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ABSTRACT

In the design of real-time spring reverberation algorithms, a modal
architecture offers several advantages, including computational ef-
ficiency and parametric control flexibility. Due to the complex,
highly dispersive behavior of helical springs, computing physi-
cally accurate parameters for such a model presents specific chal-
lenges. In this paper these are addressed by applying an implicit
higher-order-in-space finite difference scheme to a two-variable
model of helical spring dynamics. A novel numerical boundary
treatment is presented, which utilises multiple centered boundary
expressions of different stencil width. The resulting scheme is un-
conditionally stable, and as such allows adjusting the numerical
parameters independently of each other and of the physical pa-
rameters. The dispersion relation of the scheme is shown to be
accurate in the audio range only for very high orders of accuracy
in combination with a small temporal and spatial step. The fre-
quency, amplitude, and decay rate of the system modes are ex-
tracted from a diagonalised form of this numerical model. After
removing all modes with frequencies outside the audio range and
applying a modal amplitude correction to compensate for omitting
the magnetic transducers, a light-weight modal reverb algorithm is
obtained. Comparison with a measured impulse response shows a
reasonably good match across a wide frequency range in terms of
echo density, decay characteristics, and diffusive nature.

1. INTRODUCTION

Spring reverb tanks originated in the 1930s as a compact, electro-
mechanic means to emulate room reverberation [1]. Their func-
tionality relies on the slow and heavily dispersive propagation of
waves in helical springs, which facilitates long reverberation times
and diminishes constructive wave interference. The spring’s vibra-
tional behaviour is assumed to be approximately linear and time-
invariant at typical driving levels, and the impulse reponse (IR)
generally features a series of smeared pulses (see Figure 1). As
discussed in previous works (see, e.g. [2, 3]), the IR spectrogram
is typically divided into two frequency ranges, each featuring a se-
ries of frequency-dependent echos, sometimes referred to as chirps
[4, 5]. These peculiar characteristics make spring reverb sonically
distinct from room or plate reverb. As such, it has been appreciated
and employed as an effect in its own right since the early 1960s,
when type IV units first appeared [6].

Efforts have been made in the past two decades to digitally
emulate spring reverb, which enables incorporating it into digi-
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Figure 1: Example impulse response, measured on a single spring
of an Accutronics & Belton 9EB2C1B Reverb tank. The black
dashed line indicates the transition frequency.

tal music workflows. One approach aims to reproduce the chirps
in a phenomenological manner, using allpass and lowpass filters
within delay feedback structures [4, 5, 7]. Some of the response
details, specifically those near and above the transition frequency,
are difficult to capture this way, but otherwise good matches with
measured IRs have been obtained, particularly so via automated
calibration [8]. The main advantage is that the resulting compu-
tational structures are both efficient and parametric, i.e. the model
parameters can be tuned on-line. The downside is that these pa-
rameters have no clear connection with the underlying physics of
helical springs. One may therefore question the authenticity of the
output if the parameters are significantly dialled away from those
estimated directly from a measured IR.

Another phenomenological approach is to adopt a computa-
tional structure consisting of a parallel set of modal oscillators (see
Figure 2) and set the modal frequencies according to physically-
informed formulas [9, 10]. This also yields an efficient algorithm,
and the modal architecture offers increased parametric control flex-
ibility, as well a simple way of adding some diffusion in the IR tail
[10]. However, physics-based approximate formulas have been
proposed so far only for modes with frequencies below the tran-
sition frequency, and in addition it is unclear how similar closed-
form expressions could be derived for mode amplitudes and damp-
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Figure 2: Modal reverb architecture. VE and VP are the excitation
and pick-up voltage signals, respectively.

ing constants. In [10], this is addressed by setting these according
to the amplitude envelope and overall decay rate of a measured IR.

The main alternative to the above methods is to model the
vibrational behaviour of helical springs, and solve the resulting
system of partial differential equations using numerical methods.
Such an undiluted physical modelling approach intrinsically con-
nects the model coefficients to the system’s material and geomet-
rical parameters. Previous works have utilised second-order accu-
racy finite difference schemes for the discretisation of two-variable
descriptions of helical spring dynamics [2, 11, 3, 12]. These mod-
els are based on different simplifying assumptions compared to
the twelve-variable model by Wittrick [13]. So far, the magnetic
beads at the spring terminations were incorporated only in the sim-
pler model proposed in [11]. The otherwise more advanced “thin
spring model” proposed in [3, 12] accounts for the dependency on
the helix angle, and has been shown to behave extremely similar
to Wittrick’s model in the audio range. The resulting numerical
models capture much of the response detail, including secondary
echos. On the other hand, numerical dispersion relation analy-
sis results have indicated significant errors for high wavenumbers,
even for parameterised schemes with optimally tuned coefficients.
One of the more easily visible resulting artefacts is a discrepancy
in the echo density above the transition frequency (see, e.g. Figure
6 in [11]). Compared with measured IRs the results computed in
[2, 11] also lack diffusion in the IR tail [14]. In addition, all of the
finite difference schemes proposed so far carry a relatively high
computational load, making real-time implementation on standard
processors less than straightforward.

This paper proposes a numerical method that aims to over-
come both the accuracy and computational efficiency issues. Start-
ing from a two-variable description of the helical spring dynamics
in Section 2, the approach is to devise an unconditionally stable fi-
nite difference scheme in which the spatial derivatives are approx-
imated with higher-order accuracy stencils (see Section 3). After
selecting a sufficiently high sampling frequency, number of spa-
tial segments and order of accuracy, the resulting scheme is diag-
onalised in Section 4 to obtain an efficient modal form which can
be recast into a decimated version featuring only modes within the
hearing range, and running at a standard audio rate.

2. SPRING REVERB TANK MODEL

2.1. Helical Spring Vibrations

In the below, the prime symbol is used to distinguish an original
variable from a (non-primed) non-dimensional counterpart used
throughout the main body of the paper. Consider a helical spring
of cross-section A = πr2, wire length L, helix radius R, Young’s

modulus, E, and mass density ρ. On basis of the simplifying as-
sumptions made in [15], the transversal displacement u′ = u′(x′, t)
and longitudinal displacement v′ = v′(x′, t) accross the wire axis
coordinate x′ and time coordinate t can be considered to be gov-
erned by two coupled partial differential equations:

∂2u′

∂t2
=− r2

4ρ

(
E+η

∂

∂t

)(
∂4u′

∂x′4
+2ϵ2

∂2u′

∂x′2
+ϵ4u′

)
+
ϵ

ρ

(
E+η

∂

∂t

)(
∂v′

∂x′
−ϵu′

)
−2σ

∂u′

∂t
+

1

ρA
F ′

u, (1)

∂2v′

∂t2
=

1

ρ

(
E+η

∂

∂t

)(
∂2v′

∂x′2
−ϵ∂u

′

∂x′

)
−2σ
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∂t
+

1

ρA
F ′

v, (2)

where F ′
u = F ′

u(x
′, t) and F ′

v = F ′
v(x

′, t) are external force
density terms, and ϵ = 1/R. Frequency-dependent damping is in-
corporated here by considering the spring to behave like a Kelvin-
Voigt material [16], in which η represents viscosity. Frequency-
independent damping, which can loosely be considered to be due
to the surrounding medium, is modelled through the damping pa-
rameter σ. Following the non-dimensionalisation proposed in [11],
in which x ∈ [0, 1], these equations can be re-written as

∂2u

∂t2
=−κ2

(
1+ϕ

∂

∂t

)(
∂4u

∂x4
+2q2

∂2u

∂x2
+q4u

)
+q2γ2

(
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∂

∂t

)(
∂v

∂x
−u

)
−2σ

∂u

∂t
+qFu, (3)

∂2v

∂t2
=γ2

(
1+ϕ

∂

∂t

)(
∂2v

∂x2
− ∂u

∂x

)
−2σ

∂v

∂t
+Fv, (4)

where

u = ϵu′, v =
v′

L
, x =

x′

L
, Fu =

F ′
u

ρAL
, Fv =

F ′
v

ρAL
.

(5)

κ =

√
E

ρ

r

2L2
, γ =

1

L

√
E

ρ
, q = ϵL, ϕ =

η

E
. (6)

2.2. Boundary Conditions

A simplified form is considered here, omitting the magnets at ei-
ther end of the system. This leaves various types of lossless bound-
ary conditions to be considered, out of which the following is em-
ployed in this study:

v(0, t) = 0, u(0, t) = 0
∂u

∂x
(0, t) = 0, (7)

v(1, t) = 0, u(1, t) = 0
∂u

∂x
(1, t) = 0. (8)

From substitution into eq. (4) re-formulated with one-sided spatial
second derivatives and assuming Fv(0, t) = Fv(1, t) = 0, one
obtains

∂2v

∂x2
(0+, t) = 0,

∂2v

∂x2
(1−, t) = 0. (9)

2.3. Input and Output

Given a voltage input signal VE(t), the driving terms in (3,4) are
defined as

Fu(x, t) = ξ sin(θE)ψE(x)VE(t), (10)
Fv(x, t) = ξ cos(θE)ψE(x)VE(t), (11)
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where θE is the ‘excitation angle’. For the purpose of modelling
the reverb tank as an input-to-ouput system with reciprocal trans-
ducers, the relationship between the input/output voltage and the
driving/pick-up force may be simplified to a simple scaling by an
arbitrary constant ξ, which is set to ξ = 1 here. The term ψE(x)
is a distribution function of width w, positioned near the input end
of the system. For example, a raised-cosine distribution:

ψE(x) =

{
1
w
[1 + cos(πx/w)] : 0 < x < w

0 : otherwise
(12)

Using a reciprocal mechanism at the other end, the output voltage
signal is defined as

VP(t) = − sin(θP)

qξ

∫ 1

0

ψP(x)
[
− κ2 ∂

4u

∂x4
− 2κ2q2

∂2u

∂x2

−
(
κ2q4 + q2γ2)u(t) + q2γ2 ∂v

∂x

]
dx

− cos(θP)

ξ

∫ 1

0

ψP(x)γ
2

[
∂2v

∂x2
− ∂u

∂x

]
dx, (13)

where ψP(x) = ψE(1− x). The terms inside the square brackets
are the force densities in the two polarisations. Hence the integrals
calculate a weighted sum over force density. For w → 0, each of
the integrals reduces to the force exerted by the spring on the fixed
end point.

The above clearly is a simplifying workaround that replaces
a proper model for driving and sensing through the magnets at
each end, such as that proposed in [11]. The motivation behind
this choice is to keep the boundary model as simple as possible
in this initial attempt to apply higher-order spatial schemes. Note
though that the main ramifications can be compensated for in a
phenomenological fashion within the final modal form (see Sec-
tion 4.3).

2.4. Dispersion Relation

Considering a single frequency (ω) and ignoring damping and driv-
ing forces, waves travelling through the spring may be written in
terms of frequency and accompanying (dimensionless) wave num-
ber (β) as

u(x, t) = Ue(ωt+βx), v(x, t) = V e(ωt+βx), (14)

where U and V are complex amplitudes, and  =
√
−1. Substitut-

ing (14) into (3,4) omitting the driving terms yields the following
system of equations [11]:[
ω2 − κ2(β2 − q2)2 − q2γ2 q2γ2β

−γ2β ω2 − γ2β2

] [
U
V

]
=

[
0
0

]
.

(15)
The nontrivial solutions occur when the determinant equals zero:

ω4−
[
κ2(β2 − q2)2 + γ2(β2 + q2)

]︸ ︷︷ ︸
B

ω2+γ2β2κ2(β2 − q2)2︸ ︷︷ ︸
C

= 0.

(16)
This has positive solutions for ω

ω =

√
B ±

√
B2 − 4C

2
. (17)

In other words, we can relate any specific wave number to two
frequencies, one of which systematically falls outside the hearing
range [11]. Therefore only the low-frequency dispersion relation
is considered here.

3. FINITE-DIFFERENCE SCHEME

3.1. Discretisation

Using a temporal step ∆t = 1/fs and spatial step ∆x = 1/M ,
the system variables are modelled at discrete points in space and
time using the indexed with n and m, respectively:

un
m := u(m∆x, n∆t), vnm := v(m∆x, n∆t), (18)

where n and m are For the purpose of approximation of time
derivatives, we define the difference and average operators

δun
m = u

n+ 1
2

m − u
n− 1

2
m , (19)

µun
m = 1

2

(
u
n+ 1

2
m + u

n− 1
2

m

)
, (20)

which can be combined in various ways to construct second-order
accuracy centered difference and averaging operators:

δ1u
n
m=δµun

m = 1
2

(
un+1
m − un−1

m

)
≈∆t

∂u

∂t
(m∆x, n∆t), (21)

δ2u
n
m=δδun

m=un+1
m − 2un

m+un−1
m ≈∆2

t
∂2u

∂t2
(m∆x, n∆t),

(22)

µ2u
n
m=µµun

m= 1
4

(
un+1
m +2un

m+un−1
m

)
≈u(m∆x, n∆t). (23)

For approximation of spatial derivatives, higher-order accuracy
centered difference operators are employed, which are denoted
here as

Dpu
n
m =

Kp∑
k=−Kp

dp,ku
n
m+k ≈ ∆p

x
∂pu

∂xp
(m∆x, n∆t), (24)

for approximation of the pth derivative with a stencil of width
(2Kp + 1). For the three featuring spatial operatators (D1, D2,
D4) to be of the same order of accuracy, we have to choose

K1 = K − 1, K2 = K − 1, K4 = K, (25)

where K sets an overall scheme stencil width of (2K + 1) and
order of accuracy of (2K−2). In practice we set the stencil of D1

and D2 to the same width as that of D4, by adding a zero weight
on either side. The smallest possible scheme width parameter is
K = 2, which yields second-order accurate approximations of the
spatial derivatives. The coefficients dp,k are calculated using the
usual recursive formulation [17]. The operator in (24) is used for
all nodes within the spatial domain of the system, including those
immediately adjacent to the system boundaries. This means that,
for both polarisations, (K − 1) so-called ghost nodes have to be
considered on either end of the system (see Figure 3).

Finally, the calculation of the discrete-domain counterpart of
a specific distribution function ψφ(x) is not performed by straight
sampling, but instead using the integral

ψ̄φ,m =
1

∆x

∫ 1

0

νm(x)ψφ(x)dx, (φ = E,P) (26)

where νm(x) is a triangular nodal catchment function:

νm(x) =

 x/∆x + (1−m) : (m−1)∆x ≤ x < m∆x

−x/∆x + (1+m) : m∆x ≤ x ≤ (m+1)∆x

0 : otherwise
(27)

For the case of a point distribution (i.e. ψφ(x) is a Dirac delta
function), the use of (26) amounts to linear (de-)interpolation.
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Figure 3: Spatial grid for a finite difference model that divides the domain length into M segments, resulting into (M − 1) interior domain
nodes, and employing a spatial stencil of width (2K + 1). The blue nodes indicate the interior domain points, and the red nodes represent
ghost-nodes. The two boundary points, which are zero-valued for the chosen boundary conditions, are indicated with black.

3.1.1. Helical Spring

Employing the operators defined in (22,23,24), equations (3,4) are
discretised as follows:

δ2u
n
m = (µ2 + ζδ1)

[
(−g4D4 − g2D2 − g0)u

n
m + g1D1v

n
m

]
,

− χδ1u
n
m + qFn

u ∆
2
t , (28)

δ2v
n
m = (µ2 + ζδ1)

[
h2D2v

n
m − h1D1u

n
m

]
− χδ1v

n
m + Fn

v ∆
2
t , (29)

where

g0 =
(
κ2q4 + q2γ2)∆2

t , g1 =
q2γ2∆2

t

∆x
, g2 =

2κ2q2∆2
t

∆2
x

,

(30)

g4 =
κ2∆2

t

∆4
x

, ζ=
ϕ

2∆t
, χ=2σ∆t, h1 =

γ2∆2
t

∆x
, h2 =

γ2∆2
t

∆2
x

.

(31)
The averaging operator µ2 is employed on all restoring forces for
the purpose of constructing an unconditionally stable scheme (see
the Appendix).

3.1.2. Boundary Conditions

From the first two conditions in (7) and (8), we can simply set

un
0 = 0, vn0 = 0, un

M = 0, vnM = 0. (32)

For the third condition in both (7) and (8), as well as the accom-
panying results in (9), we apply centered difference operators in
repeated form, using a larger spatial step each time. This can be
specified as

un
k = un

−k, vnk = −vn−k, (33)
un
M+k = un

M−k, vnM+k = −vnM−k (34)

where k = 1, 2 . . . (K − 1). Given the symmetries d1,k = −d1,k
and d2,k = d2,k, this means that numerical versions of the bound-
ary conditions with the orders of accuracy ranging from 2 to 2K−
2 are all simultaneously satisfied. For example, at the left-hand
termination we have

D(Υ)
2 un

0 =

Υ∑
k=1

d2,k (u
n
k −un

−k) = 0, (Υ=1, 2 . . .K−1), (35)

D(Υ)
1 vn0 =

Υ∑
k=1

d1,k (v
n
k +v

n
−k) = 0, (Υ=1, 2 . . .K−1), (36)

where D(Υ)
p temporarily denotes the spatial differetiator for stencil

width Υ. Equations (33,34) will be used to eliminate the total of
4(K − 1) ghost nodes.

3.1.3. Input and Output

Using the discrete weights defined in (26), equations (10,11) be-
come

Fn
u,m = ξ sin(θE)ψ̄E,mV

n
E , (37)

Fn
v,m = ξ cos(θE)ψ̄E,mV

n
E , (38)

and the discrete-domain output signal is:

V n
P =

{
sin(θP)

qξ

M−1∑
m=1

ψ̄P,m

[
(g4D4+g2D2+g0)u

n
m−g1D1v

n
m

]
+

cos(θP)

ξ

M−1∑
m=1

ψ̄P,m

[
h1D1u

n
m − h2D2v

n
m +

]}
∆x.

(39)

3.2. Vector-Matrix Formulation

Let’s define vn and un as column vectors holding the (M − 1)
interior node values of the longitudinal and transversal dimension.
Applying (24) across all of the interior nodes on the v-axis, we can
then write

Dpv
n = D̃pṽ

n, (40)

where ṽn is a column vector of length M + 2K − 3 holding all
the node values required for the calculation:

ṽn =
[
(vn

L)
T 0 (vn)T 0 (vn

R)
T

]T
, (41)

and D̃ is a (M + 2K − 3)× (M − 1) matrix with elements

D̃p,i,j = dp,i−j−K+1. (42)

Figure 4 schematically depicts the form of this matrix, and the
vectors in (41) are defined as shown in Figure 3. Using the matrix
partioning defined in Figure 4, equation (40) can be written

Dpv
n = Ãpv

n
L + B̃pv

n + C̃pv
n
R. (43)

Similarly for u, we can write

Dpu
n = Ãpu

n
L + B̃pu

n + C̃pu
n
R. (44)

From the repeated boundary conditions in (33,34), we can write

Ãpv
n
L =

[
−Ã

′
p 0̃

]
vn, C̃pv

n
R =

[
0̃ −C̃

′
p

]
vn, (45)

Ãpu
n
L =

[
Ã

′
p 0̃

]
un, C̃pu

n
R =

[
0̃ C̃

′
p

]
un, (46)
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Ãp C̃pB̃p

Figure 4: Example of the form of the matrix D̃p for M = 9 and
K = 3. The dots indicate non-zero matrix entries. The red dots
indicate finite difference weights applying to ghost-nodes.

where the apostrophe indicates the left-right flipping of a matrix,
and 0̃ is a zero matrix of size (M −K)× (M − 1). Substitution
into (43) and (44) yields

Dpv
n = Dv

pv
n, Dpu

n = Du
pu

n, (47)

where

Du
p =

[
Ã

′
p 0̃

]
+ B̃p +

[
0̃ C̃

′
p

]
, (48)

Dv
p =

[
−Ã

′
p 0̃

]
+ B̃p +

[
0̃ −C̃

′
p

]
, (49)

We may now write (28,29) in vector-matrix form:

δ2u
n = (µ2 + ζδ1)

[
− (g4D

u
4 + g2D

u
2 + g0I)u

n + g1D
v
1v

n
]

− χδ1u
n + qFn

u∆
2
t , (50)

δ2v
n = (µ2 + ζδ1)

[
− h1D

u
1u

n + h2D
v
2v

n
]

− χδ1v
n +Fn

v∆
2
t . (51)

Combining the two equations and subsituting (37,38), the whole
system can be written in terms of vectors of lengthN = 2(M−1):

δ2w
n =

[
(µ2 + ζδ1)D− χδ1I

]
wn + gEV

n
E ∆2

t , (52)

where

wn =

[
un

vn

]
, gE =

[
qξ sin(θE)ψ̄E

ξ cos(θE)ψ̄E

]
, (53)

D =

[
− (g4D

u
4 + g2D

u
2 + g0I

u) g1D
v
1

−h1D
u
1 h2D

v
2

]
, (54)

and where Iu and I are identity matrices of size (M−1)×(M−1)
andN×N , respectively, and ψ̄E is a column vector holding values
as defined by (26) with φ = E. The output can be computed as

V n
P = gPDwn, (55)

where

gP = −∆x

[
(qξ)−1 sin(θP)ψ̄P ξ−1 cos(θP)ψ̄P

]
, (56)

with the elements of the column vector ψ̄P defined by (26).

0 500 1000 1500 2000 2500 3000
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K=50

Figure 5: Dispersion relations. The solid black line is the
continuous-domain curve. The horizontal dotted line indicates the
spring’s transition frequency, and the vertical dotted line marks
β = q. All curves were evaluated using the spring parameters
listed in the first column of Table 1, but with φ = σ = 0. The
numerical dispersion relations were evaluated with fs = 1 MHz
and M = 1300. For any value of K, the associated stencil width
is (2K + 1) and the scheme order of accuracy is (2K − 2).

3.3. Dispersion Analysis

Analogous to (14), we can can explore the ansatz

un
m = Uej(ωn∆t+βm∆x), vnm = V ej(ωn∆t+βm∆x). (57)

After substitution into (50,51), one obtains[
τ + (g4D4 + g2D2 + g0) −g1D1

h1D1 τ − h2D2

] [
U
V

]
=

[
0
0

]
.

(58)
where

τ = −4 tan2( 1
2
ω∆t), (59)

Dp =

K∑
k=−K

dp,ke
jkβ∆x . (60)

The term τ can be solved for from (58), after which frequency ω
is extracted using (59).

Figure 5 displays the numerical dispersion relation for differ-
ent values of K, with the continuous-domain curve also shown
for comparison. A 1 MHz sampling frequency was chosen so that
errors due to time derivative approximations are negligible for fre-
quencies below 20 kHz, and the number of segments was set to
M = 1300 to ensure that the system possesses a sufficient num-
ber of modes within the audio range. Setting θE = θP = 90o,
which corresponds to exciting only the transversal polarisation, is
motivated by (a) the experimental observation by Parker [18] that
the electromagnetic field drives the magnets mainly into rotational
motion, which does not directly couple to the longitudinal spring
vibration polarisation, and (b) the empirical observation by the cur-
rent author that the numerical model’s impulse response then most
closely resembles the measured response.
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Table 1: System parameter values.

spring parameters magnet-related parameters
κ 0.02018 [s−1] fco 100 [Hz]
q 1994 p 1.8
γ 1200 [s−1] fc 6300 [Hz]
φ 2.0 ×10−8 [s] fb 300 [Hz]
σ 3.0 [s−1] Hc 16
w 0.004 [m] R0 1.2
θE 90 [degrees] fD 600 [Hz]
θP 90 [degrees] υ 3

4. MODAL REVERBERATOR

4.1. Diagonalisation

In order to transform the scheme in (52) to a set of uncoupled
update equations, the matrix D is diagonalised:

D = PQP−1, (61)

where Q is a diagonal matrix holding the eigenvalues of D and
P is a full and invertible matrix holding the eigenvectors of D.
Substitution into (52) and pre-multiplying with P−1 then gives

δ2y
n =

[
(µ2 + ζδ1)Q− χδ1I

]
yn +P−1gEV

n
E ∆2

t , (62)

where yn = P−1wn is a new coordinate vector. After applying
the operators, this can be algebraically re-worked into the update
equation

yn+1 = Ayn +Byn−1 + cEV
n
E ∆2

t , (63)

where

A = S−1 [2I+ 1
2
Q] , (64)

B = S−1 [( 1
2
χ− 1) I+ ( 1

4
− 1

2
ζ)Q] , (65)

cE = S−1P−1gE, (66)
S = ( 1

2
χ+ 1) I− ( 1

4
+ 1

2
ζ)Q. (67)

Given that Q is diagonal, so are A and B, meaning that (63) is set
of uncoupled second-order difference equations, each representing
the dynamics of a single mode of the system. The ouput can be
obtained from the modal displacements yn as V n

P = gPw
n =

cPy
n, where cP = gPQP.

4.2. Modal Reverb Algorithm

Using the ansatz yn = esn∆t = e(ω−α)n∆t , the relationship be-
tween the diagonal elements of A and B and the mode frequencies
and decay rates can be derived:

Ai,i = 2e−αi∆t cos(ωi∆t), Bi,i = −e−2αi∆t , (68)

which is known in digital filter theory as the impulse invariant
method [19]. Using (68) we can extract the N system mode fre-
quencies and decay rates; the associated modal shapes are repre-
sented (in spatially sampled form) by theN matching eigenvectors
contained as a column vectors in P. Many of the modes obtained
this way when using a 1 MHz sampling frequency will lie out-
side the hearing range. Therefore, new modal update equations

are constructed using a standard audio rate f̄s = 1/∆̄2
t , taking the

form
yn+1
j = ajy

n
j + bjy

n−1
j + cjV

n
E ∆̄2

t , (69)

where aj and bj are defined through (68) using ∆̄t instead of ∆t,
and where j = i only when fi < 20 kHz < 1

2
fs. Consolidat-

ing the modal input and output weights, the modal amplitudes are
cj = cE,j · cP,j . Accordingly, the output can be computed sim-
ply as the sum of the modal oscillator outputs, thus arriving at the
modal reverb architecture shown in Figure 2. For the system val-
ues listed in Table 1, the finite difference model possesses a total
of 2598 modes. This is reduced to 1009 modes in the final modal
structure, which can be easily implemented in real-time on stan-
dard processors (see, e.g. [20]).

Figure 6 shows an example of the distribution of mode ampli-
tudes cj and mode decay rates αj against mode frequencies up to 6
kHz. Noticeable is the increase in modal density near the transition
frequency, and the quasi-harmonic series at the higher frequencies.
As seen in the lower plot, the decay rate is a monotonically rising
function of mode frequency, matching σ at frequencies near zero.

4.3. Modal Manipulations

From the upper plot in Figure 6 it can be seen that the numerical
model impulse response will be high-pass. In a reverb tank, the
magnets at the input and output end introduce various resonances,
the main one lying at a very low frequency, as such creating a
low-pass effect. A second resonance often appears at a frequency
above the transition frequency [3]. For the purpose of visual and
aural comparison with a measured impulse response, the resonance
effects due to the magnets is modelled in a phenomenological man-
ner here by filtering directly in the modal domain:

c′j = Hlp(fj) ·Hpk(fj) · cj , (70)

where

Hlp(f) =
fp
co

fp
co + fp

, (71)

Hpk(f) = 1 + (Hc − 1)
f2
b

f2
b + (f − f2

c )
2 , (72)

can be considered as zero-phase filter responses of ‘low-pass’ and
‘peak filter’ type, respectively. The cut-off frequency fco and roll-
off steepness parameter p as well as the center frequency fc, band-
width fb, and peak gain Hc can easily be determined through
comparison with a measured impulse response. The magnets also
cause a form of dispersion (decrease in echo density) at low fre-
quencies, because waves at or near the main resonance mentioned
above bring the magnets into motion more easily than high fre-
quencies, thus experiencing a larger phase shift. This can be mod-
elled in the modal domain by adjusting the mode frequencies as
follows:

f ′
j =

1

R(fj)
· fj , (73)

where R(f) represents the ratio by which the inter-pulse time in-
terval is increased

R(f) = 1 + (R0 − 1)

(
fD

f + fD

)υ

. (74)

The parameterR0 is the maximum ratio (occuring at zero-frequency),
and fD is the frequency below which the low-frequency dispersion
takes effect. The exponent υ controls the sharpness of the ‘bend’
in the echo density pattern.
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Figure 6: Mode amplitude (cj) and decay rate (αj) plotted against mode frequency (fj), for the spring parameters listed in the first column
of Table 1. The red dashed line indicates the spring’s transition frequency. The numerical parameters used are fs = 1 MHz, M = 1300,
and K = 50.

4.4. Comparison with a Measured Impulse Response

The impulse response of the numerical modal was calculated using
the numerical parameters fs = 1 MHz, M = 1300, and K = 50;
the modal synthesis was performed using f̄s = 44.1 kHz. The
upper plot in Figure 7 re-displays the spectrogram of the IR mea-
sured on an Accutronics & Belton 9EB2C1B Reverb tank shown
earlier in Figure 1, and the lower plot shows the computed IR. The
parameters κ and q (listed in Table 1) were tuned to match the tran-
sition frequency and low-frequency echo density of the measured
response. It can be seen that this results in an excellent match in
echo density at frequencies below as well as above the transition
frequency. Also visible from the comparison is that the simulated
response exhibits an appropriate level of temporal blurring at fre-
quencies between 1 and 4 kHz, and that the overall frequency-
dependent energy decay pattern is modelled reasonably well with
the two chosen damping parameters. Both impulse responses are
available for aural comparison on the companion webpage1.

The main artefact of the simulated response is that the sec-
ondary chirps (positioned between the main chirps) are too pro-
nounced. This is probably because the dispersion relation of the
underlying model (see Figure 5) is too linear in the regions directly
to the left and right of the point β = q.

5. CONCLUSIONS

A numerical method for deriving modal parameters from a phys-
ical model of a helical spring has been presented. A finite differ-
ence scheme with a spatial order of accuracy of 98 was employed
to achieve a numerical dispersion relation that is a highly accurate
up to about 15 kHz, leading to a complete set of a modal param-
eters that can be directly employed in an efficient and accurate
modal reverb algorithm.

The methodological novelty resides mainly in the use of re-
peated boundary conditions to eliminate the multiple ghost-points
that arise near the boundaries when using a higher-order centered
scheme. The scheme is unconditionally stable under the assump-
tion that the finite difference matrix D is negative definite, which

1http://www.socasites.qub.ac.uk/mvanwalstijn/
dafx20a/

Figure 7: Impulse response spectrograms. Top: Measured re-
sponse. Bottom: Simulation with modal filtering and low-
frequency dispersion manipulations applied.

was verified in all cases explored within the study. A formal sta-
bility proof can probably be arrived at via energy analysis, which
is the subject of ongoing research. A related investigative route
is the application of existing methods for boundary treatment with
higher-order in space schemes, including Summation-By-Parts (SBP)
operators and Simultaneous Approximation Term (SAT) methods
(see [21] for an overview). In addition, it is likely to be beneficial
to frame the problem in semi-discrete from (i.e. no temporal dis-
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cretisation), and/or to calculate higher-order finite difference coef-
ficients via optimisation.

The main limitation of the diagonalisation approach taken in
this paper is that the matrix eigenvalue calculation required for the
similarity transformation in eq. (61) is computationally costly for
the number of interior nodes minimally required for spring reverb
tank modelling. This means that, while the modal reverb algorithm
itself easily runs in real-time, there is little prospect of adapting the
modal parameters on the fly in response to changes in the system
parameters κ, q, and γ, at least not without the use of interpo-
lated look-up table methods. While the same holds in principle for
the damping parameters (φ and σ), the relationship between these
and the modal damping factors αj could probably quite easily be
retro-modelled to facilitate on-line variation. Alternatively, modal
damping could altogether be more freely defined and controlled.

In principle, the numerical methodology presented here can be
directly applied to more complex and accurate descriptions of the
system dynamics. A few a priori considerations are offered here.
Firstly, finite precision effects will come into play in the eigenvalue
calculation when increasing the size of the finite difference matri-
ces significantly beyond about 3000 × 3000, unless floating-point
variables are specified using more bits than with double-precision.
Secondly, the accuracy at the boundaries resulting with the simpli-
fied boundary conditions specified in eqs. (7,8) will not necessarily
transfer to models featuring magnetic bead resonators. Finally, a
holistic approach will probably involve formal testing of the per-
ceptual significance of the resulting objective improvements.
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Appendix: Remarks on Stability

Ignoring damping and external forces, consider the single-frequency
ansatz

wn = eωn∆tp, (75)
where p represents the numerical modal shape vector for frequency
ω. Substitution into the lossless version of (52), with the averaging
operator µ2 in place, yields

−4 tan2( 1
2
ω∆t)︸ ︷︷ ︸

λ

p = Dp, (76)

from which it is clear that the term λ must be an eigenvalue of
D, and p must be the associated eigenvector. We now consider
the same for the case when the averaging operator is not employed
(i.e. replacing µ2 with 1 in eq. (52)), and obtain

−4 sin2( 1
2
ω∆t)︸ ︷︷ ︸

λ

p = Dp. (77)

So for a given eigenvalue of D, we can derive the associated fre-
quency. For the two cases, this gives

ω =
2

∆t
tan−1( 1

2

√
−λ) (with µ2) , (78)

ω =
2

∆t
sin−1( 1

2

√
−λ) (without µ2) . (79)

If D is a negative definite matrix (not proven here but confirmed in
all numerical experiments), the eigenvalues lie in the range λmin ≤
λ < 0. So in the case of no averaging operator, the frequency
will become complex-valued with a negative real part when λ <
−4; from (75) that means the solutions will then be exponentially
growing in time. From (76) and (77) it can be seen that the |λmin|
increases with ∆t. Hence without the averaging operator in place,
there will be a stability condition to observe, and ∆t will have to
be chosen suffciently small for it to be met. On the other hand if
the averaging operator is employed, the frequency ω will always
be real-valued, because the inverse tan function exists across the
whole real number axis. Hence provided that D is a negative defi-
nite matrix, the numerical system will then be stable, with no con-
dition on the time step ∆t.
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