nonlinear feedback, calculated from eq. (33), with g1 = g2 = g.

In this case the pole magnitude and angle will move as follows.

|p|2 = g2a2 (34)

∠p = arctan

±

√
4 g2
g21
a2 − a2

1

a1

 (35)

Note that for saturating nonlinearities, the pole magnitude decays
to zero more slowly than for the nonlinear biquad. More impor-
tantly, as the input gain increases, the pole angle increases as well,
creating a sonically interesting “sweeping” sound. [5] describes
this sort of pole movement as “audio-rate modulation of the cut-
off” for the filter, which can be a useful way of thinking about this
phenomenon. This pole movement is particularly noticeable in the
biquad structure created in [8], which can be seen as a special case
of the nonlinear feedbaack filter described here.

Finally, note that unlike the nonlinear biquad, the zeros of the filter
are not affected by the nonlinear elements. While adding nonlin-
ear elements to the feedforward path can introduce a similar effect
for the zeros, this would be functionally equivalent to processing
the signal through a nonlinearity before passing it into the filter.
Again, an example of this pole movement can be seen in fig. 8:
note that as the state variables grow large and the g factors become
smaller, the poles angles increase and the pole magnitude shrinks
to zero, while the zeros remain unchanged.

5. EXAMPLE: RESONANT LOWPASS FILTER

As an example of the nonlinear structures developed above, we
will now examine a resonant lowpass filter designed with both
nonlinear structures. We will then show how the nonlinear biquad
structure can be useful for analog modelling, and compare to an
analog filter made with the same specifications.

Our example filter will be a lowpass filter with a cutoff frequency
at fc = 1 kHz, and Q = 10. For our nonlinear elements, we will
use a hyperbolic tangent function fNL(x) = tanh(x). Note that
this nonlinear function belongs to the class of saturating nonlinear-
ities described by eq. (11).

5.1. Digital Nonlinear Biquad

We first construct this filter using the nonlinear biquad structure.
In fig. 9 we show the frequency-domain output of this filter for sine

Figure 9: Frequency-domain reponse of a nonlinear biquad low-
pass filter for a series of sine sweeps with amplitude A.

sweeps of various amplitudes, compared to the frequency response
of the corresponding linear filter. Note that “frequency-response”
is an ill-defined concept for nonlinear systems; as a result, these
plots should be seen as a roughly approximating the frequency re-
sponse at particular operating points, rather than true frequency
response measurements. In fig. 6 we show the movement of the
poles and zeros of the filter for varying steady state inputs. We cal-
culate the instantaneous poles using eq. (22), using g1 = g2 = g,
as described in each figure.

5.2. Digital Nonlinear Feedback Filter

Next, we construct the same resonant lowpass filter using the non-
linear feedback structure. In fig. 10, we show the sine-sweep re-
sponse of the filter at various amplitudes. In fig. 8 we show the
movement of the poles and zeros of the filter for various steady
state gains. The instantaneous poles are calculated using eq. (33),
again using g1 = g2 = g.

5.3. Using the Nonlinear Biquad for Analog Modelling

To show how the nonlinear biquad filter structure can be useful
for analog modelling purposes, first note that the input gain to the
nonlinear biquad can be used as a tunable parameter (see fig. 11).
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Figure 10: Frequency-domain response of a lowpass filter with
nonlinear feedback for a series of sine sweeps with amplitude A.

Figure 11: Response of the nonlinear resonant lowpass filter to a
50 Hz square wave with varying input gain.

By tuning the input gain, we can attempt to match the response of
an arbitrary analog filter, either by tuning the parameters by ear or
using some form of numerical optimisation. Note that the choice
of base nonlinearities used by the nonlinear biquad will also play a
role in the accuracy of the model. For example, if the analog filter
being modelled displays asymmetric nonlinear properties, then in
order to accurately model that filter, the nonlinear biquad must be
constructed using asymmetric base nonlinearities.

5.3.1. Comparison with Analog Filter

As an example, we can attempt to construct a naive model of a
Sallen-Key lowpass filter, a commonly used analog filter structure,
and compare our results to the desired analog response, similar to
the comparison done in [1]. We describe this as a naive model be-
cause we do not make any attempt to understand the physical prop-
erties of the analog filter when constructing this model. We con-
struct a nonlinear biquad filter using tanh base nonlinearities, and
design a resonant lowpass filter with cutoff frequency fc = 1 kHz,
and Q = 10, as well as a simulation of the corresponding Sallen-
Key filter using LTSpice. To accentuate the nonlinear behavior of
the analog filter, we choose ±4 V as the source voltages for the

analog filter circuit.

We then compare the outputs of the two filters for square waves
at different frequencies, and use a simple staircase optimisation
scheme to find the input gain for the nonlinear biquad that best
matches the analog simulation. The results for the 250 Hz square
wave can be seen in fig. 12. While the nonlinear biquad model is
far from perfect, it does capture the damping effects of the analog
filter much more accurately than the corresponding linear filter,
and could be further improved with a more well-informed choice
of base nonlinear functions, and a more sophisticated optimisation
scheme.

Figure 12: Comparison between a linear resonant lowpass filter,
a resonant lowpass made with a nonlinear biquad using a tanh
clipper with input gain 0.283, and a SPICE simulation of a Sallen-
Key lowpass. All of the lowpass filters have fc = 1 kHz, and
Q = 10. The input signal in each case is a 250 Hz square wave.

6. CONCLUSION

In this paper, we have developed two structures for stable non-
linear biquad filters: the “nonlinear biquad filter” and “nonlinear
feedback filter.” We have introduced the new architectures as a
modification of the Transposed Direct Form II filter structure, and
shown how the changed architectures affect the pole locations de-
pending on the amplitude of the input signal. We have also derived
constraints under which the structures are guaranteed stable.

As a case study, we have implemented a resonant lowpass filter
using both nonlinear structures, and shown that the poles respond
to the input as expected. We have also shown that the nonlinear
biquad structure can be used to model analog filters, comparing
with a Sallen-Key lowpass filter as an example. Note that while
the nonlinear biquad structure can be used for analog modelling,
both structures can also be used purely in the digital domain as a
tool for constructing filters that sound more sonically interesting
and harmonically rich.

To demonstrate this last point, we have also developed an open-
source audio plugin (VST, AU) implementation of both the nonlin-
ear biquad and nonlinear feedback filters, extending to several fil-
ter shapes, and several base nonlinearities. The source code for the
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plugin implementation is available on GitHub,1 and video demon-
strations are available on YouTube.2,3

Future research on this topic will center around making better-
informed choices of base nonlinearities, focusing on both the de-
sired harmonic response of the filter, as well as physically mean-
ingful base nonlinearities for use in analog modelling. Another
possible area of inquiry involves using these filter structures to
model the TR-808 bass drum circuit, which contains a resonant fil-
ter that exhibits level-dependent cutoff-frequency modulation sim-
ilar to the nonlinear feedback filter [19]. Finally, the filter struc-
tures developed in this writing could be used to design time-varying
amplitude-dependent filters, e.g. the time-varying modal filters de-
scribed in [20].
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