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ABSTRACT

Relative music loudness estimation is a MIR task that consists in
dividing audio in segments of three classes: Foreground Music,
Background Music and No Music. Given the temporal correlation
of music, in this work we approach the task using a type of network
with the ability to model temporal context: the Temporal Convo-
lutional Network (TCN). We propose two architectures: a TCN,
and a novel architecture resulting from the combination of a TCN
with a Convolutional Neural Network (CNN) front-end. We name
this new architecture CNN-TCN. We expect the CNN front-end to
work as a feature extraction strategy to achieve a more efficient us-
age of the network’s parameters. We use the OpenBMAT dataset
to train and test 40 TCN and 80 CNN-TCN models with two grid
searches over a set of hyper-parameters. We compare our mod-
els with the two best algorithms submitted to the tasks of music
detection and relative music loudness estimation in MIREX 2019.
All our models outperform the MIREX algorithms even when us-
ing a lower number of parameters. The CNN-TCN emerges as the
best architecture as all its models outperform all TCN models. We
show that adding a CNN front-end to a TCN can actually reduce
the number of parameters of the network while improving perfor-
mance. The CNN front-end effectively works as a feature extrac-
tor producing consistent patterns that identify different combina-
tions of music and non-music sounds and also helps in producing
a smoother output in comparison to the TCN models.

1. INTRODUCTION

One of the main applications of music detection algorithms is the
monitoring of music for copyright management [1, 2, 3, 4]. In the
copyright management business, collective management organiza-
tions tax broadcasters for the music they broadcast. In some cases,
the tax is different depending on whether this music is played in
the foreground or the background1. In the context of broadcast
audio, music is used many times in the background, for instance,
as a means to create a certain atmosphere. In this scenario, music
detection algorithms fall short as we need to estimate the loudness
of music in relation to other simultaneous non-music sounds, i.e.,
its relative loudness.

1https://createurs-editeurs.sacem.fr/
brochures-documents/regles-de-repartition-2017
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Motivated by this industrial need, we proposed relative music
loudness estimation as a sub-task of the music detection task in
MIREX2 2018 and 2019. This sub-task is simplified to the seg-
mentation of an audio stream into three classes: Foreground Mu-
sic, Background Music and No Music. In addition, we published
the Open Broadcast Media Audio from TV (OpenBMAT) dataset
[5] for training and evaluation, which we use in this work.

In this paper, we study the usefulness of Temporal Convolu-
tional Networks (TCN) for the task of relative music loudness es-
timation. TCNs are a type of architecture with the ability to model
temporal context, which we consider a fundamental characteristic
when analyzing temporally correlated signals such as music. We
then introduce a CNN front-end to the TCN architecture producing
a novel type of network that we name CNN-TCN. We expect the
CNN front-end to work as a feature extraction strategy to achieve
a more efficient usage of the network’s parameters. We train 40
TCN and 80 CNN-TCN models with two grid searches over sev-
eral hyper-parameters, and compare them among themselves and
with the two best algorithms submitted to the tasks of music de-
tection and relative music loudness estimation in MIREX 2019.

2. SCIENTIFIC BACKGROUND

Music detection is the closest task to relative music loudness es-
timation that we can find in the literature. In the case of mu-
sic detection, foreground and background music are not separated
into two different classes. However, many authors differentiate
between foreground and background music in their works: Sey-
erlehner et al. [2] already mentioned these two concepts while
stating that background music is harder to detect. Several other au-
thors [1, 3, 4] agree in the fact that music detection is often applied
to scenarios characterized by the presence of background music,
effectively differentiating them from scenarios where music has
the main role.

Besides, the literature also addresses the task of music detec-
tion combined, primarily, with the detection of speech, but also
other types of sounds such as noise or environmental sounds. In
1996, Saunders [6] became the first author to publish a paper de-
scribing a speech and music segmentation algorithm already achiev-
ing outstanding results. His approach, though, assumes that there
is no overlap between both classes, which is very frequent in broad-
cast audio. One year later, Scheirer et al. [7] introduced the over-
laps between music and speech as an extra class obtaining an error
rate of 35%, which reveals the complexity of the task even when
the non-music part includes only speech and not other type of non-

2https://www.music-ir.org/mirex/wiki/MIREX_HOME
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music sounds. Richard et al. [8] also followed the segmentation
approach using three classes: Music, Speech and Mixed. Their
evaluation showed that their algorithm clearly detects when Speech
is alone, but has more difficulties to differentiate between Music
and Mixed. Lu et al. [9], in 2001, and Panagiotakis et al. [10], in
2005, added other classes such as Environmental Sounds and Si-
lence to the taxonomies they used, but failed to consider overlaps
between classes.

In 2012, Schlüter et al. [11] proposed the first approach to mu-
sic and speech detection using deep learning architectures. They
designed two identical networks, one for music detection and an-
other one for speech detection, based on mean-covariance Restricted
Boltzmann Machines. Lidy [12] also used a neural network for his
submission to the task of music/speech classification and detec-
tion in MIREX 2015. The model he presented is a shallow CNN
with only one 2D-convolutional layer; nevertheless, he achieved
second place in the competition out of 7 participants. Doukhan et
al. [13] used a slightly deeper architecture, but followed the same
design pattern, to create a model for music and speech segmenta-
tion. Gfeller et al. [14] created a CNN for music detection already
including six consecutive separable 2D-convolutional layers. Jang
et al. [15] proposed a new type of filter for music detection called
melCL filter. It mimics the filters used in the Mel filter bank with
the advantage of having weights that can be optimized through
backpropagation.

Gimeno et al. [16] proposed a Recurrent Neural Network
(RNN) for the task of music and speech segmentation. RNNs
can model temporal context, which is a desirable characteristic
when working with temporally correlated signals such as speech
or music. They presented a model consisting of two stacked Bidi-
rectional Long Short-Term Memory layers (BiLSTM). BiLSTM
layers allow the training sequence to be read forward and back-
wards including both past and future information into the decision
for each time step. Moreover, LSTM layers help palliating the
vanishing and exploding gradient effects [17]. de Benito-Gorrón
et al. [18] evaluated several architectures including CNNs and
LSTM networks. The combination of both produced the best per-
formance.

TCNs are a type of deep learning architecture that can also
model temporal context. Actually, Bai et al. [19] showed that they
offer equal or even better performance than RNNs. Additionally,
they do not suffer from exploding/vanishing gradients. We offer
a thorough description of these type of networks in Section 3.2.
Lemaire et al. [20] used this kind of architecture with non-causal
filters for the task of music and speech detection.

The relative music loudness estimation task appeared for the
first time in MIREX 2018. Meléndez-Catalán et al. [21] submitted
a regression algorithm based on a CNN to this competition. The
output of the network is transformed into a class label by means of
a set of thresholds and the result smoothed using several heuristic
rules. The algorithm reached 86.15% accuracy in MIREX 2018
dataset 1, an early version of the later published OpenBMAT. In
MIREX 2019, Meléndez-Catalán et al. presented this same algo-
rithm along with a very similar CNN, and a CNN-TCN prototype
developed during the elaboration of the present work [22]. Both
new algorithms outperformed the CNN from 2018 with the CNN-
TCN obtaining first place.

Figure 1: (left) CNN-TCN architecture. (right-top) Convolutional
block. (right-bottom) Residual block.

3. PROPOSED MODELS

In this section, we detail the models that we propose for the task of
relative music loudness estimation: the TCN and the CNN-TCN,
which is the combination of a CNN front-end with a TCN. We
include an explanation of the input features and the architecture of
the models.

3.1. Feature generation

We use audio at 8000 samples per second with 16 bits per sample
and normalized to have a maximum amplitude value of 1. From
the audio data, we compute the power spectrogram with a Han-
ning window of length 512 samples (64 ms) and a hop size of 128
samples (16 ms). We then apply a Mel filter bank with Nmels =
128 filters to obtain the Mel-spectrogram. Then, we change its
magnitude scale to logarithmic to produce the log-magnitude Mel-
spectrogram. The resulting training instances have 625 time-frames,
which is equivalent to 10 seconds, making the input to the network
a matrix with shape 128x625. We apply min-max normalization
independently to each input to ensure that its values range from 0
to 1.

3.2. Architectures

The TCN model is formed by a stack of 6 residual blocks. A resid-
ual block, as defined by He et al. [23], applies a certain function
(F ) to an input (x) that depends on the weights ({Wn}) and biases
({bn}) of the N layers contained in the residual block. The output
of this function is then added back to the input and passed to an
activation function to obtain the output of the residual block (y).
This way, the layers inside the residual block learn modifications
to the input instead of a complete transformation. This has proven
to ease their optimization [23]. Eq. 1 presents the formal definition
of a residual block.

y = Activation(F (x, {Wn}, {bn}) + x) (1)

In the right-bottom part of Fig. 1, we show the structure of
the residual blocks that we use in this paper. Our residual blocks
contain two 1D-convolutional layers as proposed by Bai et al. [19].
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Figure 2: An example of a TCN’s receptive field used to classify a
single time-frame. The architecture includes 2 residual blocks with
dilations d = [1, 2] and non-causal filters of length L = 3. This
network’s receptive field is equal to 7 time-frames.

However, we have removed the activation function of the second
1D-convolutional layer so that the modifications learned by the
residual block may include negative values as originally designed
by He et al. [23].

All 1D-convolutional layers have Ntcn non-causal filters [20]
of length L and a spatial dropout rate dr. The 1D-convolutional
layers of each subsequent residual block have a higher dilation
rate starting at one and increasing by a factor of two for each
block. The first 1D-convolutional layer of the TCN reads the log-
magnitude Mel-spectrogram as Nmels scalar temporal sequences
by interpreting the frequency axis as channels.

The temporal context used to classify each time-frame is called
receptive field [19]. Eq. 2 shows how the receptive field RF of the
TCN depends on the filter length L and the vector of dilation rates
d of length D. Using non-causal filters implies that the receptive
field is divided equally between past and future time-frames.

RF = 1 +
D∑
i=0

d[i] ∗ (L− 1) (2)

Fig. 2 is a simplified representation of a TCN model where
xt ∈ IRNmels is the time-frame t of the input features, ŷt ∈ IRNtcn

is the output of the last residual block for that time-frame and
yt ∈ IR3 is the vector that carries the probability of the 3 rela-
tive music loudness estimation classes for that time-frame. The
network includes 2 residual blocks with d = [1, 2] and non-causal
filters of length L = 3. Following Eq. 2, we obtain a receptive
field of 7 time-frames.

In the left part of Fig. 1, we show the CNN-TCN model,
which is a combination of a CNN front-end and the TCN described
above. The CNN consists in a stack of 7 blocks that comprehend:
(1) a 2D-convolutional layer with Ncnn 3x3 filters and a ReLU ac-
tivation function, (2) a spatial dropout layer with a dropout rate dr
and (3) a max-pooling layer. We apply the max-pooling only to
the frequency axis reducing its dimensionality by a factor of two
for each block until it is equal to one. The TCN reads the output
of the CNN as Ncnn scalar temporal sequences and models their
evolution.

Concatenating a CNN and a TCN does not necessarily produce
a model with more parameters than the TCN model alone. Eq. 3
shows how the number of parameters (P ) in a 1D-convolutional
layer of the TCN depends on the number of input channels (Nch),
the number of filters (Ntcn), their length (L) and the bias vector
(b). Adding the CNN front-end transforms the number of channels
that we input to the TCN from Nch = Nmels to Nch = Ncnn.
If we reduce the number of channels by using a low Ncnn value,
we can significantly decrease the number of parameters of the first
1D-convolutional layer of the TCN compensating the number of
parameters added by the CNN itself.

P = Nch ∗Ntcn ∗ L+ b (3)

The output layer for both TCN and CNN-TCN architectures
has 3 neurons, each of them corresponding to one of the three
classes of the relative music loudness estimation task. Using a
softmax activation function, the networks outputs the probability
of each class for each time-frame. This means they offer predic-
tions with a frame-level time resolution regardless of the input size
in the temporal dimension. We assign the class with the highest
probability to each time-frame. We refer to a set of contiguous
time-frames of the same class as a segment of that class. The seg-
ment starts at the beginning of the first time-frame and ends at the
end of the last time-frame, in chronological order.

3.3. Smoothing

Classifying at a frame-level allows an algorithm to be very pre-
cise in detecting a change of class; however, it also makes it prone
to produce short erroneous segments that makes the classification
noisy. To solve this issue, we apply a smoothing strategy to the
output of our models: we use a sliding window that assigns the
most represented class across all time-frames covered by the win-
dow to its central time-frame.

4. EXPERIMENTAL SETUP

In this experiment, we carry out two grid searches over a total of
four hyper-parameters to find the configuration that produces the
best possible TCN (TCN best) and CNN-TCN (CNNTCN best)
models. We compare these models with the two best algorithms
presented to the tasks of music detection and relative music loud-
ness estimation of MIREX 2019. In what follows, we group them
as MIREX algorithms. We impose two restrictions: (1) TCN best

must have a lower number of parameters than the MIREX algo-
rithms; and (2) CNNTCN best must have a lower number of pa-
rameters than TCN best. This way we make sure that any improve-
ment comes from a more appropriate architecture and not just from
an increase of the networks learning capacity. In this section, we
detail the dataset, describe the MIREX algorithms, and explain the
training methodology and evaluation metrics that we use in the ex-
periment.

4.1. Dataset

In this work, we use OpenBMAT [5]3, an open dataset annotated
for the tasks of music detection and relative music loudness esti-
mation that contains over 27 hours of TV broadcast audio from
France, Germany, Spain and the United Kingdom distributed over

3https://zenodo.org/record/3381249
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1647 one-minute long excerpts. It is the first dataset to include
annotations about the loudness of music in relation to other simul-
taneous non-music sounds and it is designed to encompass two
essential features: (1) contain music both isolated and mixed with
other type of non-music sounds; and (2) including a significant
number of multi-class audio files, i.e., audio files that contain class
changes. OpenBMAT has been cross-annotated by 3 annotators
obtaining high inter-annotator agreement percentages both for the
music detection and the relative music loudness estimation tasks.
The annotators were told to ignore any segment shorted than 1 sec-
ond. The annotation tool that we used for the annotation is BAT
[24].4

This dataset comes with 10 predefined splits containing ap-
proximately 15% Foreground Music, 35% Background Music and
50% No Music. During training, we use nine of them: eight for
the training set and one for the development set. The tenth split
constitutes the testing set. From each split we only use the audio
excerpts that have at least partial agreement, i.e., the parts where at
least two annotators agree. For the classes used in the relative mu-
sic loudness estimation task this supposes 99.79% of the content.
We always pick the classes with the most agreement as ground
truth.

4.2. MIREX algorithms

We choose two algorithms to compare our models with. They are
two of the algorithms that Meléndez-Catalán et al. presented to
the tasks of music detection and relative music loudness estima-
tion of MIREX 2019: M1 [21] and M2 [22]. M1 was already
submitted to MIREX 2018, where it obtained first place out of
5 participants in the music detection task, and was the first algo-
rithm to participate in the relative music loudness estimation task.
In 2019, M2 and M1 obtained second and third place, respec-
tively, in both tasks. The winner was a CNN-TCN prototype that
Meléndez-Catalán et al. produced during the elaboration of this
paper.

M1 and M2 consist in a CNN with 3 convolutional blocks and
2 dense layers. Each of the convolutional blocks is composed by a
2D-convolutional layer with a ReLU activation, and a max-pooling
layer. The two algorithms differ in several hyper-parameters such
as the number of 2D-convolutional filters and their size. M1 and
M2 have a total of 97,779 and 453,763 parameters, respectively.
The input to both networks is the log-magnitude Mel-spectrogram,
with 128 frequency bins, of approximately 2 seconds of audio,
which translates to 128 time-frames. The difference in accuracy
between M2 and M1 in MIREX 2019 was approximately 2 per-
centage points (pp) for the task of music detection and 3 pp for
the task of relative music loudness estimation. Given that M2 has
approximately 4.5 times the amount of parameters of M1 , we find
it difficult to judge what architecture is more appropriate for these
two tasks. That is why we include both of them in the comparison.

Originally, M1 and M2 are two-neuron output regression al-
gorithms that adapt to classification through a set of thresholds.
Unfortunately, the annotations in OpenBMAT are designed for
classification and not for regression. This is why we replace the
two-neuron output layers by three-neuron output layers and train
the networks for classification. These two algorithms include sev-
eral rules that aim to smooth their predictions by modifying the
class of a particular segment based on its class and duration, and
the class and duration of the contiguous segments.

4https://github.com/BlaiMelendezCatalan/BAT

We train them for 100 epochs using the ADAM optimizer with
learning rate lr = 0.001, and the categorical cross-entropy loss
function, which we weight to compensate the imbalance in terms
of instances per class of the training and development sets. Both
algorithms tend to overfit the training set, so we apply a range of
dropout rates to the 2D-convolutional layers. We save the models
that produces the lowest loss for the development set.

4.3. Training

The training process has two steps: first, we train a set of TCNs
through a grid search over the hyper-parameters described in Sec-
tion 3.2: (1) the number of filters Ntcn, (2) the filter length L
and (3) the dropout rate dr of the 1D-convolutional layers. (2)
allows us to modify the receptive field of the TCN without affect-
ing the model’s architecture. With (1) and (3) we experiment with
the learning capacity of the network and its regularization, respec-
tively. We train 40 models using the following set of values for
each hyper-parameter:

• Ntcn ∈ [16, 32]

• L ∈ [3, 5, 7, 9, 11]

• dr ∈ [0.0, 0.05, 0.1, 0.15]

In the second step, we combine these TCN models with two
CNNs to generate 80 CNN-TCN models. The 2D-convolutional
layers of these CNNs have Ncnn 3x3 filters where:

• Ncnn ∈ [16, 32]

We choose sets of hyper-parameter values that produce a ma-
jority of networks with a number of parameters lower than the
number of parameters of M1 . Given that these networks require
regularization through the usage of dropout layers, we considered
that they have enough capacity to absorb the training dataset.

We fix the overlap between instances to make sure that we
train our models and the MIREX algorithms using approximately
the same amount of seconds of audio. The downside of this strat-
egy is that the number of instances differs significantly due to the
difference in input size. We fix the overlap to 50%, which results in
12,892 training instances and 1,616 development instances to train
our models, and 74,585 training instances and 9,286 development
instances to train the MIREX algorithms.

We train all our models for 100 epochs using the ADAM op-
timizer with learning rate lr = 0.001, and the categorical cross-
entropy loss function, which we weight to compensate the imbal-
ance in terms of instances per class of the training and develop-
ment sets. We keep the model that produces the lowest loss for
the development set. We shuffle the training data every epoch and
present it to the network in batches of 128 instances. We use keras
2.2.4 and tensorflow-gpu 1.12.

4.4. Metrics

To evaluate a model, we run it on the testing set and compute its
confusion matrix with ground truth as rows and the model’s clas-
sification as columns. The values in this confusion matrix are the
number of seconds per class classified as each class. By weighting
each row by the total number of seconds per class, we obtain a bal-
anced confusion matrix. A balanced confusion matrix shows what
percentage of the number of seconds per class is classified as each
class, and thus, is independent of the actual balance of the test-
ing set. The statistics that we extract from this balanced confusion
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Table 1: Statistics of M1 , M2 , TCN best and CNNTCN best with and without smoothing (S). The metrics are described in Section 4.4.

Model bAccbAccbAcc bPFgbPFgbPFg bRFgbRFgbRFg bPBgbPBgbPBg bRBgbRBgbRBg bPNobPNobPNo bRNobRNobRNo RSRSRS paramsparamsparams
M1 81.36% 86.98% 84.22% 73.12% 75.9% 84.49% 83.97% 1.76 97,779

M1 (S) 81.7% 88.35% 79.57% 71.98% 79.79% 86.54% 85.74% 0.83 97,779
M2 82.57% 85.79% 86.88% 75.42% 75.47% 86.51% 85.34% 1.62 453,763

M2 (S) 83.04% 86.56% 83.92% 74.83% 77.86% 88.21% 87.33% 0.81 453,763
TCN best 85.76% 90.08% 89.21% 79.52% 80.39% 87.79% 87.69% 39.27 85,635

TCN best (S) 86.27% 90.68% 89.14% 79.85% 81.63% 88.52% 88.05% 1.54 85,635
CNNTCN best 90.05% 91.43% 93.38% 86.18% 84.58% 92.43% 92.18% 11.41 80,963

CNNTCN best (S) 90.06% 91.81% 92.79% 85.73% 85.2% 92.61% 92.19% 1.14 80,963

Table 2: Weighted confusion matrices for the M1 and M2 algorithms with smoothing.

Ground M1M1M1 Classified As M2M2M2 Classified As
Truth Fg Bg No Fg Bg No

Fg 79.54% 18.65% 1.77% 83.92% 15.22% 0.86%
Bg 8.64% 79.79% 11.56% 11.33% 77.86% 10.8%
No 1.85% 12.41% 85.74% 1.7% 10.97% 87.33%

Table 3: Weighted confusion matrices for the TCN best and CNNTCN best models with smoothing.

Ground TCN bestTCN bestTCN best Classified As CNNTCN bestCNNTCN bestCNNTCN best Classified As
Truth Fg Bg No Fg Bg No

Fg 89.14% 10.16% 0.7% 92.79% 6.89% 0.32%
Bg 7.66% 81.63% 10.72% 7.76% 85.2% 7.03%
No 1.51% 10.44% 88.05% 0.51% 7.29% 92.19%

matrix share this property. We consider: the balanced accuracy
(bAcc), precision (bPclass) and recall (bRclass). We also propose
a new metric that we name ratio of segments (RS): the ratio be-
tween the number of predicted segments (Spr) and the average
number of ground truth segments for all annotators (Sgt) across
(N ) files. We formally define RS in Eq. 4. This metric provides
relevant information about how noisy a model is regardless of how
correct its predictions are, which is another characteristic of its
performance. The optimal value of RS is 1.

RS =

∑N
n=0 Sprn∑N
n=0 Sgtn

(4)

5. RESULTS AND DISCUSSION

As shown in Table 1, both CNNTCN best and TCN best models
outperform the MIREX algorithms in terms of bAcc despite using
less parameters. TCN best uses the following hyper-parameters:

• Ntcn = 32

• L = 5

• dr = 0.15

The receptive field of this model is 253 time-frames, which
is equivalent to approximately 4 seconds. After the smoothing,
TCN best obtains a bAcc 4.6 pp higher than M1 using 12.4% less
parameters and 3.2 pp higher than M2 using 81% less parameters.
CNNTCN best uses the following hyper-parameters:

• Ncnn = 32

• Ntcn = 16

• L = 7

• dr = 0.15

The receptive field of this model is 379 time-frames, which is
equivalent to approximately 6.1 seconds. There is an improvement
in bAcc, after the smoothing, of 8.4 pp with respect to M1 using
17% less parameters and of 7 pp with respect to M2 using 82%
less parameters. The improvement with respect to TCN best is of
3.8 pp while using 5.5% less parameters. Obtaining better results
with less parameters implies that the architecture makes a more
efficient usage of its parameters, and thus, is more appropriate for
the task. Note that TCN best and CNNTCN best consider, respec-
tively, twice and thrice more temporal context to classify than the
MIREX algorithms.

As shown in Table 2 and Table 3, CNNTCN best provides a
strong improvement with respect to M1 and M2 in the detection
of background music, which is one of the most challenging types
of content due to the low volume of the music [5]. CNNTCN best

correctly classifies 34.9% of the background music that M2 can-
not detect and misclassifies as No Music. This percentage rises to
39.2% in the case of M1 . However, the statistics for the Back-
ground Music class show that there is still room for improvement
for the relative music loudness estimation and music detection
tasks.

In the left part of Fig. 3, we observe that all CNN-TCN mod-
els achieve better bAcc than any TCN model. This figure includes
all TCN and CNN-TCN models. Table 4 shows a comparison
between TCN best and a CNN-TCN model that shares the same
hyper-parameters. Note that the CNN-TCN model has less pa-
rameters and that it outperforms TCN best in terms of bAcc. This
further proves that using a CNN front-end improves performance.
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Figure 3: Comparison between M1, M2 and all the TCN and CNN-
TCN models in terms of bAcc and RS without smoothing. The
horizontal lines at the bottom correspond to M1 and M2.

Table 4: Comparison between TCN best and a CNN-TCN model
with the same hyper-parameters except for the dropout rate (dr).
We pick the best dropout rate for each model. We do not apply any
smoothing.

Arch bAccbAccbAcc NcnnNcnnNcnn NtcnNtcnNtcn LLL paramsparamsparams
TCN best 85.76% - 32 5 85,635
CNNTCN 89.15% 16 32 5 78,211

The ratio of segments RS in Table 1 shows that both TCN best

and CNNTCN best predict a number of segments much higher
than the number of segments in the ground truth. In this partic-
ular aspect, M1 and M2 are superior to our models, which are
prone to generate noise in the form of short erroneous segments,
especially near class changes. The bottom part of Fig. 4 shows
an example of this noise around second 8. To remove this noise,
we apply the smoothing strategy described in Section 3.3. Using
the development set, we evaluate the impact on RS and bAcc of
6 window sizes ranging from 0.5 to 3 seconds with steps of 0.5
seconds. We find an optimal window size of 2 seconds for both
models. This window size produces a strong decrease of RS and a
light improvement of bAcc. Smaller window sizes do not decrease
RS enough neither increase bAcc significantly. Larger window
sizes start decreasing bAcc as they can remove correct segment of
approximately 1 second, which is the minimum segment length in
OpenBMAT. As shown in Table 1, after the smoothing, TCN best

and CNNTCN best predict 54% and 14% more segments with re-
spect to the segments in the ground truth, respectively. Note in Fig.
3 that all CNN-TCN models produce significantly less noise than
any TCN model. This indicates that the CNN front-end also helps
in reducing this phenomenon.

Analyzing the duration of the CNNTCN best errors when we
apply no smoothing shows that almost 90% of the misclassified
segments have a duration lower or equal to 0.2 seconds. These er-
rors amount to approximately 16% of the misclassified time and
come mainly from a noisy classification and precision errors in
class changes during the annotation or the classification. Listening
to the errors with duration equal or higher than 3 seconds, which
represent approximately 50% of the misclassified time, we dis-
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Figure 4: (top) Example of the log-magnitude Mel-spectrogram,
which we use as input features for both the TCN and CNN-TCN ar-
chitectures. (mid) Output of the CNN in the CNN-TCN architecture
for these features. (bottom-top) CNNTCN best classification for
these features without smoothing. (bottom-bottom) Ground truth
of these features.

cover several patterns. CNNTCN best misclassifies:

• Loud and mixed non-music sound effects as in action films
(No Music) classified as Background Music.

• Speech mixed with background non-music noises with an
identifiable pitch such as engine sounds (No Music) classi-
fied as Background Music

• Low volume background music (Background Music) clas-
sified as No Music. Especially percussive music, live music
and tones.

• Loud live music mixed with applauses, cheering and other
audience sounds (Foreground Music) classified as Back-
ground Music.

We have analyzed the features extracted by the CNN front-
end. The top and mid parts of Fig. 4 show how the CNN front-
end works as a feature extractor transforming and reducing the
dimensionality of the input log-magnitude Mel-sectrogram. In the
example, we observe 4 consistent patterns in the generated fea-
tures corresponding to 4 sound combinations: (4) isolated music,
(1) isolated speech, (3) mixed music and speech, (2) silence. The
bottom part of Fig. 4 presents the CNNTCN best classification
and the ground truth for the input at the top of the figure. We
observe an annotation precision error around second 3, which is
shorter than 0.2 seconds and an example of noisy classification in
the Foreground Music segment between seconds 8 and 9.

6. CONCLUSIONS

In this paper, we have evaluated two architectures for the task of
relative music loudness estimation: the TCN and the CNN-TCN, a
novel architecture that consists in the combination of a TCN with a
CNN front-end. We have run two grid searches over several hyper-
parameters training 40 TCN models and 80 CNN-TCN models us-
ing the OpenBMAT dataset [5]. We have compared these models
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with the two best algorithms submitted to the tasks of music de-
tection and relative music loudness estimation in MIREX 2019:
M1 and M2 . We have obtained TCN and CNN-TCN models that
outperform these MIREX algorithms while using less parameters.
Producing better results with a lower number of parameters means
that our architectures make a more efficient usage of its parame-
ters, and thus, are more appropriate for the task. We have named
TCN best the TCN that performs the best while using less pa-
rameters than M1 and M2 . We have named CNNTCN best the
CNN-TCN that performs the best while using less parameters than
TCN best.

The results of the evaluation after the smoothing have shown
that, in terms of bAcc, TCN best outperforms M1 by 4.6 pp using
12.4% less parameters and M2 by 3.2 pp using 81% less param-
eters. CNNTCN best beats M1 by 8.4 pp using 17% less param-
eters and M2 by 7 pp using 82% less parameters. It also out-
performs TCN best by 3.8 pp using 5.5% less parameters. Addi-
tionally, our models provide a better classification of background
music, which is a challeging type of content due to the low vol-
ume of the music [5]. CNNTCN best correctly classifies 39.2%
and 34.9% of the background music that M2 and M1 , respec-
tively, misclassify as No Music. We have also observed that both
TCN best and CNNTCN best use a much larger temporal context
for classification than the MIREX algorithms.

The ratio of segments RS has revealed that adding a CNN
front-end helps in smoothing the classification in comparison to
the isolated TCN. We have also proven that the CNN front-end can
reduce the number of parameters of the network with respect to an
isolated TCN with the same hyper-parameters while improving its
performance. Finally, we have observed that the CNN front-end
effectively works as a feature extractor that reduces the dimension-
ality of the input features and transforms them into consistent pat-
terns that identify different combination of music and non-music
sounds.
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