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ABSTRACT

Nonlinear systems play an important role in musical signal process-
ing, but their digital implementation suffers from the occurrence
of aliasing distortion. Consequently, various aliasing reduction
methods have been proposed in the literature. In this work, a novel
approach is examined that uses samples of a signal’s derivative
in addition to the signal’s samples themselves. This allows some
aliasing reduction, but is usually insufficient on its own. How-
ever, it can elegantly and fruitfully be combined with antiderivative
antialiasing to obtain an effective method. Unfortunately, it still
compares unfavorably to oversampled antiderivative antialiasing. It
may therefore be regarded as a negative result, but it may hopefully
still form a basis for further developments.

1. INTRODUCTION

Nonlinear systems have become an indispensable part of musical
signal processing. In particular, there are many effects such as over-
drive, distortion, or other so-called waveshapers, whose primary
objective it is to introduce harmonic distortion to enrich the signal.

One major problem encountered when realizing such nonlin-
ear systems digitally is aliasing distortion: Once the additional
harmonics introduced by the nonlinearity exceed the Nyquist fre-
quency, they get folded back to lower frequencies, just as if the
corresponding analog signal had been sampled without appropriate
band-limiting. Contrary to the desired harmonic distortion, alias-
ing distortion is usually perceived as unpleasant. The conceptually
simplest method to reduce aliasing is oversampling. Various alterna-
tives have been proposed that aim to improve the ratio of achieved
aliasing suppression to computational cost, e.g. [1, 2, 3, 4].

In this work, we start from an idea similar to [4], namely com-
puting samples not only of the signal after nonlinear distortion, but
also of its derivative with respect to time. From the combination
of those, perfect reconstruction is possible for signals band-limited
to the sampling rate (i.e. twice the original Nyquist limit). Al-
ternatively, signal components between the Nyquist limit and the
sampling rate may be suppressed to reduce aliasing when convert-
ing to a traditionally sampled signal. By itself, this allows only
rather modest aliasing reduction, but as will be shown, it can be
very elegantly and beneficially combined with the antiderivative
antialiasing of [3].
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2. RECONSTRUCTION FROM SAMPLES OF A SIGNAL
AND ITS DERIVATIVE

Let ˙̄x(t) = d
dt
x̄(t) be the derivative with respect to time of a

signal x̄(t) and let x(n) = x̄(nTs) and ẋ(n) = ˙̄x(nTs) denote
their counterparts when sampled with sampling interval Ts. In
[4], such samples are used to determine the coefficients of cubic
polynomials and obtain a piecewise cubic signal reconstruction
(in that case, of a state trajectory). Here, we instead employ a
reconstruction that is more similar to ordinary reconstruction from
signal samples, namely of the form

ȳ(t) =
∞∑

n=−∞

x(n)ĥ1(t− nTs) + Tsẋ(n)ĥ2(t− nTs). (1)

Note that by omitting the second term, i.e. setting ĥ2(t) = 0, and
furthermore choosing ĥ1(t) = sinc(t), this reduces to ordinary
reconstruction for signals bandlimited to half the sampling rate. To
utilize the derivative’s samples, we propose to instead employ

ĥ1(t) = (sinc(t/Ts))
2 (2)

ĥ2(t) =
t

Ts
· (sinc(t/Ts))

2 (3)

depicted in figure 1 where

sinc(x) =

{
sin(πx)

πx
for x ̸= 0

1 for x = 0.
(4)

We first note that

ĥ1(nTs) =

{
1 for n = 0

0 otherwise
d

dt
ĥ1(t)

∣∣∣∣
t=nTs

= 0 (5)

d

dt
ĥ2(t)

∣∣∣∣
t=nTs

=

{
1
Ts

for n = 0

0 otherwise
ĥ2(nTs) = 0 (6)

so that ȳ(nTs) = x̄(nTs) and ˙̄y(nTs) = ˙̄x(nTs), i.e. the signal and
its derivative are reconstructed perfectly at the sampling instants.

To further assess the reconstruction capabilities, we consider
the frequency domain, where the frequency responses of the filters
as obtained by Fourier transform are given by

Ĥ1(jω) =

{
Ts · (1− Ts

2π
|ω|) if |ω| < 2π

Ts

0 otherwise
(7)

Ĥ2(jω) =

{
Ts
2πj

sgn(ω) if |ω| < 2π
Ts

0 otherwise
(8)

DAFx.1

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

86

https://www.hsu-hh.de/ant/
mailto:martin.holters@hsu-hh.de
http://creativecommons.org/licenses/by/4.0/


Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t/Ts

ĥ
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Figure 1: Reconstruction basis functions

(see the third row of figure 2). As the reconstruction filters are obvi-
ously bandlimited to the sampling frequency ωs =

2π
Ts

, we may at
best hope for perfect reconstruction of signals equally bandlimited
to ωs. Now denote the Fourier transform of the input signal x̄(t) as
X̄(jω). Then the Fourier transform of the sampled signal is given
by

X(jω) =
1

Ts

∞∑
k=−∞

X̄(j(ω − kωs)) (9)

with image spectra appearing at multiples of the sampling frequency.
Likewise, with ˙̄X(jω) = jωX̄(jω) denoting the Fourier transform
of the time derivative ˙̄x(t), the Fourier transform after sampling is
given by

Ẋ(jω) =
1

Ts

∞∑
k=−∞

˙̄X(j(ω − kωs))

=
1

Ts

∞∑
k=−∞

j(ω − kωs)X̄(j(ω − kωs)). (10)

In the frequency domain, the reconstruction (1) then becomes

Ȳ (jω) = X(jω)Ĥ1(jω) + TsẊ(jω)Ĥ2(jω)

=
∞∑

k=−∞

Ĥ(jω; k) · X̄(j(ω − kωs)) (11)

where

Ĥ(jω; k) =
1

Ts
Ĥ1(jω) + j(ω − kωs)Ĥ2(jω) (12)

can be regarded as the filter effectively applied to the k-th image
spectrum. While Ĥ(jω; k) = 0 for |ω| ≥ ωs is immediate from

the bandlimited nature of Ĥ1(jω) and Ĥ2(jω), for |ω| < ωs we
can simplify to

Ĥ(jω; k) = (1− Ts
2π

|ω|) + j(ω − kωs)
Ts
2πj

sgn(ω)

= 1− k sgn(ω). (13)

Now let us assume the input signal x̄(t) to be bandlimited
to the sampling rate, i.e. such that its Fourier transform obeys
X̄(jω) = 0 for |ω| ≥ ωs. Then for 0 < ω < ωs, all terms
in (11) vanish except for those at k = 0 and k = 1, as otherwise
|ω−kωs| ≥ ωs and hence X̄((ω−kωs)) = 0. But for 0 < ω < ωs,
we have Ĥ(jω; 0) = 1 and Ĥ(jω; 1) = 0, so that (11) reduces to
Ȳ (jω) = X̄(jω). Similarly, for −ωs < ω < 0 all terms except for
those at k = 0 and k = −1 vanish, and we have Ĥ(jω; 0) = 1 and
Ĥ(jω;−1) = 0, so that (11) again reduces to Ȳ (jω) = X̄(jω).
Thus, for signals bandlimited to the sampling frequency, the method
of (1) allows perfect reconstruction.

An example of sampling and reconstruction of a signal ban-
dlimited to ωs is shown in figure 2 in frequency domain, where
the Fourier transform X̄(jω) of the original signal (top row left) is
assumed real-valued for illustration purposes. The Fourier trans-
form of its derivative is shown on the right. As the signal is not
bandlimited to ωs

2
, the image spectra after sampling, shown in the

second row, overlap. But note that (due to the bandlmitation to ωs)
at most two image spectra superimpose at an given frequency. Af-
ter applying the reconstruction filters shown in the third row, one
obtains signals obviously bandlimited to ωs again, but otherwise
not resembling the original signal, see fourth row. However, their
weighted sum (bottom) indeed reconstructs the original signal.

2.1. Application to aliasing reduction

To achieve aliasing reduction, instead of reconstructing the original
signal, we are interested in obtaining a version of it bandlimited
to half the sampling rate, or rather samples thereof. Bandlimiting
the frequency responses from (7) and (8) to ωs

2
= π

Ts
then trivially

results in

H̄1(jω) =

{
Ts · (1− Ts

2π
|ω|) if |ω| < π

Ts

0 otherwise
(14)

H̄2(jω) =

{
Ts
2πj

sgn(ω) if |ω| < π
Ts

0 otherwise
(15)

with the corresponding impulse responses

h̄1(t) =
1

2
sinc(t/Ts) +

1

4
(sinc(t/2Ts))

2 (16)

h̄2(t) =
t

4Ts
· (sinc(t/2Ts))

2 (17)

derived via inverse Fourier transform. Reconstructing with H̄1(jω)

and H̄2(jω) instead of Ĥ1(jω) and Ĥ2(jω), we have to replace
Ĥ(jω0; k) in (11) with

H̄(jω; k) =

{
Ĥ(jω; k) for |ω| < ωs

2

0 otherwise,
(18)

likewise bandlimited to ωs
2

.
We assess the effectiveness for antialiasing by assuming a

complex exponential x̄(t) = ejω0t as original signal with the
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Ĥ1(jω) ·X(jω)

−2 −1 0 1 2

0

1

ω/ωs
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Figure 2: Example of sampling and reconstruction of a signal ban-
dlimited to ωs, frequency domain representation. Top row: example
signal (assuming a real-valued Fourier transform for illustration)
and its derivative. Second row: the same signals after sampling, col-
orful dotted lines indicate individual image spectra, solid line their
superposition. Third row: the two reconstruction filters. Fourth
row: signals after application of the respective reconstruction fil-
ters. Bottom: the reconstructed signal.
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Figure 3: Input-frequency-dependent gain G(ω0) of signals sam-
pled and reconstructed with H̄1(jω) and H̄2(jω)

corresponding Fourier transform X̄(jω) = δ(ω − ω0) given by a
single Dirac impulse at ω0 potentially exceeding the sampling rate.
Sampling and reconstruction (bandlimited to ωs

2
) then gives

Ȳ (jω) =
∞∑

k=−∞

H̄(jω; k) · δ(ω − ω0 − kωs)

=
∞∑

k=−∞

H̄(j(ω0 + kωs); k) · δ(ω − ω0 − kωs). (19)

Here, all terms vanish where |ω0 + kωs| ≥ ωs
2

due to the bandlim-

itedness of H̄(jω; k), leaving only a single term at k0 = −
[
ω0
ωs

]
(with [·] denoting rounding to the nearest integer). We thus arrive at

Ȳ (jω) = H̄(j(ω0 + k0ωs); k0) · δ(ω − ω0 − k0ωs) (20)

or equivalently

ȳ(t) = H̄(j(ω0 + k0ωs); k0) · ej(ω0+k0ωs)t. (21)

So all in all, the complex exponential is aliased to the baseband
and weighted with

G(ω0) = Ĥ(j(ω0 + k0ωs); k0) = 1 +
[
ω0
ωs

]
· sgn

(
ω0
ωs

−
[
ω0
ωs

])
(22)

as depicted in figure 3. We observe that G(ω0) = 1 for |ω0| <
ωs/2, confirming perfect reconstruction up to half the sampling
rate, and G(ω0) = 0 for ωs/2 < |ω0| < ωs, perfect suppression of
aliased components up to the sampling rate. However, for signals
with even higher frequency, the aliased components are actually
amplified, owing to the high-frequency gain of the involved differ-
entiation.

For signals with components exceeding half the sampling rate
but then decaying quickly with frequency, the approach may nev-
ertheless result in a net benefit. However, to be practical, it has
to be applied in the discrete-time domain to obtain signals of an
antialiased signal that can then be processed like any other signal.
As h̄1(t) and h̄2(t) are by construction sufficiently band-limited,
they can be safely sampled and the reconstruction be replaced with
a convolution. Following this approach, we obtain

h1(n) = h̄1(nTs) =
1

2
sinc(n) +

1

4
(sinc(n/2))2 (23)

h2(n) = h̄2(nTs) =
1

4
n · (sinc(n/2))2 (24)
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Figure 4: Sampled bandlimited reconstruction basis functions

as depicted in figure 4 and the antialiasing operation

y(n) =
∞∑

k=−∞

h1(k)x(n− k) + h2(k)Tsẋ(n− k). (25)

3. COMBINATION WITH ANTIDERIVATIVE
ANTIALIASING

As the origin of signals with aliased components, we consider
nonlinear mappings of the form

x̄(t) = f(ū(t)) (26)

where ū(t) is bandlimited to fs/2 but x̄(t) generally is not due
to the emergence of harmonics. Thus, the discrete-time operation
x(n) = f(u(n)) suffers from aliasing distortion. To try and reduce
aliasing by utilizing the time derivative as explained above, we
require

˙̄x(t) =
d

dt
f(ū(t)) = ˙̄u(t)f ′(ū(t)) (27)

where f ′(ū) = d
dū

f(ū). It is thus easy to obtain samples ẋ(n) =
u̇(n)f ′(u(n)) if given u̇(n), which could be obtained from u(n)
with appropriate linear filters. In the light of the discussion in
section 2, this scheme could be applied if f(u) is sufficiently mild
so that the introduced harmonics roll off quickly.

To make the approach also applicable to more aggressive f(u),
we propose to first replace it with a version that ensures sufficient
high-frequency roll-off by employing antiderivative antialiasing [3].
It consists of (virtually) reconstructing a continuous-time signal,
applying the nonlinearity to it, lowpass filtering, and sampling
to obtain a discrete-time signal again. To make this approach
computable, the reconstruction uses simple linear interpolation
and the lowpass will also be kept relatively simple. In the first-
order case, it only performs averaging over one sampling interval,

u(n)
piecewise

linear
reconstr.

f
one Ts

averaging x1(n)

Ts

(a) antiderivative antialiasing

u(n)
piecewise

linear
reconstr.

f
one Ts

averaging
d
dt

ẋ1(n)

Ts

(b) time derivative thereof

u(n)
piecewise

linear
reconstr.

f
one Ts

delay + ×
1/Ts

ẋ1(n)

Ts

(c) restructured time derivative

u(n) f z−1 + ×
1/Ts

ẋ1(n)

(d) simplified time derivative

Figure 5: Equivalent system representation of antiderivative an-
tialiasing and its time derivative

resulting in the system of figure 5a. Its output is given by

x1(n) =

∫ 1

0

f(ũ(τ ;n))dτ (28)

with
ũ(τ ;n) = (1− τ) · u(n− 1) + τ · u(n). (29)

Observing dũ
dτ

= u(n)−u(n−1), we can now perform integration
by substitution to obtain

x1(n) =

∫ u(n)

u(n−1)
f(ũ)dũ

u(n)− u(n− 1)
. (30)

Applying the fundamental theorem of calculus and with continuos
extension for u(n) = u(n− 1) by taking the limit in that case, we
finally arrive at

x1(n) =

{
F (u(n))−F (u(n−1))

u(n)−u(n−1)
if u(n) ̸= u(n− 1)

1
2
(f(u(n)) + f(u(n− 1)) if u(n) = u(n− 1)

(31)
where F (u) denotes the antiderivative of f(u).

To obtain samples ẋ1(n) of the derivative corresponding to the
output of this modified nonlinearity, we start by adding a differentia-
tion to the system of figure 5a, yielding the system of figure 5b. But
averaging and differentiating are both linear filtering operations that
can be combined into a single linear filter. In particular, averaging
over one sampling period is equivalent to convolution with

g1(t) =

{
1
Ts

for 0 ≤ t ≤ Ts

0 otherwise,
(32)

the derivative of which is given by

d

dt
g1(t) =

1

Ts
(δ(t)− δ(t− Ts)) (33)
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u(n)−u(n−1)
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Figure 6: Combined derivative/antiderivative antialiasing system
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Figure 7: Attenuation of signal components by antiderivative an-
tialiasing alone (dotted) and in combination with the derivative-
based approach (solid)

where δ(t) denotes the Dirac delta distribution. This leads to the
system of figure 5c. Now observe that we only need to evaluate
the output of the nonlinearity at sampling instants. And with the
nonlinearity being stateless, the same holds for its input, i.e. the
output of the piecewise linear reconstruction. But at the sampling
instants, its output is equal to its input, so that the whole operation
reduces to

ẋ1(n) =
1

Ts
(f(u(n))− f(u(n− 1))) (34)

depicted in figure 5d. It should be emphasized that while this is the
first-order differences approximation of the time-derivative of the
original system, it is the exact time-derivative of the antiderivative-
antialiased system.

As one might have hoped for, derivative and antiderivative
cancel and we are left with an astonishingly simple result. In
particular, note that we no longer require u̇(n), eliminating the
need for a linear filter to estimate it. Noting that the factors Ts and
1
Ts

from (25) and (34) cancel, we finally arrive at the combined
system depicted in figure 6.

The averaging operation of the antiderivative antialiasing cor-
responds to a sinc-shaped frequency response, attenuating high-
frequency components before they are aliased into the baseband. In
combination with the derivative-based approach, it combines with
the transfer characteristic of figure 3, resulting in the frequency
response shown in figure 7 (solid line). The comparison with the
responses of antiderivative antialiasing alone (dotted) verifies that
the strongest unwanted components just above ωs/2 are completely
removed, at the cost of reduced attenuation of higher-frequency
components.

Another interesting comparison concerns the effect when the
antialiasing approaches are (unnecessarily) applied to a linear f(u).
In particular, we consider f(u) = u. In that case, first-oder an-
tiderivative antialiasing leads to x1(n) = 1

2
(u(n) + u(n − 1)),

0 0.1 0.2 0.3 0.4 0.5
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)
(j
ω
)|

in
d
B

Figure 8: Frequency response of antiderivative antialiasing (dotted)
and the combined approach (solid) when applied to the identity
function f(u) = u

while the combination with the derivative leads to

y(n) =
∞∑

k=−∞

1

2
h1(k)(x1(n− k) + x1(n− k − 1))

+ h2(k)(x1(n− k)− x1(n− k − 1))

=
∞∑

k=−∞

(
1
2
(h1(k) + h1(k − 1)) + h2(k)− h2(k − 1)

)
· x1(n− k). (35)

The corresponding frequency responses are given by

Ha(jω) = cos(ωTs/2)e
jωTs/2 (36)

for antiderivative antialiasing and

Hc(jω) =
(
cos(ωTs

2
)H̄1(jω) + 2 sin(ωTs

2
)H̄2(jω)

)
ejωTs/2

(37)
for the combined approach (for |ω| < ωs). As can be seen in
figure 8, the combined approach has significantly lower high-fre-
quency loss when applied to a linear function. The same behavior
may be expected when a nonlinear function is used but excited
with a small signal, mainly operating in the linear region. It should
be noted, though, that these frequency responses only affect the
fundamental in the (almost) linear case. Harmonics appearing in the
nonlinear case are always primarily subject to the sinc-shaped fre-
quency response of the one-Ts-averaging, for both the antiderivative
and the combined antialiasing approach alike.

3.1. Second-order antiderivative antialiasing

Different extensions of antiderivative antialiasing to higher orders
have been proposed [5, 6]. Here, we will only consider the approach
of [3] in which the rectangular filter kernel corresponding to an
averaging over one sampling period is replaced with a triangular
one

g2(t) =


1
Ts

· t
Ts

for 0 < t ≤ Ts

1
Ts

(
2− t

Ts

)
for Ts < t ≤ 2Ts

0 otherwise.

(38)
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This leads to

x2(n) =
u(n) · (F (u(n))− F (u(n− 1)))

(u(n)− u(n− 1))2

− F1(u(n))− F1(u(n− 1))

(u(n)− u(n− 1))2

+
u(n− 2) · (F (u(n− 2))− F (u(n− 1)))

(u(n− 2)− u(n− 1))2

− F1(u(n− 2))− F1(u(n− 1))

(u(n− 2)− u(n− 1))2
(39)

where F1(u) =
∫
uf(u)du (with special cases when the denomi-

nators vanish, see [3]).
Like for the first-order case, we can obtain the derivative by

differentiating g2(t), giving

d

dt
g2(t) =


1
T2

s
for 0 < t ≤ Ts

− 1
T2

s
for Ts < t ≤ 2Ts

0 otherwise

=
1

Ts
(g1(t)− g1(t− Ts)) .

(40)

Noting that convolution with g1(t) brings us back to the first-oder
case, we thus arrive at

ẋ2(n) =
1

Ts
(x1(n)− x1(n− 1)) . (41)

4. EVALUATION

To evaluate the effectiveness of the proposed method, we consider
the soft-clipping nonlinearity given by

f(u) =
2

π
arctan(u). (42)

The antiderivatives required for antiderivative antialiasing are

F (u) =
2

π

(
u arctan(u)− 1

2
log(1 + u2)

)
(43)

F1(u) =
1

π

(
(u2 + 1) arctan(u)− u

)
. (44)

To obtain an implementable system for the derivate-based antialias-
ing, we truncate the filter impulse responses h1(n) and h2(n).
Thanks to its fast decay, we can truncate h1(n) to −7 ≤ n ≤ 7.
As h2(n) decays slower, we choose a much longer excerpt, namely
−99 ≤ n ≤ 99 and multiply with a Hann window w(n) =
cos2( π

198
n). More careful filter design may be able to reduce

the filter order even further without compromising quality. But
even with the given design, as every second coefficient of the filter
impulse responses is zero and by exploiting their symmetry, the
filters can be computed with a total of 54 multiplications per sample,
showing the practical feasibility.

The system is excited with a single sinusoid

u(n) = 10 sin(2πf0Tsn) (45)

at a frequency of f0 = 1318.5Hz and sampling rate 1/Ts =
44.1 kHz. Figure 9 shows the resulting spectrum of the output
without antialiasing. Strong aliasing distortion is clearly visible.
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Figure 9: Output spectrum without antialiasing. Crosses mark
desired harmonics.
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Figure 10: Output spectrum when using derivative-based antialias-
ing. Crosses mark desired harmonics.

For this particular input, we can determine samples of the
output’s derivative as

ẋ(n) =
40f0 cos(2πf0Tsn)

1 + (10 sin(2πf0Tsn))2
. (46)

Figure 10 confirms that applying derivative-based antialiasing ac-
cording to (25) suppresses the strongest aliasing components. How-
ever, closer inspection reveals that the remaining aliasing sees a
slight increase. Overall, the aliasing has been reduced, but not to a
satisfactory level.

As can be seen in figure 11a, first-order antiderivative antialias-
ing has the opposite effect: it greatly reduces overall aliasing, but
does little to the strongest aliasing components primarily at higher
frequencies. When combined with the derivative-based approach,
figure 11b shows that these most prominent aliasing components are
dramatically attenuated, at the cost of a slight increase of the remain-
ing aliasing. Finally, in figure 11c we compare with antiderivative
antialiasing oversampled by a factor of two, which exhibits even
better aliasing suppression. For simplicty and comparability, the
interpolation and decimation filters for the sampling rate conversion
are Hann-windowed sinc functions of the same length as h1 for the
interpolation and as h2 for the decimation filter, respectively. With
a more sophisticated decimation filter design, further suppression
of the strong aliasing component at 21.7 kHz could certainly be
achieved, which should however be imperceptible anyway.

The same comparison is carried out in figure 12 for second-
order antiderivative antialiasing. As expected, it performs better
than first-order antiderivative antialiasing, but on its own, it leaves
some strong aliasing components especially at higher frequencies,
see figure 12a. Again, combination with derivate-based antialiasing
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(a) first-order antiderivative antialiasing

0 5 10 15 20

−100

−75

−50

−25

0

frequency in kHz

am
pl

itu
de

in
d
B

(b) combined derivative/first-order antiderivative antialias-
ing

0 5 10 15 20

−100

−75

−50

−25

0

frequency in kHz

am
pl

itu
de

in
d
B

(c) two times oversampled first-order antiderivative antialias-
ing

Figure 11: Comparison of first-order antiderivative antialiasing
with and without combination with derivative-based antialiasing or
oversampling by a factor of two. Crosses mark desired harmonics.

reduces these but slightly increases the remaining aliasing as shown
in figure 12b. Finally, figure 12c confirms that also for the second-
order case, oversampling by a factor of two is even more effective.

5. DISCUSSION

The derivative-based antialiasing developed in section 2 nicely
complements antiderivative antialiasing: They reduce each other’s
weaknesses while only mildly affecting their strengths. At the same
time, the derivative and antiderivative computation cancel to a large
extent, resulting in a relatively simple system. However, combining
antiderivative antialiasing with oversampling by a factor of two
is also conceptually simple and even more effective at aliasing
suppression.
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(a) second-order antiderivative antialiasing
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(b) combined derivative/second-order antiderivative an-
tialiasing
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(c) two times oversampled second-order antiderivative an-
tialiasing

Figure 12: Comparison of second-order antiderivative antialiasing
with and without combination with derivative-based antialiasing or
oversampling by a factor of two. Crosses mark desired harmonics.

That raises the question which one is more efficient. If the com-
bined approach is computationally more efficient than two times
oversampled antiderivative antialiasing, it could be an interesting
alternative. However, an exact answer will involve a lot of “it
depends”, so we only do a qualitative discussion here. Ignoring
the u(n) = u(n− 1) case for simplicity, every evaluation of (31)
requires one evaluation of F (u(n)) (assuming F (u(n − 1)) has
been stored from the previous time step) and one division. Two-
times oversampling obviously doubles that. Combination with
derivative-based antialiasing instead requires an additional eval-
uation of f(u(n)). The difference in computational complexity
between these two will probably not be significant but tend to
favour the derivative-based approach. For second-order antideriva-
tive antialiasing, combination with the derivative-based approach
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has a clearer advantage over oversampling by a factor of two, as
x1(n) given by (31) can be found as a subexpression in (39), so
that additionally computing the derivative with (41) is almost free,
while oversampling will require additional evaluations of F and F1

and divisions.
In addition to the nonlinear part, both the derivative-based ap-

proach and oversampling require linear filtering. The exact filter
order and, after exploiting zero-coefficients and symmetry, number
of multiplications depends on the filter design used. But both ap-
proaches have in common that they require one long filter (h2 for
the derivative-based approach, the decimation filter for oversam-
pling) and one short filter (h1 for the derivative-based approach,
the interpolation filter for oversampling, considering [7]). If the
evaluation of the nonlinear functions is relatively cheap and the
computational complexity is therefore dominated by the linear fil-
tering, it is roughly comparable for both approaches.

To conclude, the combined derivative/antiderivative antialias-
ing developed in this paper may be conceptually elegant, but it of-
fers no real benefit compared to two-times oversampled antideriva-
tive antialiasing. On the contrary, it is less effective while any
advantages in terms of computational complexity may likely be
insignificant. We nevertheless hope to stimulate further research in
this area, maybe leading to further developments that then do offer
actual benefits.
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