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ABSTRACT
Matching pursuit (MP) algorithms are widely used greedy meth-
ods to find K-sparse signal approximations in redundant dictionar-
ies. We present an acceleration technique and an implementation
of the matching pursuit algorithm acting on a multi-Gabor dictio-
nary, i.e., a concatenation of several Gabor-type time-frequency
dictionaries, consisting of translations and modulations of possi-
bly different windows, time- and frequency-shift parameters. The
proposed acceleration is based on pre-computing and thresholding
inner products between atoms and on updating the residual directly
in the coefficient domain, i.e., without the round-trip to the sig-
nal domain. Previously, coefficient-domain residual updates have
been dismissed as having prohibitive memory requirements. By
introducing an approximate update step, we can overcome this re-
striction and greatly improve the performance of matching pursuit
at a modest cost in terms of approximation quality per selected
atom. An implementation in C with Matlab and GNU Octave in-
terfaces is available, outperforming the standard Matching Pursuit
Toolkit (MPTK) by a factor of 3.5 to 70 in the tested conditions.
Additionally, we provide experimental results illustrating the con-
vergence of the implementation.

1. INTRODUCTION

Optimal K-sparse approximation of a signal x ∈ RL in an over-
complete dictionary of P normalized atoms (vectors) D =
[d0|d1| . . . |dP−1] ∈ CL×P , ∥dp∥2 = 1 or, similarly, finding
the minimal number of atoms that achieve a given error tolerance
∥x −Dc∥2 ≤ E, are NP-hard problems [1]. Both problems can
be (sub-optimally) solved by employing greedy matching pursuit
(MP) algorithms. The only difference is the choice of the stop-
ping criterion. It has been shown that the basic version of MP [2]
achieves an exponential approximation rate [1, 3, 4, 5]. In practice,
without imposing any structure on the dictionary, the effectiveness
of MP and its variants, see, e.g., [6, 7, 8, 9], quickly deteriorates
when the problem dimensionality increases; either by increasing
the input signal length L or the size of the dictionary P . Even with
structured dictionaries, and using fast algorithms in place of ma-
trix operations, a naive implementation can still be prohibitively
inefficient; even decomposing a short audio clip can take hours.
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An overview of greedy algorithms, a class of algorithms MP
falls under, can be found in [10, 11] and in the context of audio
and music processing in [12, 13, 14]. Notable applications of MP
algorithms in the audio domain include analysis [15], [16], coding
[17, 18, 19], time scaling/pitch shifting [20] [21], source separation
[22], denoising [23], partial and harmonic detection and tracking
[24].

We present a method for accelerating MP-based algorithms
acting on a single Gabor-type time-frequency dictionary or on a
concatenation of several Gabor dictionaries with possibly different
windows and parameters. The main idea of the present accelera-
tion technique is performing the residual update in the coefficient
domain while exploiting the locality of the inner products between
the atoms in the dictionaries and dismissing values below a user
definable threshold. The idea of performing the residual update in
the coefficient domain using inner products between the atoms in
fact dates back to the original work by Mallat and Zhang [2, Ap-
pendix E], but has always been dismissed as being prohibitively
storage expensive, as it generally requires storing pairwise inner
products between all dictionary elements. By exploiting the Ga-
bor structure of the dictionaries and dismissing insignificant inner
products, it becomes feasible to store all significant inner products
in a lookup table and avoid atom synthesis and the residual re-
analysis in every iteration of MP as it is usually done in practice.
The size of the lookup table as well as the cost of computing it are
independent of the signal length and depend only on the parame-
ters of the Gabor dictionaries.

A freely available implementation in C (compatible with C99
and C++11), can be found in the backend library of the Matlab/GNU
Octave Large Time-Frequency Analysis Toolbox (LTFAT, http:
//ltfat.github.io) [25, 26] available individually at http:
//ltfat.github.io/libltfat1.

We compare the performance of the proposed implementation
with the Matching Pursuit Toolkit (MPTK) [27], the de-facto stan-
dard implementation of several MP based algorithms. By special-
izing on multi-Gabor dictionaries, the presented algorithm is able
to significantly outperform MPTK.

This manuscript is a shortened version of the paper [28], which
provides an extended discussion of the proposed algorithm includ-
ing a worst case analysis of its convergence properties and more
details about the provided implementation.

1 Confer to http://ltfat.github.io/libltfat/group_
_multidgtrealmp.html or http://ltfat.github.io/doc/
gabor/multidgtrealmp.html) for more information on the library
and its Matlab interface.
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2. PRELIMINARIES

Matrices and column vectors are denoted with capital and lower-
case bold upright letters, e.g., M, x, respectively. Conjugate trans-
pose is denoted with a star superscript, (x∗,M∗), scalar variables
with a capital or lowercase italics letter s, S. A single element of
a matrix or a vector is selected using round brackets M(m,n),
x(l). The index is always assumed to be applied modulo vec-
tor length (or matrix size in the respective dimension) such that
x(l) = x(l + kL) for l = 0, . . . , L − 1 and k ∈ Z. More-
over, we will use two indices and subscript for vectors such that
c(m,n)M = c(m+ nM) in order to transparently “matrixify” a
vector. Sub-vectors and sub-matrices are selected by an index set
denoted by a calligraphic letter e.g. x(P) and the m-th row or n-
th column of a matrix M are selected using the notation M(m, •)
and M(•, n), respectively. Scalar-domain functions used on ma-
trices or vectors are applied element-wise e.g. |x|2(l) = |x(l)|2.

The Euclidean inner product of two vectors in CL is ⟨x,y⟩ =
y∗x =

∑L−1
l=0 x(l)y(l), where the overline denotes complex con-

jugation, such that the 2-norm of a vector is defined by ∥x∥22 =
⟨x,x⟩.

2.1. Multi-Gabor Dictionaries

A Gabor dictionary D(g,a,M) generated from a window g ∈ RL,
∥g∥2 = 1, time shift a and a number of modulations M is given
as

D(g,a,M)(l,m+ nM) = g(l − na)ei2πm(l−na)/M (1)

for l = 0, . . . , L − 1 and m = 0, . . . ,M − 1 for each n =
0, . . . , N − 1, where N = L/a is the number of window time
shifts and the overall number of atoms is P = MN . Hence, the
redundancy of a dictionary is P/L = M/a. A multi-Gabor dic-
tionary consists of W Gabor dictionaries, i.e.,[

D(g1,a1,M1)

∣∣D(g2,a2,M2)

∣∣. . .D(gW ,aW ,MW )

]
(2)

and we will also use a shortened notation Dw = D(gw,aw,Mw).
Generally, aw,Mw need only be divisors of L. Due to techni-
cal reasons explained in Sec. 3.1, however, efficiency of the pre-
sented algorithm depends on the pairwise compatibility of au, av

and Mu,Mv , implying some restrictions of the dictionary parame-
ters. In the following, we focus on the optimal setting, in which ev-
ery pair au, av is divisible by amin = min {au, av} and, similarly,
every pair of Mu, Mv should divide Mmax = max {Mu,Mv} and
each Mw/aw should be a positive integer. While not strictly nec-
essary, such setting is commonly used in practice and leads to the
most efficient implementation.

2.2. Matching Pursuit – MP

The MP algorithm attempts to find a K-term approximation of a
given signal x by elements from the dictionary, i.e. x ≈ xK =
K∑
l=1

cldl. To do so, MP iteratively selects from the normalized dic-

tionary the element which maximizes the inner product with the
current residual elements rk = x − xk, where x0 is the zero
vector and, with pmax = argmaxp |⟨rk,dp⟩|, xk = xk−1 +
⟨rk,dpmax⟩dpmax . This is equivalent to adding the largest orthog-
onal projection of the current residual on a single dictionary el-
ement to the current approximation, such that the approximation
error is Ek+1 = ∥rk+1∥22 = ∥rk∥22 − |⟨rk,dpmax⟩|2, for k ≥ 0.

The procedure is repeated until the desired approximation er-
ror is achieved or alternatively some other stopping criterion is
met e.g. a sparsity or a selected inner product magnitude limits
are reached. It is known that the matching pursuit (MP) algorithm
and its derivatives can benefit from pre-computing inner products
between the atoms in the dictionary G(k, j) = ⟨dj ,dk⟩ i.e. from
pre-computing the Gram matrix G = D∗D ∈ CP×P . With
ϱk = D∗rk denoting the coefficient-domain residual, the resid-
ual update step can be written as ([29, Ch. 12])

ϱk+1 = ϱk − c(pmax)G(•, pmax). (3)

This modification has the advantage of removing the necessity of
synthesizing the residual and recomputing the inner product in the
selection step. On the other hand, such approach is usually dis-
missed as impractical in the literature due to the high memory re-
quirements for storing the Gram matrix. We will show that this is
not the case for multi-Gabor dictionaries, see Section 3. Formally,
the coefficient-domain matching pursuit algorithm is summarized
in Alg. 1. The stopping criterion may contain several conditions,
and the algorithm terminates if any of these conditions is met.

Input: Input signal x, dictionary Gram matrix G = D∗D
Output: Solution vector c
Initialization: c = 0, ϱ0 = D∗x, E0 = ∥x∥22, k = 0
while Stopping criterion not met do

1. Selection: pmax ← argmax
p

|ϱk(p)|

2. Update:

(a) Solution: c(pmax)← c(pmax) + ϱk(pmax)

(b) Error: Ek+1 ← Ek − |ϱk(pmax)|2

(c) Residual: ϱk+1 ← ϱk − ϱk(pmax)G(•, pmax)

k ← k + 1

end
Algorithm 1: Coefficient-Domain Matching Pursuit

3. FAST APPROXIMATE COEFFICIENT-DOMAIN
RESIDUAL UPDATE

The Gram matrix G contains the pairwise inner products of the
dictionary elements. For a Gabor dictionary D = Dw, it is highly
structured. It takes the form of a twisted convolution [30] ma-
trix with a fixed kernel h = G(•, 0) = D∗g ∈ CMN ; a coef-
ficient vector consisting of inner products of the window with all
its possible time and frequency shifts. When combined with the
time-frequency localization of the individual atoms, we see that
the matrixified version h(•, •)M ∈ CM×N of the kernel is es-
sentially supported around the origin, provided the window g is
low-pass and centered at 0. Hence, the significant values of h can
be precomputed and stored at a cost independent of the total signal
length L. If pmax = k + jM , we can represent the coefficient-
domain residual update step by

ϱk+1(m− k, n− j)M

= ϱk(m− k, n− j)M − ϱk(pmax)h(m,n)Mei2πk a
M

n.
(4)

Whenever g is a localized, low-pass window, then for any ϵ > 0,
there is a minimal areaM×N ⊂ {0, . . . ,M−1}×{0, . . . , N−
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Figure 1: Examples of abs. values of truncated kernels for (left)
Gaussian (9 × 9), (middle) Hann (31 × 7) and (right) Blackman
(23× 7) windows.

1}, symmetric around the origin, such that h(m,n)M < ϵ for all
(m,n) /∈ M × N . Clearly, the size ofM×N depends on the
shape of the window g and on the the time and frequency parame-
ters a,M . Provided that L is at least twice as long as the essential
support of g it is, however, independent of the signal length L.
Values of h outside this area are zero or at least negligible, if ϵ
is small and can thus be discarded. The choice of the threshold ϵ
must be considered a trade-off between accuracy and efficiency.

The kernel size directly determines the number of complex
multiplications and additions required to perform the entire resid-
ual update step and, obviously, also the memory requirements to
store the kernel. Examples of abs. values of kernels for several
windows using time shift a = 512 and M = 2048 frequency
bins are depicted in Fig. 1. The values are in dB relative to the
maximum element with 0 dB. Values below−80 dB were cropped
and are not used in the residual update. The threshold selection
is a trade-off between faster updates (higher threshold) or less re-
quirement for resets (lower threshold). The idea of truncating the
kernel h originates from Le Roux et al. [31] who used it for replac-
ing the operation of the (cross) Gram matrix in an iterative scheme
dealing with magnitude-only reconstruction. When inspecting for-
mula (4), it is obvious that for a fixed frequency position k the
modulation by 2πka/M radians is performed on all rows of the
kernel independently. Moreover, the modulation frequencies are
lcm(a,M)/a periodic in k and, therefore, all unique complex ex-
ponentials can be tabulated and stored. In the best case when M is
integer divisible by a, the memory requirements are equal to stor-
ing M/a additional rows of the kernel. The cost of applying the
modulation during the residual update step is one complex multi-
plication per kernel column.

For a multi-Gabor dictionary, we must not only store the ker-
nel of every individual dictionary, but the cross-kernels between
dictionaries as well, which can be done similarly.

3.1. Pre-computing Cross-Kernels Between Dictionaries

The Gram matrix of a multi-Gabor dictionary consists of Gram
matrices of individual dictionaries Dw and cross-Gram matrices
[32] between the dictionaries. Denoting a cross-Gram matrix as
Gw,v = D∗

wDv the overall Gram matrix is a block matrix with

the following structure
G1,1 G1,2 . . . G1,W

G2,1 G2,2 . . . G2,W

...
...

. . .
...

GW,1 GW,2 . . . GW,W

 . (5)

A cross-Gram matrix Gw,v shares the same twisted convolution
structure with the regular Gram matrix with kernel hw,v = D∗

wgv

only if the time-frequency shifts are equal i.e. aw = av and Mw =
Mv . In the case the parameters differ, the direct twisted convo-
lution structure is lost. The structure can be recovered on a finer
“common” time-frequency grid given by the time step gcd(aw, av)
and the number of frequency bins lcm(Mw,Mv). The most effi-
cient case is achieved when aw and av are divisible by amin =
min {aw, av} and Mw and Mv both divide Mmax = max {Mw,
Mv} resulting to a common grid given by amin and Mmax. In
the residual update step of the inner products of the residual with
the w-th dictionary, the modulated kernel is subsampled by ra-
tios aw/amin and Mmax/Mw in horizontal and vertical directions
respectively. To illustrate, consider a multi-Gabor dictionary con-
sisting of two Gabor dictionaries D1 = D(g1,a1,M1) and D2 =
D(g2,a2,M2) with a1 = 4amin,M1 = 8amin and a2 = amin,M2 =
2amin. Both cross-kernels h1,2 and h2,1 are computed with amin =
a2 and Mmax = M1. The example in Fig. 2 depicts an update of in-
ner products of the residual with both dictionaries on the common
grid. The steps of the coefficient residual update in the coefficient
domain are summarized in Alg. 2.

3.2. Keeping Track Of The Maximum

Performing the full search for the maximum inner product in each
selection step is highly inefficient. The authors of MPTK [27] pro-
posed to store positions of maxima for each window time position
and organize them in a partial hierarchical tournament-style tree.
Such tree contains at each level maxima from pairs from one level
below. Since the residual update affects only a limited number of
neighboring time positions, a bottom-up tree update becomes more
efficient than a full search. In the present method, we additionally
exploit localization in frequency, which allows us to keep track of
maxima for individual window time positions (across frequency
bins) in a similar manner. See Fig. 3 for a depiction of the tourna-
ment tree structure and for an example of a worst-case bottom-up
update of a 3–level tree across time-frames.

4. COMPARISON WITH MPTK

In order to showcase the efficiency of the proposed algorithm and
its implementation, in this section, we present a comparison with
MPTK (version 0.7.0), which is considered to be the fastest im-
plementation available. To our knowledge there is no previous im-
plementation of coefficient-domain MP that is able to decompose
signals of the size considered here. We measure the duration of
the matching pursuit decomposition only. From MPTK, we used
the modified mpd utility tool. The testing signal was the first chan-
nel from the file no. 39 from the SQAM database [33], which is
a 137 seconds long piano recording sampled at 44.1 kHz totaling
6·106 samples. Both implementations link the same FFTW library
[34] version 3.3 and were compiled using the GCC (g++) compiler
(version 7.2.0) with the -Ofast optimization flag enabled. The
creation of the FFTW plans and the computation of the kernels was
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Input: cmax, wmax, mmax, nmax, ⟨dmax,dmax⟩, a1, . . . , aW , M1, . . . ,MW , hw,v (w, v = 1, . . . ,W )
Output: Inner products to be updated c

rk
1 , . . . , c

rk
W

for w = 1, . . . ,W do
c
rk
w ←singleDictionaryResidualUpdate(mmax, w, crkw )

if |⟨dmax,dmax⟩| > 0 then
mconj = Mwmax −mmax

c
rk
w ←singleDictionaryResidualUpdate(mconj, w, crkw )

end
end

Function cw ←singleDictionaryResidualUpdate(mmax, w, cw):
arat ← aw/awmax , Mrat ←Mwmax/Mw

astep = arat or 1 if arat < 1, Mstep = Mrat or 1 if Mrat < 1
/* Determine index sets */
DefineM, horizontal index set with stride Mstep in cross kernel hwmax,w taking into the account the misalignment of the grids.
DefineN , vertical index set in a similar way using stride astep.
Define I, residual coefficient vector index set covered by the kernel.
/* Update the residual (as in (4)) using truncated, subsampled and modulated cross-kernel: */

cw(I) = cw(I)− cmaxh
(mmax)
wmax,w(M,N )

return
Algorithm 2: Approximate coefficient-domain MP residual update

excluded from the measurements. The specification of the PC the
timing was performed on was Intel® Core™ i5-4570 3.20 GHz,
16 GB RAM running Ubuntu 16.04. The timing was done on an
idle machine using the high-precision timer from the C++11 stan-
dard library chrono. The data type was double precision floating
point. In the decomposition we performed 1.8·105 iterations each.
By fixing the number of iterations instead of a desired approxima-
tion estimate, we ensure that execution time is roughly indepen-
dent of the considered signal. Table 1 shows a comparison of ex-
ecution times, in seconds, for a single Gabor dictionary with the
Blackman window, numbers of bins Mw = 512, . . . , 8192 (addi-
tionally also 16384 for the proposed implementation) and various
hop sizes a (and therefore redundancies). The length of the win-
dow was always equal to Mw, as required by MPTK. Addition-
ally, a comparison of execution times using two multi-dictionaries
is shown, each of which consists of five Gabor dictionaries with
Mw = 512, . . . , 8192 (at redundancies 4 and 8 per dictionary).

In the tested setting, the proposed implementation clearly out-
performs MPTK in terms of computational speed. The memory re-
quirements are however notably higher since the residual is stored
in the coefficient domain and, additionally, the pre-computed ker-
nels and the modulation factors must be stored as well.

4.1. Convergence in practice

Truncating the Gramian kernel introduces a small, but accumu-
lating error in the computation of the coefficient-domain residual.
Hence, we compare the residual norm achieved after k selection
steps by MPTK and the proposed method for various values of
k and the truncation threshold ϵ. The experiment was performed
using a concatenation of 3 Gabor dictionaries with Blackman win-
dow, Mw = 512, 1024, 2048 and aw = Mw/4, as used in Sec-
tion 4 and considering the audio test signal used previously. For
other audio signals, we observed similar behavior. Generally, our
implementation of the proposed method is set to terminate when∑k

l=1 ϱl−1(pl)
2 > ∥x∥22, i.e. when the energy of the approxima-

tion coefficients exceeds the signal norm. This condition serves as

Bins (M ) 512 1024 2048 4096 8192 16384

a = M/4

MPTK 3.96 8.40 17.0 36.4 75.7 –
Proposed 0.92 1.00 1.02 1.03 1.03 1.08

a = M/8

MPTK 6.73 15.1 30.2 61.3 147 –
Proposed 1.70 1.90 1.95 2.10 2.20 2.21

a = M/16

MPTK 13.2 28.3 56.8 119 274 –
Proposed 3.20 3.50 4.00 4.50 4.60 5.08

a = M/32

MPTK 23.2 52.6 110 233 530 –
Proposed 6.35 7.40 7.90 8.20 9.60 10.7

Multi-Gabor a = M/4 a = M/8

MPTK 142 285

Proposed 10.6 20.9

Table 1: Execution time in seconds for MPTK and the proposed
method on Gabor and Multi-Gabor dictionaries (180k selection
steps). The Multi-Gabor dictionaries are a concatenation of the
dictionaries with M = 512, . . . , 8192 at redundancies a = M/4
and a = M/8, respectively.

a cheap indicator that further selection steps are expected to harm
the approximation quality. We also state the final approximation
error and number k of selection steps performed before termina-
tion. In all experiments, approximation quality of the proposed
method follows MPTK closely until shortly before termination.

5. CONCLUSION

We have presented an accelerated MP algorithm alongside a refer-
ence implementation suitable for multi-Gabor dictionaries. Due to
the structure of the Gram matrix of the multi-Gabor dictionary, the
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a1,M1 a2,M2 amin,Mmax Selected Updated

Figure 2: Illustration of the residual update between dictionaries
using cross kernels. The left figure shows the case when a coef-
ficient from the dictionary 1 was selected in the selection step of
MP and inner products with dictionary 2 are being updated and
vice versa right. The dashed line square depicts the area covered
by a cross-kernel with respect to the common grid amin,Mmax.

coefficient domain residual update step becomes very fast while
the memory requirements for storing the inner products between
the atoms remain constant with increasing signal length. More-
over, the time and frequency locality of the residual update in
turn allows faster search for the maximum in the next iteration.
Benchmarks show that, depending on the dictionary, our imple-
mentation is 3.5–70 times faster than the standard MPTK imple-
mentation while achieving similar approximation quality, unless a
simple termination condition is reached. In the single dictionary
case, the most notable feature is that the execution time is virtu-
ally independent of the number of bins M when the redundancy
M/a is fixed. Moreover, as it turned out, MPTK could not han-
dle dictionaries with the number of bins higher than 8192. The
tested code does not use explicit optimization techniques like ex-
ploiting the SIMD operations or parallelization of the code, leav-
ing the possibility for future improvements. Finally, the presented
algorithm does not, as is, achieve arbitrarily small energy of the
(true) residual, but rather an approximation quality depending on
the chosen threshold ϵ. However, preliminary experiments suggest
that a simple reset procedure is sufficient to restore convergence,
i.e., ∥rk∥22 → 0. Such resets will be considered in the upcoming,
extended manuscript [28].
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Figure 3: Schematic of the tournament tree structure for keeping track of maxima. A red border indicates individual tournament trees
across frequency bins for each time frame. The blue border indicates the partial tournament tree across time frames. An example of the
worst-case 10 element bottom-up update of the tree across frames is shown in gray.
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