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ABSTRACT

Hard sync is a feature appearing in many analog synthesizers: it
consists in retriggering a slave oscillator, regardless of its phase,
every time a master oscillator completes its cycle. If this process
is naïvely implemented digitally, it is subject to aliasing. While for
sawtooth, square, and triangle waves several effective antialiasing
methods have been developed, the literature is sparser concerning
sine hard sync, arguably because discontinuities of infinite order
are introduced which are more difficult to handle. In this paper, we
introduce a new antialiasing algorithm for sine hard sync which
is obtained by filtering the hard-synced sine with a FIR lowpass
kernel, as opposed to existing methods based on the windowed sinc
function. We show that our method yields lower computational
cost and better aliasing reduction.

1. INTRODUCTION

Synthesizers were born in the late 19th century and gained pop-
ularity especially in the 1960s and 1970s. In that era, they were
mainly based on subtractive synthesis: first a sound with a rich
spectrum was generated by one or more oscillators, then it was
fed to a user-controlled filter to shape its harmonic content. In the
1980s, digital signal processing gradually overtook analog elec-
tronics as the main technology underlying synthesizers. This al-
lowed for more flexibility and affordability but also introduced
new technical challenges.

Indeed, it is well-known that geometric waveforms (sawtooth,
square, triangle) are not bandlimited, therefore a digital oscilla-
tor that simply samples these waveforms yields aliasing distor-
tion. In order to mitigate this problem, several oscillator algo-
rithms have been proposed in the last decades, including those
based on wavetable synthesis [1, 2, 3], oversampling [1], discrete
summation formulas [4, 5], frequency-domain methods [6, 7], ban-
dlimited impulse trains (BLITs) [8, 9], bandlimited step functions
(BLEPs) [10, 11],differentiated polynomial waveforms (DPWs)
[12, 13], and polynomial transition regions (PTRs) [14, 15]. The
choice of the most appropriate algorithm depends on the efficiency
and aliasing reduction requirements of the application at hand.

Hard sync is a feature present in some analog and digital syn-
thesizers with two or more oscillators. Here we describe briefly its
mechanism. Suppose that one oscillator, called the master, is run-
ning at a certain frequency, while another oscillator, called slave,
is running at a possibly different frequency. When the master com-
pletes a cycle, the slave is retriggered, regardless of its current
phase (see Figure 1). In many cases, this causes the output of the
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slave oscillator to have a very rich and complex spectrum, giving 
the impression of harmony.

In particular, even if the original slave oscillator waveform 
was bandlimited, the resulting synced output may not be. Thus, 
in the case of digital synthesizers, aliasing noise is likely to be in-
troduced. When it comes to geometric waveforms, [10] provides 
good antialiasing algorithms for this scenario. The BLIT algorithm 
is based on the fact that the first or the second derivative of any ge-
ometric waveform is an impulse train, therefore it makes sense to 
replace each impulse with a lowpass filter kernel and then perform 
integration once or twice. If one employs the ideal lowpass filter, 
each impulse ends up being substituted by a sinc function, which 
needs to be windowed for the method to be of practical use. The 
BLEP variant consists in pre-integrating the windowed sinc func-
tion in order to obtain a bandlimited step and using it to replace 
discontinuities in the trivially-generated signal. More generally, 
these methods allow to replace any discontinuity in a signal, or of 
its derivatives, with a "bandlimited discontinuity". A similar ap-
proach was taken, for example, in [16] to develop an antialiasing 
method for polygonal oscillators.

This idea is exploited in [17] in order to produce 3 antialias-
ing methods for sine hard sync. The first two methods replace, 
in different ways, the discontinuities of the signal and its deriva-
tives with their bandlimited counterparts. However, resetting the 
phase of a sine wave causes a discontinuity of all its derivatives, 
i.e., a "discontinuity of infinite order", so these methods introduce 
further approximations. The third method, called the "frequency 
shifting method", is instead conceptually based on filtering the 
continuous-time analytical signal before sampling and can be thus 
seen as the equivalent of the BLEP method. In this case, the only 
approximation is due to windowing.

We take inspiration from this last approach but rather develop 
a more straightforward formulation and replace the windowed sinc 
function with a FIR lowpass filter, in a similar vein to the poly-
BLEP method [11]. We give explicit results when the FIR ker-
nel is polynomial (including the classical triangular kernel), a B-
spline, or trigonometric. In these cases, the convolution integral 
can be fully expressed in terms of elementary functions (in par-
ticular, sine waves and polynomials) and the resulting algorithms 
give better aliasing reduction with less computational load. The 
method is however easily adaptable to different kernels.

The paper is organized as follows. In Section 2, we formal-
ize the problem, showing that our antialiasing algorithm, like the 
BLEP algorithm, can be described in terms of residuals, for which 
explicit formulas are presented in Section 3. In Section 4, we 
briefly discuss the results, in particular we analyze the computa-
tional cost of our method and compare it with the frequency shift-
ing method from [17] in two experiments, showing that our method 
gives superior performances with less computational load. Finally, 
conclusions are drawn in Section 5.
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Figure 1: Examples of hard-synced sine waves.

2. PROBLEM STATEMENT

2.1. Filtered hard-synced sine

Let f0, f1 be the frequency of the slave and master oscillator, re-
spectively, and set ω0 = 2πf0, T = 1

f1
. Suppose that hard sync is

triggered at time t = 0. Then the resulting waveform will be:

x(t) =

{
sin(ω0t) t ≤ 0

sin(ω0 mod(t, T )) t > 0
. (1)

Consider now an LTI filter which has gain 1 at angular frequency
ω0 and let h(t) be its impulse response. If x(t) is fed into this
filter, the output is clearly y(t) = (h ∗ x)(t).

In order to compute this convolution, we rewrite (1) in a more
convenient way. If u(t) is the Heaviside function and sk(t) =
sin(ω0(t− kT )), then (1) can be expressed as:

x(t) = s0(t) +

+∞∑
k=1

(sk(t)− sk−1(t))u(t− kT ). (2)

Furthermore, by defining

f(t) = (sin(ω0t)− sin(ω0(t+ T )))u(t)

= −2 sin

(
ω0

T

2

)
cos

(
ω0

(
t+

T

2

))
u(t),

(3)

we obtain:

x(t) = s0(t) +

+∞∑
k=1

f(t− kT ). (4)

As a consequence,

y(t) = (h ∗ x)(t)

= (h ∗ s0)(t) +
+∞∑
k=1

h(t) ∗ f(t− kT )

= s0(t) +

+∞∑
k=1

(h ∗ f)(t− kT ).

(5)

By further defining

g(t) = (h ∗ f)(t), (6)

one gets:

y(t)− x(t) =

+∞∑
k=1

(g(t− kT )− f(t− kT )). (7)

Finally, defining the residual

R(t) = g(t)− f(t), (8)

we obtain:

y(t) = x(t) +

+∞∑
k=1

R(t− kT ). (9)

2.2. The antialiasing problem

In order to remove aliasing from the signal (1), one would like to
feed it into an ideal lowpass filter. But it is well-known that the
ideal lowpass filter has an infinite impulse response, the sinc func-
tion. This implies that the corresponding residual R(t) has itself
infinite length, and therefore the sum in (9) is really an infinite
series, making it impractical to use in real-world applications.

If, instead, we use a FIR filter, the series reduces to a finite
sum. To see this, suppose that h(t) is the impulse response of a FIR
filter. We will also suppose, from now on, that h(t) is symmetric
with respect to t = 0, so that its support is [−ϵ, ϵ]. Then:

g(t) =

∫ ϵ

−ϵ

h(θ)f(t− θ) dθ. (10)

But f(t−θ) = 0 for θ > t, so (h∗f)(t) = 0 when t ≤ −ϵ. On the
other hand, for t > 0, f(t) is a sine wave of angular frequency ω0.
When t > ϵ, the convolution (10) coincides with the convolution
with a plain sine wave, and so (h ∗ f)(t) = f(t) because h has
gain 1 at ω0. It follows that the support of R(t) is also [−ϵ, ϵ], and
so in (9) only a finite number of the supports of R(t − kT ) will
overlap, making the sum a finite sum.

Up to now, the FIR filters used in the literature for sine hard
sync were obtained by windowing the sinc function. In this pa-
per, we will show that one can achieve better results by using other
lowpass kernels. In the next section, we will give explicit formu-
las for g(t) when h(t) is a polynomial (in particular, a triangular)
kernel, a B-spline kernel or a trigonometric kernel.
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3. EXPLICIT FORMULAS

3.1. Polynomial kernel

Let

ρ(t) =

{∑N
k=0 ak|t|k |t| ≤ ϵ

0 |t| > ϵ,
(11)

where we impose
∑N

k=0 akϵ
k = 0 in order to ensure continuity.

Define:

p1(t) =
N∑
l=0

⌊N−l−1
2

⌋∑
m=0

(−1)m+l+1 (2m+ l + 1)!

l!

a2m+l+1

ω2m+2
0

tl;

(12)

p2(t) =
N∑
l=0

⌊N−l
2

⌋∑
m=0

(−1)m+l (2m+ l)!

l!

a2m+l

ω2m+1
0

tl; (13)

q1(t) =
N∑
l=0

⌊N−l−1
2

⌋∑
m=0

(−1)m
(2m+ l + 1)!

l!

a2m+l+1

ω2m+2
0

tl; (14)

q2(t) =
N∑
l=0

⌊N−l
2

⌋∑
m=0

(−1)m
(2m+ l)!

l!

a2m+l

ω2m+1
0

tl; (15)

G = |q1(ϵ) cos(ω0ϵ) + q2(ϵ) sin(ω0ϵ) + p1(0)|. (16)

One can verify that 2G is the gain at angular frequency ω0 of the
LTI filter whose impulse response is ρ(t). Therefore, in order to
define a filter with gain 1 at ω0, we define

h(t) =
ρ(t)

2G
. (17)

A direct computation shows that

g(t) =
sin

(
ω0

T
2

)
G

(
cos

(
ω0

(
t+

T

2
+ ϵ

))
p1(−ϵ)

− sin

(
ω0

(
t+

T

2
+ ϵ

))
p2(−ϵ)

− cos

(
ω0

T

2

)
p1(t) + sin

(
ω0

T

2

)
p2(t)

) (18)

when −ϵ ≤ t ≤ 0, and

g(t) =
sin

(
ω0

T
2

)
G

(
cos

(
ω0

(
t+

T

2
+ ϵ

))
p1(−ϵ)

− sin

(
ω0

(
t+

T

2
+ ϵ

))
p2(−ϵ)

− 2 cos

(
ω0

(
t+

T

2

))
p1(0)− cos

(
ω0

T

2

)
q1(t)

+ sin

(
ω0

T

2

)
q2(t)

)
(19)

when 0 < t ≤ ϵ.

3.1.1. Triangular kernel

Formulas above can be specialized to the case of triangular kernel
by taking ϵ = 1 and ρ(t) = 1 − |t| for |t| ≤ 1. The impulse
response becomes

h(t) =
ω2
0

2(1− cosω0)
(1− |t|) (20)

for |t| < 1, and we obtain

g(t) =
sin(ω0

T
2
)

1− cos(ω0)

(
cos

(
ω0

(
t+

T

2
+ 1

))
+ ω0 sin

(
ω0

T

2

)
(1 + t)− cos

(
ω0

T

2

)) (21)

when −1 ≤ t ≤ 0, and

g(t) =
sin(ω0

T
2
)

1− cos(ω0)

(
cos

(
ω0

(
t+

T

2
+ 1

))
− 2 cos

(
ω0

(
t+

T

2

))
+ ω0 sin

(
ω0

T

2

)
(1− t)

+ cos

(
ω0

T

2

)) (22)

when 0 < t ≤ 1.

3.2. B-spline kernel

We recall that the B-spline kernel is obtained by convolving twice
the rectangular kernel with itself. It takes the form:

β(t) =


1
2

(
t+ 3

2

)2 − 3
2
≤ t < − 1

2
3
4
− t2 − 1

2
≤ t < 1

2
1
2

(
t− 3

2

)2 1
2
≤ t < 3

2

0 elsewhere

. (23)

In order to use a filter that has gain 1 at ω0, we set

h(t) =

(
ω2
0

2(1− cosω0)

) 3
2

β(t). (24)

Please notice that this is not a polynomial, but only a piecewise
polynomial function, hence the result in Subsection 3.1 does not
apply. However, one can perform a similar computation, obtaining

g(t) =
sin

(
ω0

T
2

)
2

7
2 (1− cosω0)

3
2

(
8 sin

(
ω0

(
t+

T + 3

2

))
+ 4ω2

0 sin

(
ω0

T

2

)
t2 +

(
12ω2

0 sin

(
ω0

T

2

)
− 8ω0 cos

(
ω0

T

2

))
t+ (9ω2

0 − 8) sin

(
ω0

T

2

)
− 12ω0 cos

(
ω0

T

2

))
(25)

if − 3
2
≤ t ≤ − 1

2
,

g(t) =
sin

(
ω0

T
2

)
2

5
2 (1− cosω0)

3
2

((
4 cos

(
ω0

T + 3

2

)
− 12 cos

(
ω0

T + 1

2

))
sin(ω0t) +

(
4 sin

(
ω0

T + 3

2

)
− 12 sin

(
ω0

T + 1

2

))
cos(ω0t)− 4ω2

0 sin

(
ω0

T

2

)
t2

+ 8ω0 cos

(
ω0

T

2

)
t+ (3ω2

0 + 8) sin

(
ω0

T

2

))
(26)
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if − 1
2
< t ≤ 1

2
, and

g(t) =
sin

(
ω0

T
2

)
2

7
2 (1− cosω0)

3
2

((
8 cos

(
ω0

T + 3

2

)
− 24 cos

(
ω0

T + 1

2

)
+ 24 cos

(
ω0

T − 1

2

))
sin(ω0t)

+

(
8 sin

(
ω0

T + 3

2

)
− 24 sin

(
ω0

T + 1

2

)
+ 24 sin

(
ω0

T − 1

2

))
cos(ω0t) + 4ω2

0 sin

(
ω0

T

2

)
t2

−
(
12ω2

0 sin

(
ω0

T

2

)
+ 8ω0 cos

(
ω0

T

2

))
t

+ (9ω2
0 − 8) sin

(
ω0

T

2

)
+ 12ω0 cos

(
ω0

T

2

))
(27)

if 1
2
< t ≤ 3

2
.

3.3. Trigonometric kernel

Finally, we consider a kernel of the form

τ(t) =

{∑N
k=0 ak cos

(
kπ
ϵ
t
)

|t| ≤ ϵ

0 elsewhere
, (28)

where we impose
∑N

k=0(−1)kak = 0 in order to ensure con-
tinuity. Please notice that this family includes Hann, Hamming,
Blackman and Nuttall windows. In order to have gain 1 at ω0, we
set:

K = ω0ϵ
N∑

k=0

(−1)kak

ω2
0ϵ

2 − k2π2
;

h(t) =
τ(t)

2ϵ sin(ω0ϵ)K
.

(29)

Then

g(t) =
sin

(
ω0

T
2

)
K

(
ω0ϵ sin

(
ω0

T

2

) N∑
k=0

ak

cos
(
kπ
ϵ
t
)

ω2
0ϵ

2 − k2π2

+ π cos

(
ω0

T

2

) N∑
k=0

kak

sin
(
kπ
ϵ
t
)

ω2
0ϵ

2 − k2π2

−K sin

(
ω0

(
t+ ϵ+

T

2

)))
(30)

for t ∈ [−ϵ, ϵ].

4. DISCUSSION

Let us have a closer look at the equations above. Apart from the
trigonometric case, the residual is a linear combination of sine
waves of angular frequency ω0 and a polynomial. Please notice
that sine waves with same frequency and different gains and phases
can be expressed as a single sine wave using trigonometric iden-
tities. It follows that computing a residual essentially consists in
evaluating a polynomial and a sinusoid.

In the trigonometric case, the polynomial is replaced by a
trigonometric polynomial, so the computational load is seemingly

increased. However, the trigonometric polynomials in Subsec-
tion 3.3 can be seen as polynomials in cos

(
π
ϵ
t
)

and sin
(
π
ϵ
t
)

via
Chebyshev polynomials. This means that one needs to evaluate 2
polynomials and 3 sinusoids, hence the computational load is just
slightly higher than in the polynomial case.

The overall methodology does not necessarily depend on the
chosen kernel type, therefore adapting it to different kernels mostly
translates into recomputing the formulas for residuals.

4.1. Experiments

Here we compare the proposed method with the “frequency shift-
ing method” in [17], as it is reported to be the most efficient. We
stress that the frequency shifting method depends on the choice of
a window function, while our method depends on the choice of a
lowpass kernel. For the sake of a fair comparison, we have cho-
sen a Kaiser window (α = 4) and a triangular kernel, respectively,
both of length 2 samples.

We let fs = 44100 Hz and we call f0 = ω0
2π

the frequency of
the slave oscillator and f1 the frequency of the master oscillator.
In the figures we show the magnitude responses obtained using the
trivial hard sync algorithm, the frequency shifting method, and the
proposed method. Specifically, we set f0 = 2900.33 Hz, f1 =
866.42 Hz in the first experiment (Figure 2), and f0 = 517.88 Hz,
f1 = 1888.10 Hz in the second experiment (Figure 3).

The results clearly show that our method easily provides bet-
ter aliasing suppression than the frequency shifting method when
identical window/kernel length are used. Furthermore, in the tran-
sition regions the frequency shifting method requires the evalu-
ation of the exponential integral function, which is considerably
more computationally expensive than evaluating sinusoids and
polynomials. Therefore, we conclude that the proposed method
achieves better results at a lower computational cost.

A GNU Octave implementation of both methods is available
on the companion web page for this paper1.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new antialiasing method for sine
hard sync that outperforms the best known method both in terms
of computational efficiency and aliasing reduction. Explicit for-
mulations are given for polynomial, B-spline, and trigonometric
kernels, yet the methodology is applicable to any FIR lowpass ker-
nel.

A similar approach could also be applied to other waveforms,
for example to polygonal oscillators studied in [16].

1https://www.dangelo.audio/dafx20in22-sinesync.
html
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Figure 2: Magnitude spectrum of a sine wave of frequency f0 =
2900.33 Hz synced to a master oscillator of frequency f1 =
866.42 Hz generated at a sample rate fs = 44100 Hz using (a)
no antialiasing, (b) the frequency shifting method, and (c) the pro-
posed method.
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Figure 3: Magnitude spectrum of a sine wave of frequency
f0 = 517.88 Hz synced to a master oscillator of frequency
f1 = 1888.10 Hz generated at a sample rate fs = 44100 Hz
using (a) no antialiasing, (b) the frequency shifting method, and
(c) the proposed method.
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