
Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

OPTIMIZATION OF CONVOLUTION REVERBERATION

Sadjad Siddiq

Advanced Technology Division, Square Enix Co., Ltd.
Tokyo, Japan

siddsadj@square-enix.com

ABSTRACT

A novel algorithm for fast convolution reverberation is proposed.
The convolution is implemented as partitioned convolution in the
frequency domain. We show that computational cost can be re-
duced when multiplying the spectra of the impulse response with
the spectra of the input signal by using only a fraction of the bins
of the original spectra and by discarding phase information. Re-
ordering the bins of the spectra allows to avoid overhead incurred
by randomly accessing bins in the spectrum. The proposed algo-
rithm is considerably faster than conventional partitioned convolu-
tion and perceptual convolution, where bins with low amplitudes
are discarded. Speed increases depend on the impulse response
used. For an impulse response of around 3 s length at 48 kHz sam-
pling rate execution took only about 40 % of the time necessary for
conventional partitioned convolution and 61 % of the time needed
for perceptual convolution. A listening test showed that there is
only a very slight degradation in quality, which can probably be
neglected for implementations where speed is crucial. Sound sam-
ples are provided.

1. INTRODUCTION

Artificial reverberation is an important audio effect in video games
and music production. Especially in video games execution speed
is critical and fast methods are needed to apply reverberation to
game sounds at runtime, contributing to the immersive experience
of players by making them feel they are in the environment of the
game.

An overview of different algorithms to implement artificial re-
verberation and their history is given in [1]. The authors divide the
algorithms in four categories: delay networks, convolution algo-
rithms, computational acoustics (based on the simulation of wave
propagation) and virtual analog models (based on the simulation
of analog devices used to make reverb).

Delay networks are very fast and require only little memory,
but finding configurations that deliver natural sounding results is
not trivial. Another disadvantage is that they are abstract repre-
sentations of the acoustic environment and it is challenging to im-
plement reverberation with specific acoustic properties that does
not exhibit any artifacts. Recent papers propose modulating the
feedback matrix within the delay networks to reduce such artifacts
[2]. There are also systems that can be configured automatically
by taking the properties of the environment that is being modeled
into account [3, 4, 5].

Copyright: © 2020 Sadjad Siddiq. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

While delay networks can be used to implement fast reverber-
ation, convolutional reverberation, in which a "dry" input sound
is convolved with the impulse response (IR) of an acoustic envi-
ronment, still has the big advantage that it is easy to use and un-
derstand. Additionally every environment can be recreated in the
way that it is captured by the IR. The output is - depending on the
quality of the IR - virtually the same as if the input sound had been
recorded in the environment at the same positions where the IR
was taken. For details on capturing and using IRs please refer to
[6].

The big disadvantage of convolutional reverberation is its com-
putational complexity. Instead of convolving a signal with an IR
in the time domain, the two signals can be transferred to the fre-
quency domain since multiplying the complex spectrum of the sig-
nal and the IR in the frequency domain leads to the same product
as convolving both signals in the time domain. For long signals,
executing the convolution in the frequency domain is much faster
than in the time domain, but it is still a computationally intensive
procedure.

Velvet noise can be used to create an artificial IR that allows us
to lower the computational cost of convolutional reverberation [7].
Updating the velvet noise regularly makes it possible to use short
buffers as IR [8, 9]. Hybrid models where the IR or some parts of
it are modeled using velvet noise and low-pass filters or coloring
filters allow to recreate realistic sounding output [10]. The use of
cascading filters makes it possible to reduce the complexity of the
single filters [11].

The aforementioned techniques reduce the complexity of the
calculations involved by replacing the IR with abstract noise, but
there are also techniques that allow to reduce the computational
load without replacing the IR. Using only those parts of the IR that
will make audible contributions to the output has a dramatic effect
on the computation speed without affecting the quality of the out-
put [12]. Additionally, on recent hardware considerable speedups
can also be obtained by leveraging special instruction sets of the
CPU, like single-instruction-multiple-data (SIMD) commands, par-
allel computing on the GPU or other low level optimizations [13].

Applying parallel computing or SIMD is less trivial in feed-
back delay networks, because each output sample depends on the
feedback of past output samples. Also the performance of velvet
noise reverberation, which is already highly optimized by reduc-
ing the amount of necessary floating point operations to a frac-
tion of what is needed in frequency domain convolution, is lim-
ited by the overhead of random memory access. Convolution by
multiplication in the frequency domain, however, is an ideal can-
didate for optimization based on parallel computing and SIMD
commands. Most GPUs come with libraries that implement fast
discrete Fourier transforms based on parallel computing out of the
box, making it very easy to implement convolutional reverbera-
tion.

DAFx.1

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

46

http://www.jp.square-enix.com/tech/
http://creativecommons.org/licenses/by/3.0/

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Keeping such new developments in mind we investigated algo-
rithmic optimizations of convolutional reverberation that can work
in conjunction with low-level hardware optimization. In this paper
we propose a new method to optimize convolutional reverberation
by simplifying and restructuring the IR in the frequency domain.
Since the proposed method is based on convolving IRs with a dry
signal, it is stable and straight-forward to use. The output only
depends on the IR and some parameters controlling the trade-off
between runtime speed and quality. A listening test revealed that
the quality of the output is only slightly inferior to reverberation
generated with conventional convolution. In applications where
speed is paramount this might be an acceptable trade-off. To gain
even more speed the quality level can easily be scaled down fur-
ther. This easy trade-off between speed and quality is a useful fea-
ture in game audio. For less important sounds in a video game, for
example, some degradation of output quality might be acceptable
if execution speed can be reduced.

2. ALGORITHM OF PARTITIONED OVERLAPPING
CONVOLUTION

To implement convolution in the frequency domain, we need to
transform the input signal and the IR to complex frequency spec-
tra. We do so using the fast Fourier transform (FFT). The number
of FFT coefficients needs to be high enough to hold the entire con-
volution product. For a signal of Lx samples and an IR of Lh

samples, the length of the convolution product is Lx + Lh − 1
samples. The number of FFT coefficients needs to be greater or
equal to this number.

The complexity of the required FFT operations makes an im-
plementation where a high order FFT is used to transfer the entire
input signal to the frequency domain impracticable, even if the IR
is short. Additionally, when applying reverb to continuous input
whose future samples are unknown, an FFT of the entire input sig-
nal is not possible.

A solution to this problem is partitioned convolution, which
we will briefly describe in this subsection as it is used in this paper.
A more detailed description can be found in [14].

In partitioned convolution the signal and the IR are cut into
blocks and convolution is implemented by summing up the con-
volution products of all blocks. In this paper block n of the IR h′

will be written as h[n]. Each block contains M samples. Sample
m of block n is defined as

h[n][m] = w1[m]h′[ns+m−M/2], where m = 0..M−1. (1)

Here w1[m] is the periodic Hann window function of length M
and s the distance between the starting samples of consecutive
blocks in the original signal. We assume that h′[t] = 0 where
t < 0 or t >= Lh. In case s = M , blocks do not overlap.
For reasons that will be explained later, we use overlapping blocks
with s = M/2. The bias −M/2 ensures that the first samples of
the IR are in the center of the first block. The blocks x[n] of the
input signal x′ are defined similarly as

x[n][m] = w1[m]x′[ns+m−M/2], (2)

again defining that x′[t] = 0 where t < 0 or t >= Lx. Note
that in the following text h[n] and x[n], as well as the output y[n]
stand for the entire block n of M samples of the IR, input signal
or output signal respectively, and not just a single sample.

=
=
=

X[n-2]

X[n]

X[n-1]

H[2]

H[1]

Y[n]

H[0]

x’

y’

+
y[n]

h’

F F

F-1

+

Figure 1: Summary of partitioned overlapping convolution. In
this example the IR is divided into Nh = 3 overlapping blocks
of length M which are converted to the complex spectra H[0..2]
of length 2M . These complex spectra are multiplied with the com-
plex spectra X[n − (0..Nh − 1)], which are extracted from the
input signal x′. The products are summed up, converted back to
the time domain and overlap-added to the output signal y′.

To calculate the output block y[n], we need to sum up the
convolution products of all blocks of the IR with the current input
block and past input blocks according to the formula

y[n] =

Nh−1∑
i=0

h[i] ∗ x[n− i], (3)

which, as it turns out, looks like the formula for convolution ap-
plied to h and x. But please be reminded that h[i] and x[n − i]
stand for blocks of M samples and the operator ∗ stands for the
convolution of these blocks. The formula above shows which con-
volution products need to calculated and summed up for the output
block y[n].

Calculating these convolution products is more efficient in the
frequency domain if M is longer than a few samples. To transfer
the blocks to the frequency domain we use the FFT, making sure
that there are enough coefficients to hold the convolution prod-
uct, as mentioned before. Since the convolution product will be
M + M − 1 samples long, we use an FFT with nFFT = 2M
coefficients, which yields complex spectra that are MS = M + 1
bins long. In the frequency domain equation 3 is rewritten as

Y [n] =

Nh−1∑
i=0

H[i] ·X[n− i] (4)

where n is again the index of the output block to be calculated,
Y [n] is the complex spectrum of this output block and H[i] and
X[n − i] are the complex spectra of the IR and input signal re-
spectively. Note that we need to replace the convolution operation
of the time domain with a multiplication, applied to each bin of the
complex spectra.

Figure 1 summarizes the implementation of partitioned over-
lapping convolution. To calculate one output block y[n], we need
one FFT operation to calculate the complex spectrum X[n] of the
input block x[n] and one inverse fast Fourier transform (iFFT) to
transfer the complex spectrum of the output Y [n] back to the time
domain. The complex spectra H[0..Nh − 1], where Nh is their
number, can be calculated offline.

DAFx.2

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

47

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

F

(a)(b)

(c)

(d) (e)

(f) (g)

F

rndφ F-1

F-1thin out

F

Time domain

0 time (samples) 127

0 time (samples) 127

0 time (samples) 127 0 frequency (bins) 128

0 frequency (bins) 128

0 frequency (bins) 128

0 frequency (bins) 128

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

Figure 2: A Hann window is applied to white noise in (a), it is then converted to the frequency domain to obtain the amplitude spectrum
in (b). We create a sparse spectrum in (c), convert it back to the time domain, apply a Hann window and compare it to the original signal
(thin, violet line) in (d). (e) shows the amplitude spectra of both signals. After applying the Hann window in the time domain the frequency
content of the signal based on the sparse spectrum is very similar to the spectrum of the original signal. After randomizing the phase of
the sparse spectrum in (c) as described in section 3.4, it is converted to the time domain and again compared to the original signal in (f).
While the waveform looks very different, the frequency content is similar, as can be seen in (g), which shows the amplitude spectra of both
signals.

As written in equations 1 and 2, we apply a windowing func-
tion to the input blocks x[n] and the IR blocks h[n] before they are
converted to the frequency domain. We also apply a windowing
function to the output y[n] before it is added to the output signal,
overlapping it with previously calculated parts of the signal as fol-
lows.

y′[ns+m− M

2
] += w2[m] ·y[n][m], for m = 0..2M−1, (5)

where w2[m] is the periodic Hann window function of length 2M ,
which is the length of each output block y[n], since the FFT and
iFFT were carried out with this many coefficients. The operator
+= means that the value on the right hand side is added to the
value of the left hand side and the variable on the left hand side is
updated to hold the new value. We use the periodic Hann window
since shifted versions of that window add up to a constant if the
length of the window is an integer multiple of the shift.

The most expensive part of the algorithm regarding execution
speed is the multiplication of the single spectra, because each in-
put block has to be convolved with each block of the IR. To create
one single output block, we need to carry out Nh convolutions.
Optimization should therefore concentrate on this part of the algo-
rithm. In the following sections we will refer to this part of the
computation as the "core loop".

3. OPTIMIZATIONS

3.1. Perceptual convolution

As reported in [12], not all bins of the complex spectra of the IR
and input signal need to be used. Bins whose amplitude is be-
low a certain threshold can be discarded without compromising

on output quality, since their contribution to the output signal is
barely audible. Ideally this threshold should be based on the hear-
ing threshold, hence the name of this algorithm.

To project the hearing threshold to a certain amplitude level
in the processed spectra we need to take several other values into
account, for example the frequency, the playback system and the
playback volume. But even if all these values are known, it is
not trivial to calculate an appropriate value if masking and other
perceptual factors are also taken into account. Additionally we
want to discard bins before multiplying them and summing them
up to an output spectrum, i.e. before we know what the output
amplitude is going to be. For the experiments in this paper we set
the threshold to -50 dB, where 0 dB correspond to 1, the maximum
amplitude of the waveforms we process. This choice is based on
informal listening tests, in which we tried to find a value where
the degradation in quality was not perceivable for the IRs and test
sounds we used in our experiments.

The amplitude of typical room IRs tends to drop faster in the
high frequencies than in the low frequencies, so especially the last
spectra of the IR will have low energy in the high frequencies re-
gions. When multiplying the spectra of the IR with the spectra
of the input signal we iterate the bins of each spectrum over fre-
quency and stop the multiplication of bins at the last frequency
in which both spectra have an amplitude that is greater than the
chosen threshold. Note that the frequency of the bin at which the
multiplication is stopped is independent of the preceeding and suc-
ceeding spectra. So even IR spectra with very low energy between
sparse early reflections in which the multiplication stops at a low
frequency do not mean that the multiplication of the succeeding
spectra will also terminate at this low frequency.

DAFx.3

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

48

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

0

4

5

6

7

8

9

10

11 12

13

14

152

1

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

04 5 6 789 1011 1213 14152 13 16

2 5 14 0 78 69 15 1011133 16 12 14

H[2]

H[1]

H[0]

H[3]

X[n]

X[n]

X[n]

X[n]

HC[0]

XS[n]

Figure 3: Compressing sparse spectra H[0..3] into HS [0]. Instead
of multiplying all sparse spectra with the complex input spectrum
X[n] it suffices to multiply the compressed spectrum HC [0] with
XS [n], the reordered version of X[n]. Note that for illustration
purpose we only show a short spectrum. The actual spectra are
much longer.

3.2. Using sparse spectra

Since the FFT is only processing a finite part of the signal, the fre-
quency resolution in the resulting spectrum is limited and sinosoids
are not represented by narrow peaks but by lobes corresponding to
the Fourier transform of the window function.

Thanks to this leaking of peaks over the bins of several fre-
quencies a lot of information in the amplitude spectrum is redun-
dant if we do not want to recreate the exact same waveform in the
time domain. For typical room IRs, which usually do not have
strong, narrow peaks in the frequency spectrum and which con-
sist mostly of decaying colored noise, we do not need to recreate
the exact same shape as the input waveform as long as the overall
shape of the frequency content of the signal is more or less left in-
tact. Since we are dealing with noise, we also do not need to care
about the exact pitches of the sinosoids constituting the signal.

We can therefore create an approximation of the original IR
by using only a fraction of the bins of its original complex spectra
and setting all other bins to zero. Figure 2 illustrates how noise
can be represented using sparse spectra.

To be able to retain the approximate frequency content, the
non-zero bins should be equally distributed over the whole spec-
trum. A constant distance between non-zero bins will lead to comb
filtering artifacts in the output signal, so while their distance should
be equal on average, there should also be some variation in the
placement of the non-zero bins.

We define a constant d specifying that, on average, every dth
bin of every spectrum of the IR should be non-zero. The upper
part of Figure 3 shows how non-zero bins are chosen when d = 4.
Every spectrum is divided into sections of d bins. Within each
section only one bin is randomly chosen to be non-zero, the other
bins are set to zero. As will be explained later, it is advantageous
if in a group of d succeeding spectra a different bin in each section
is non-zero in each spectrum, so that in one group of d spectra
every bin m = 0..MS − 1 is non-zero in one spectrum. To decide

which bins should be non-zero in the spectra of the IR H , we start
by looking at the first d bins m = 0..d − 1 in the first d spectra
n = 0..d − 1. For each bin m we randomly pick one spectrum
H[0..d−1] in which it is non-zero. In all other spectra H[0..d−1]
the bin m is set to zero. After that we look at the next section of
bins m = d..2d − 1 and continue to do so until all bins of the
spectra H[0..d − 1] have been processed in this way. We then
repeat the algorithm for the next group of spectra H[d..2d − 1]
until all groups of spectra have been processed. Note that the last
section of bins may contain less then d bins, as is also the case in
figure 3, but the bins are still processed in the same way and set
to zero in all spectra of the group expect in one randomly chosen
spectrum per bin. If the last group of spectra contains less then d
spectra, we process this group as if there were d spectra, assuming
the non-existing spectra are all zero.

In the example shown in the upper part of Figure 3, 75 % of
all bins are set to zero. When these spectra are multiplied with the
input spectrum X[n], the number of necessary complex multipli-
cations is reduced by the same amount.

3.3. Reordering of the bins

Even though the amount of necessary complex multiplications when
multiplying a spectrum of the input signal with a sparse spectrum
of the IR has been reduced, iterating over the whole spectrum to
find non-zero bins incurs a heavy overhead. Keeping a list of non-
zero bins in a separate array does not solve this problem, since
most time is spent when fetching the non-zero bins from their ran-
dom locations in memory or storing them there.

This problem can be avoided by reordering the bins of all spec-
tra of the IR and the input signal. Figure 3 shows how this can be
done for four spectra of the IR H[0..d], when d = 4. The bins of
the spectrum are reordered in a way that the four non-zero bins of
H[0] come first, then the non-zero bins of spectrum H[1] and so
on. This way the four spectra can be summarized in one array of
length MS . As can be seen in the figure, the first four elements
of the array are the bins 2, 4, 9 and 15 and represent the spectrum
H[0]. We will refer to these elements as the first split, to the next
five elements representing H[1] as the second split and so on.

After reordering the input spectrum X[n] in the same way to
XS [n], we can multiply all bins of X[n] with HS [0] in this shuf-
fled order and then place the splits into the corresponding output
spectra YS [n..n+ d− 1] in the same shuffled order.

The sparse spectra of the IR H[0..d−1] have been compressed
into HC [0]. Similarly the succeeding sparse spectra H[d..2d− 1]
are compressed into HC [1]. We use the exact same pattern so that
the bins are ordered in the same way as in HC [0]. We can therefore
bundle all spectra of the IR into groups of d spectra and compress
each group to one spectrum following the exact same order of bins,
yielding HC [k], the compressed reordered spectra of the IR, where
HC [k] contains the spectra H[kd..kd+d−1]. The number of HC

is Nk = ceil(NH/d)
The spectra of the IR can be reordered in the initialization

phase of the convolution algorithm. The spectra of the input sig-
nal need to be reordered during the execution of the algorithm, but
since all spectra follow the same order, we need to reorder every
spectrum X[n] only once and can thus avoid expensive reordering
in the core loop.

The optimization based on discarding bins with small ampli-
tudes as described in 3.1 works best when the bins are still ordered
from smallest to largest frequency within each split. This allows

DAFx.4

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

49

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

5 8 133 16

0 6 11 124 9 152 7 10 1415 8 133 16

0 6 11 124 9 152 7 10 1415 8 133 16

0 6 11 12

0 6 11 12

4 9 152

4 9 152

7 10 141

7 10 141

5 8 133 16

5 8 133 16

HC[0]

XS[n]

2 5 14 0 78 69 15 1011133 16 12 14

HC[1]

XS[n]

YS[n]

YS[n+1]

2 4 9 15

YC[n,0]

YC[n,1]

2 5 14 0 78 69 15 1011133 16 12 14

YS[n+2]

YS[n+3]

2 5 14 0 78 69 15 1011133 16 12 14

H[0] H[1] H[2] H[3]

H[4] H[5] H[6] H[7]

2 5 14 0 78 69 15 1011133 16 12 14YS[n+4]

2 5 14 0 78 69 15 1011133 16 12 14

YS[n+5]

YS[n+6]

2 5 14 0 78 69 15 1011133 16 12 14

2 5 14 0 78 69 15 1011133 16 12 14YS[n+7]

10 76 1011 12 14

Figure 4: After multiplying the input spectrum XS [n] with the
spectra of the IR compressed in HC [0] and HC [1], the splits
containing the products are written to their corresponding output
spectra.

us to stop the calculation within the split at the frequency where
the amplitude drops below the threshold.

Figure 4 shows how the output spectra YS [n] are generated
from the products of the current input spectrum XS [n] with the
compressed spectra of the IR HC [k]. As was shown by formula 3,
we need to multiply the current input spectrum and past input spec-
tra X[n..n − NH + 1] with all spectra of the IR H[0..NH − 1]
and sum up the products to calculate the current output spectrum
YS [n]. Alternatively, we can also multiply the current input spec-
trum X[n] with all spectra of the IR H[0..NH − 1] and add the
products to an output cache that consists of the current output spec-
trum YS [n] and future output spectra YS [n+1..NH−1]. This is of
course still true when the spectra of the IR have been compressed
into HC [k], but the compressed spectra need to be decompressed
and the single splits written to their corresponding output spectra.
Let us first multiply the input spectra X[n] by HC [k] and store the
temporary product in YC [n, k]:

YC [n, k] = HC [k] ·X[n] (6)

Now the splits in YC [n, k] need to distributed to the corresponding
output spectra. The first split of YC [n, k] is added to YS [n], the
second split to YS [n + 1] and so on for all splits. The output
spectrum YS [n] is thus the sum of the first split s = 0 of HC [0] ·
XS [n], the second split s = 1 of HC [0] · XS [n − 1] and so on.
The following formula summarizes this relation:

YS [n+s][a(s)..b(s)] += YC [n, k][a(s)..b(s)], for s = 0..d (7)

Here a(s) and b(s) are, respectively, the first and last index of
split s and again the operator += means that the value on the right
hand side is added to the value on the left hand side, updating the
variable on the left hand side.

We can restore the original order of bins in the output spectra
just before converting the signal back to the time domain using the
iFFT, after all necessary spectra have been added to the sum.

3.4. Discarding phase

To implement the multiplication of the complex spectra, six float-
ing point operations are needed (four multiplications and two addi-
tions) for each pair of complex numbers, i.e. for each pair of bins.

Since these floating point operations are carried out in the core
loop, reducing their number has a big impact on performance.

Sparse spectra, while retaining enough information about the
frequency content of the signal, have the disadvantage that they
do not allow us to generate signals that resemble the shape of the
original waveform exactly. Output blocks need to be overlapped
after applying a windowing function in order to generate a signal
without artifacts caused by discontinuities between blocks in the
time domain.

Since we are forced to overlap the output buffers anyway, we
can introduce another simplification and dispose of the phase in the
complex compressed spectra of the IR HC . Setting all phases to 0
would introduce undesired periodicity in the output signal, so we
set the phase to random values. The lower part of figure 2 shows
the effect of randomizing the phase in the same way as described
below. While the shape of the waveform in the time domain bares
no resemblance to the original anymore, the frequency content is
still close to the original.

We set the phases of the non-zero bins to values like

φ = e
1
2
πrj , (8)

where r is a random integer number in the range 0 ≤ r ≤ 3.
If we randomize the phases this way, either Re φ or Im φ is zero
and the implementation of the complex multiplication of one bin
in HC and XS can be realized with only two multiplications and
one addition.

Verifying if the real part or the imaginary part of the complex
number is zero to determine how the multiplication should be car-
ried out takes time in the core loop. Instead, since the phase is
random anyway, it is much faster to hard code the order of phases.

If we assume that the order of the hard coded phases is

φ1 = e
1
2
πj = 1,

φ2 = eπj = j,

φ3 = e
3
2
πj = −1 and

φ4 = e2πj = −j,

then the first bins of the multiplication of XS [n] and HC [0] will
be carried out in this way:

YS [n][0] = ReXS [n][0] ·HC [0][0] + jImXC [n][0] ·HC [0][0]

YS [n][1] = jReXS [n][1] ·HC [0][1]− ImXC [n][1] ·HC [0][1]

YS [n][2] = −ReXS [n][2] ·HC [0][2]− jImXC [n][2] ·HC [0][2]

YS [n][3] = −jReXS [n][3] ·HC [0][3] + ImXC [n][3] ·HC [0][3]

The same pattern is repeated for the following bins, until all bins
have been processed. Informal listening tests have shown that this
kind of hard coded randomization to four different phase values is
enough to avoid periodic artifacts in the output.

Discarding the phase information also has the advantage that
the only value that needs to be stored for every bin of the IR spectra
is the amplitude, which lets us save memory.

4. IMPLEMENTATION DETAILS

4.1. Avoiding temporal smearing

The disadvantage of destroying the phase information as described
in section 3.4 is that sharp impulses in the IR will also be de-
stroyed. This can be heard especially in the beginning of the output

DAFx.5

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

50

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

signal where the direct sound and the early reflections are standing
out. In typical IRs we can get rid of the phase in most parts and
implement convolution using the optimizations described above.
For those few parts of the IR where we want to keep the phase in-
formation intact, for example the first block or the first few blocks,
we can use conventional convolution.

4.2. Consistent IR amplitude

Convolving the input signal with sparse spectra in which most bins
are set to zero has an effect on the amplitude of the output. Since
every sparse spectrum in the IR has nearly the same number of
non-zero bins, the effect on the amplitude of the output is approx-
imately the same in all output blocks and results in attenuating or
amplifying the whole signal by a constant. This is important to
note if we use the original spectra for some blocks of the IR and
sparse spectra for the rest. In this case we need to ensure that
the amplitude level of those parts of the input signal that are con-
volved with the sparse spectra does not change when compared to
convolving them with the original spectra.

The change in amplitude when setting random bins to zero is
difficult to predict. We therefore measure the output amplitude of
our reverberator by using a unit impulse as an input and calculating
its IR. We then compare the root mean square (RMS) of those
parts of the output that where generated using sparse spectra to the
RMS of the corresponding parts of the original IR to find out by
which value α we need to multiply the output of our reverberator
to generate output with the same amplitude as the original IR. The
amplitudes in the sparse spectra of the IR are then all multiplied
by α.

4.3. Split order

Figure 3 showed how d sparse spectra of the IR are compressed
into one spectrum. While the possible combinations of bins that
are non-zero in one sparse spectrum always remain the same, for
example [2, 4, 9, 15] or [3, 5, 8, 13, 16], the order in which we
pick one such combination for one spectrum of the IR can be ran-
dom. In the figure spectrum H[0] is represented by the combina-
tion of bins [2, 4, 9, 15], which corresponds to the first split in
the compressed spectrum HC [0]. The second spectrum H[1] is
represented by the second split, and so on. We could, however,
also represent H[0] by the second split, H[1] by the first split,
and H[2] and H[3] randomly by the two other splits. Randomly
deciding which one of the d splits to use to represent spectrum
H[n] avoids artifacts based on repetition of the same pattern in
the output. Note, however, that there is one restriction: Within a
group of d succeding spectra, each must be represented by a dif-
ferent split, so that all d spectra can be squeezed into one spectrum
HC without having bins that are non-zero in more than one sparse
spectrum within the group. Informal listening tests have shown
that it also improves quality if two succeeding sparse spectra of
the IR are never represented by the same split. When assigning
all spectra within a group to a different split each, care should be
taken that the first split is not the same as the last split of the pre-
vious group. After multiplying the compressed spectrum HC with
an input spectrum, we only need to take care that we know which
split of the compressed output spectrum YC needs to go to which
output spectrum YS .

4 9

4 9

1481

1481

0 11 16

0 11 16

0 11 165 7 126 132

6 132

6 132

15103

15103

5 7 12

1481

4 9

0 11 16 146 13 152 8 4 9110 5 73 12

0 11 16 146 13 152 8 4 9110 5 73 12HC[0]

XS[n]

HC[1]

XS[n]

YS[n]

YS[n+1]

YC[n,0]

YC[n,1]

YS[n+2]

YS[n+3]

H[0] H[1] H[2] H[1]

YS[n+4]

YS[n+5]

0 11 16 146 13 152 8 4 9110 5 73 12

0 11 16 146 13 152 8 4 9110 5 73 12

0 11 16 146 13 152 8 4 9110 5 73 12

0 11 16 146 13 152 8 4 9110 5 73 12

0 11 16 146 13 152 8 4 9110 5 73 12

H[0] H[2]

H[5] H[3] H[4] H[4]H[3] H[5]

15103 5 7 12

Figure 5: After multiplying the input spectra XS [n−4..n] with the
spectra of the IR compressed in HC [0], the products of the splits
are written to their corresponding output spectra. This process
is shown for two succeeding output spectra YS [n − 1] and YS [n]
when d = 6 and c = 2.

4.4. Multiple splits

To increase randomization further we can increase the number of
splits. Unfortunately this also reduces the number of non-zero bins
in the sparse spectra, which results in deteriorated output quality.
To avoid this we can represent one spectrum of the IR by a random
combination of c splits, as shown in figure 5. This also has the ad-
vantage that the number of patterns of the distribution of non-zero
bins is increased further. When we represent each spectrum by a
combination of c splits and we have d splits in total, the number
of possible unique combinations can be calculated as the binomial
coefficient (

d

c

)
=

d!

c!(d− c)!
. (9)

When writing the output signal we need to write all c splits that
represented one spectrum of the IR to the corresponding output
spectrum, as is shown in the figure. We can do so by updating
equation 7 as follows:

YS [n+sk[k,s]][a(s)..b(s)]+=YC [n,k][a(s)..b(s)], for s=0..d
(10)

So, instead of writing the splits in a constant order, we check the
table sk[k, s] to find out to which output spectrum split s of the
kth compressed spectrum needs to be written to.

4.5. Multichannel input and output

Stereo or multichannel input and output can essentially be pro-
cessed in the same way as mono signals, applying the same cal-
culations to each channel. The content of the different channels
in typical multichannel signals does not only differ in amplitude,
but also in phase. Since the phase information is discarded in the
proposed algorithm, the same difference can not be reconstructed
in the output signal. Informal listening tests have shown that it suf-
fices to ensure there is some difference between the output chan-
nels - even if that difference is not the same as in the original sig-
nal. This can be done by making sure that the order of splits used
for each channel is different. In the case of stereo input signals
or stereo IRs this will lead to output that sounds slightly different
from sounds generated with conventional convolution but the lis-
tening tests detailed in section 5.4 have shown that listeners had no
strong preference for one or the other.

DAFx.6

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

51

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

5. PERFORMANCE

5.1. Overview

We compared the speed and memory requirements of the proposed
algorithm to two other algorithms: partitioned convolution without
any optimizations (also called "non-optimized" below) and percep-
tual convolution where bins of the complex spectra of the IR are
discarded if they are below a certain threshold. A listening test
to compare the quality of reverberation generated by the proposed
algorithm and by the non-optimized algorithm was also conducted.

The samples for the listening test were all generated with a
block size of M = 1024 samples. As mentioned in 3.1, a cutoff
amplitude of -50 dB was used for the perceptual and the proposed
algorithm. To create the output samples of the proposed algorithm
each spectrum was represented by a combination of c = 3 splits
and each compressed spectrum of the IR contained d = 5 splits.
We used non-optimized convolution for the first block of the IR
and optimized convolution for all other blocks. The sampling rate
depended on the IR and input sample used and was either 44.1 kHz
or 48 kHz. Some sounds were rendered as mono and some as
stereo. All sounds were processed as 32 bit floating point values.1

For the performance analysis a mono channel sample with a
sampling rate of 48 kHz and a length of 70.37 s was chosen and
an IR of 3.2 s length with the same sampling rate was used. The
parameters for the algorithm were the same as mentioned above.

5.2. Computation speed

Table 1 compares the floating point operations (FLOPs) necessary
to calculate the output of each algorithm. The values are normal-
ized by the length of the input signal. FLOPs only give a very
rough idea of the performance of the algorithm, since during exe-
cution a lot of time is also spent in memory access, but it is inter-
esting to compare the three algorithms this way to see where most
computational power is needed. In the non-optimized and in the
perceptual algorithm the cost for the FFT is relatively low, but the
cost for multiplying the spectra is high. In the proposed algorithm
we need to process overlapping blocks, thus the number of FLOPs
needed to calculate the FFT doubles. At the same time the number
of FLOPs needed to multiply the spectra decreases. If the FFT is
implemented in hardware and does not have to run on the CPU,
the efficiency of the proposed algorithm will increase even more.

The speed of the algorithm was measured on a PC running on
an Intel® CoreTM i7-7700K CPU at 4.2 GHz. The time needed
to convolve the entire input signal with the IR was about 718 ms
for the non-optimized algorithm, 481 ms for the perceptual algo-
rithm and 294 ms for the proposed algorithm at a sampling rate
of 48 kHz. SIMD optimizations or GPU optimizations were not
used. The algorithm was implemented in C++, executed as a sin-
gle thread and only the computation time of the reverberation al-
gorithm was measured. Data input and output etc. are therefore
not part of this measurement. Note that the measurements for our
algorithm include the computation time of conventional convolu-
tion for the first block. Please also note that while the length of the
input signal has no impact on the performance by which the algo-
rithms processes one block of input data, it is, however, affected
by the length of the IR, since every block of the input signal needs
to be processed with every block of the IR. The values given in

1Examples can be found here: https://doi.org/10.5281/zenodo.3965342

Table 1: Comparison of the three algorithms. Floating point op-
erations are counted per input sample and rounded to the nearest
integer. They are divided into FFT and multiplication of spectra
("mult."). The sum of the two is also shown. The computation time
is given in ms per second of the input signal. Values are measured
for an IR of 3.2 s at 48 kHz sampling rate and will vary depending
on the IR.

non-optimized perceptual ours
FLOPs / sample (FFT) 87 87 174
FLOPs / sample (mult.) 1265 863 189
FLOPs / sample (total) 1352 951 364
computation time / s 10.2 ms 6.84 ms 4.18 ms

Memory 2476 kB 2100 kB 2573 kB

the table are thus specific to the IR used in performance measure-
ments.

5.3. Memory requirements

All three algorithms need to store the frequency domain represen-
tation of the IR, i.e. the spectra of the IR in memory. The second
big requirement is the memory needed for cache buffers to hold
future output blocks. For all three algorithms the memory needed
is not affected by the length of the input signal, but depends on the
length of the IR.

In the non-optimized algorithm the IR is cut into non-overlapping
frames of length M . Those frames are transferred to the frequency
domain using an FFT with 2M coefficients and stored as complex
spectra of length MS = M + 1, adding 1 to M to keep a bin
for the Nyquist frequency. Two floating point values are needed
to store the real and imaginary part of each bin. So one block
of M floating point samples in the time domain is represented by
2MS = 2M + 2 floating point values in the frequency domain.
Neglecting the additional bin for the Nyquist frequency and the
fact that the last samples of the IR need to be padded with zeros if
its length is not a multiple of M , the memory needed for the IR is
approximately 2Lh floating point values. The memory needed for
the output cache is the same. The total amount of memory needed
is therefore about 4Lh floating point values.

We can calculate the memory needed for the perceptual algo-
rithm in the same way. However, some memory can be saved by
discarding the last bins of each spectrum of the IR if their am-
plitude drops below our chosen threshold. In the case of the IR
and the threshold used in the tests above about 30 % of all bins
could be discarded. Please note that the number of bins that can
be discarded depends on the IR and on the threshold that is being
used. Informal tests with other IRs have shown that up to 50 % of
all bins can be discarded without compromising on quality. The
memory needed to store the IR is therefore somewhere between
Lh and 2Lh floating point values. The memory needed for the
output cache is 2Lh, so the total amount of memory needed lies
somewhere between 3Lh and 4Lh.

For the proposed algorithm we need overlapping blocks where
the distance s between the starting point of two successive blocks
is M/2. The number of blocks we extract is thus twice as big
as for the previous algorithms. As for the spectra of the IR this
doubling is compensated by the fact that we discard phase infor-
mation and only need to store the amplitude of each bin, i.e. only
one value for each bin. We summarize d sparse spectra into one

DAFx.7

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

52

https://doi.org/10.5281/zenodo.3965342

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Table 2: Question and answers of the survey. The score of each
answer was not shown to participants.

Score Question / Answers
In which sound is the quality of the reverberation better?

3 It is much better in A.
2 It is better in A.
1 It is slightly better in A.
0 It is about the same in both sounds.
-1 It is slightly better in B.
-2 It is better in B.
-3 It is much better in B.
0 I don’t know.

spectrum, which reduces the amount of memory we need by a fac-
tor of d. In the case of a combination of c sparse spectra, the factor
is d/c. Additionally, we can discard those bins in each split of the
compressed spectra that do not contribute in an audible way to the
output signal, in the same way as we did it in the perceptual al-
gorithm. The memory needed to store an IR where up to 50 % of
all bins can be discarded based on their low amplitude is thus be-
tween c·Lh

d
and c·Lh

2d
floating point samples. The memory needed

for the output cache is twice as high as for the other algorithms,
because aoutput buffers need to overlap as well. The total amount
of memory needed is therefore about 4Lh+

c·Lh
d

and 4Lh+
c·Lh
2d

floating point values.
Table 1 shows the memory values measured for the three al-

gorithms when the IR and input sound mentioned in 5.1 are used.

5.4. Listening test

To evaluate the quality of the reverberation generated by the pro-
posed algorithm a simple listening test based on the comparison
category rating method [15] was conducted. In the test the 15
different short sound samples to which the link was given in 5.1
where used. The samples included speech in different languages,
small musical phrases played on the piano or harpsichord, paper
being crushed, a door being slammed and a wine glass being hit.
To each sample reverberation based on a different IR was applied
and in the test each sample was presented in two versions. One ver-
sion was the sample with reverberation applied by our algorithm,
the other one had reverberation generated by conventional parti-
tioned convolution. These two versions were randomly presented
as sound A or sound B. Subjects were asked to use earphones or
headphones and were allowed to listen to the sounds as often as
they like and to revisit earlier questions if they wanted. For each
pair of sounds they had to decide if the quality of the reverbera-
tion in sound A or sound B was better and by how much. The
answers subjects could pick from are shown in table 2. To evalu-
ate the results of the survey, each answer was associated with the
score shown in the table. For pairs where sound B was the sound
generated by our algorithm, the signs of these scores were flipped.

The survey was done by 25 subjects, who had, for the most
part, no particular experience in working with audio. The average
over all questions and subjects was a score of -0.25 with a stan-
dard deviation of 1.48. This shows a small tendency of preference
towards the sound generated by conventional convolution but the
large standard deviation shows that this tendency is not very con-
sistent. For the two percussive sounds there was a small tendency
to prefer the versions generated by our algorithm (score 0.2 and
0.32), presumably because of the different stereo spread.

6. REFERENCES

[1] Vesa Välimäki, Julian Parker, Lauri Savioja, Julius O Smith,
and Jonathan Abel, “More than 50 years of artificial rever-
beration,” in Audio engineering society conference: 60th in-
ternational conference: dreams (dereverberation and rever-
beration of audio, music, and speech). Audio Engineering
Society, 2016.

[2] Sebastian Jiro Schlecht, Feedback Delay Networks in Artifi-
cial Reverberation and Reverberation Enhancement, Ph.D.
thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg,
2018.

[3] Carl Schissler and Dinesh Manocha, “Interactive sound ren-
dering on mobile devices using ray-parameterized reverber-
ation filters,” arXiv preprint arXiv:1803.00430, 2018.

[4] Hequn Bai, Hybrid models for acoustic reverberation, Ph.D.
thesis, Télécom ParisTech, 2016.

[5] Enzo De Sena, Hüseyin Hacıhabiboğlu, Zoran Cvetković,
and Julius O Smith, “Efficient synthesis of room acoustics
via scattering delay networks,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 23, no. 9, pp.
1478–1492, 2015.

[6] Angelo Farina, “Impulse response measurements,” in 23rd
Nordic Sound Symposium, Bolkesjø (Norway), 2007, pp. 27–
30.

[7] Hanna Järveläinen and Matti Karjalainen, “Reverberation
modeling using velvet noise,” in Audio Engineering Soci-
ety Conference: 30th International Conference: Intelligent
Audio Environments. Audio Engineering Society, 2007.

[8] Keun-Sup Lee, Jonathan S. Abel, Vesa Välimäki, Timothy
Stilson, and David P. Berners, “The switched convolution
reverberator,” Journal of the Audio Engineering Society, vol.
60, no. 4, pp. 227–236, 2012.

[9] Sami Oksanen, Julian Parker, Archontis Politis, and Vesa
Välimäki, “A directional diffuse reverberation model for ex-
cavated tunnels in rock,” in 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing. IEEE,
2013, pp. 644–648.

[10] Bo Holm-Rasmussen, Heidi-Maria Lehtonen, and Vesa
Välimäki, “A new reverberator based on variable sparsity
convolution,” in Proc. of the 16th Int. Conference on Digital
Audio Effects (DAFx-13), 2013, vol. 5, pp. 7–8.

[11] Vesa Välimäki, Bo Holm-Rasmussen, Benoit Alary, and
Heidi-Maria Lehtonen, “Late reverberation synthesis using
filtered velvet noise,” Applied Sciences, vol. 7, no. 5, pp. 483,
2017.

[12] Wen-Chieh Lee, Chi-Min Liu, Chung-Han Yang, Jiun-In
Guo, et al., “Fast perceptual convolution for room rever-
beration,” in 6th International Conference on Digital Audio
Effects (DAFx-03), London, United Kingdom. Citeseer, 2003.

[13] Stefan Heidtmann, “Implementation and evaluation of opti-
mization strategies for audio signal convolution,” M.A. The-
sis, Hochschule für Angewandte Wissenschaften Hamburg,
2019.

[14] Frank Wefers, Partitioned convolution algorithms for real-
time auralization, vol. 20, Logos Verlag Berlin GmbH, 2015.

[15] “Methods for subjective determination of transmission qual-
ity,” ITU-T P.800 (08/1996).

DAFx.8

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

53

	1 Introduction
	2 Algorithm of partitioned overlapping convolution
	3 Optimizations
	3.1 Perceptual convolution
	3.2 Using sparse spectra
	3.3 Reordering of the bins
	3.4 Discarding phase

	4 Implementation details
	4.1 Avoiding temporal smearing
	4.2 Consistent IR amplitude
	4.3 Split order
	4.4 Multiple splits
	4.5 Multichannel input and output

	5 Performance
	5.1 Overview
	5.2 Computation speed
	5.3 Memory requirements
	5.4 Listening test

	6 References

@inproceedings{DAFx2020_paper_1,
 author = "Siddiq, Sadjad",
 title = "{Optimization of Convolution Reverberation}",
 booktitle = "Proceedings of the 23-rd Int. Conf. on Digital Audio Effects (DAFx2020)",
 editor = "Evangelista, G.",
 location = "Vienna, Austria",
 eventdate = "2020-09-08/2020-09-12",
 year = "2020-21",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "1",
 doi = "",
 pages = "46--53"
}

